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Abstract 
Molecular evidence of cellular heterogeneity in the human exocrine pancreas has not been 
established, due to the local concentration of hydrolytic enzymes that can rapidly degrade cells 
and RNA upon resection. Here we innovated single-nucleus RNA sequencing protocols, and 
profiled more than 120,000 cells from adult and neonatal human donors to create the first 
comprehensive atlas of human pancreas cells, including epithelial and non-epithelial 
constituents. Adult and neonatal pancreata shared common features, including the presence of 
previously undetected acinar subtypes, but also showed marked differences in the composition 
of the endocrine, endothelial, and immune compartments. Spatial cartography, including cell 
proximity mapping through in situ sequencing, revealed dynamic developmental cell 
topographies in the endocrine and exocrine pancreas. Our human pancreas cell atlas can be 
interrogated to understand pancreatic cell biology, and provides a crucial reference set for future 
comparisons with diseased tissue samples to map the cellular foundations of pancreatic 
diseases. 
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Introduction 
     Single-cell RNA sequencing (scRNA-seq) has expanded our understanding of heterogeneous 
human tissues and led to identification of novel functional cell types in the lung, brain and liver 
(Aizarani et al., 2019; Islam et al., 2014; MacParland et al., 2018; Montoro et al., 2018; 
Plasschaert et al., 2018). The development of single-nucleus RNA-seq (sNuc-seq) has further 
broadened application of high-throughput sequencing strategies to tissues which are difficult to 
dissociate or already archived, including clinical samples (Habib et al., 2017). Pancreatic 
exocrine tissues contain among the highest levels of hydrolytic enzyme activities in the human 
body (Farrell, 2010), hindering the preparation of intact RNA from this organ. Therefore, 
previous scRNA-seq studies of the human pancreas have been restricted to the islets of 
Langerhans (the endocrine part of the organ) after removal of the exocrine compartment, 
namely the acinar and ductal cells, the source of digestive enzymes. Following their isolation, 
endocrine islets were typically cultured in vitro, enzymatically dissociated, and processed on 
microfluidics devices before next-generation sequencing (Baron et al., 2016; Camunas-Soler et 
al.; Enge et al., 2017; Grün et al., 2016; Lawlor et al., 2017; Muraro et al., 2016; Segerstolpe et 
al., 2016; Wang et al., 2016). While this strategy proved to be successful in generating a draft of 
the endocrine human pancreas cell atlas, it has distinct disadvantages. For example, the in vitro 
culture and dissociation steps are known to introduce technical artefacts in gene expression 
measurements (van den Brink et al., 2017). Moreover, only small numbers of exocrine cells 
from single cell studies have been reported, leading to underrepresentation of acinar and ductal 
cells (Muraro et al., 2016; Segerstolpe et al., 2016; Wollny et al., 2016). As a consequence of 
this underrepresentation, acinar and ductal cells were usually considered homogenous 
populations dedicated to the production of zymogens and their transport to the intestine, 
respectively. Thus, the presence, extent or quality of heterogeneity in pancreatic exocrine cells 
is yet not established. 
     Here, we innovated methods for rapidly processing tissue biopsies isolated from freshly-
isolated human donor pancreata, followed by sNuc-seq, thereby avoiding in vitro expansion and 
dissociation procedures. This approach produced an index draft atlas of human pancreatic cells, 
including epithelial and non-epithelial cells from both neonatal and adult samples, and revealed 
previously undetected heterogeneity within pancreatic exocrine cells. Application of in situ 
sequencing combined with computational approaches, enabled us to elucidate spatial 
relationships and signaling pathways connecting distinct constituent cell types in the pancreas 
of previously-healthy adult human donors, and revealed dynamic cellular constitution and spatial 
arrangements during post-natal pancreas development. 
 

Results 
 
Innovating sNuc-seq methods for pancreas cells from previously-healthy human donors 
     To isolate nuclei from frozen tissue, we applied a common protocol based on the use of 
dense sucrose solutions and detergents at slightly alkaline pH values (Grindberg et al., 2013; 
Krishnaswami et al., 2016). However, the RNA extracted from isolated nuclei was highly 
degraded compared to the RNA in the original bulk tissue (Figures S1A-C). Several 
modifications to the original protocol were systematically applied, including use of dithio-
bis(succinimidyl propionate) (DSP) (Attar et al., 2018), methanol fixation (Alles et al., 2017; 
Chen et al., 2018), or the addition of RNAse inhibitors like ribonucleoside vanadyl complexes 
(Shieh et al., 2018), but these failed to improve RNA quality. However, on the basis of protocols 
first described in the 19th century (Carpenter and Smith, 1856) and subsequently modified 
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(Birnie, 1978; Crossmon, 1937; Dounce, 1943), we discovered a citric acid-based buffer which 
reduced RNA degradation during nuclei isolation, and increased cDNA yields 40-50 fold 
(compared to standard protocols) from human pancreatic samples (Figure S1D). We isolated 
nuclei from flash-frozen human pancreas biopsies with short cold-ischemia times (Methods) 
collected from three male and three female deceased donors, spanning the age range from 1.5 
to 77 years (13 samples in total) (Figure 1A and Table S1). The average number of unique 
molecular identifiers (UMIs) detected per nucleus was 1,287 and the average number of genes 
detected per nucleus was 692 (Figures S1E). To our knowledge, this effort generated the 
largest, most comprehensive extant human pancreas cell transcriptome dataset.   
     To aid comprehensive identification and characterization of different constituent pancreatic 
cell types, we applied canonical correlation analysis (CCA). This achieved (1) reduction of batch 
effects and (2) integration of data with previously annotated human pancreas scRNA-seq 
datasets (Figure S1F) (Stuart et al., 2019). Our results confirmed that independent sNuc-seq 
datasets could be merged and fully integrated with scRNA-seq data sets, despite the use of 
different starting material (nucleus versus whole cell) (Figure 1B-C) (Mereu et al., 2020). 
Annotation of cell clusters based on previous studies, confirmed that sNuc-seq enabled us to 
capture all previously reported pancreatic cell types (Figures 1B and 1C). Moreover, the 
proportion of cells identified with sNuc-seq differed and complemented data from earlier scRNA-
seq studies focused on the endocrine pancreas: in our work, though endocrine cell types were 
represented, the majority of data derived from acinar or ductal cell nuclei (Figure S2A-B), and 
also included important non-epithelial cell types (endothelial, stromal, immune cell) not 
comprehensively characterized in prior work that focused on islet biology. 
 

 
Figure 1. sNuc-Seq identifies cell types in the human healthy pancreas.  
(A) Overview of the strategy used to perform sNuc-seq and in situ sequencing. (B) Merging of sNuc-seq data 
generated in this study with previous scRNA-seq datasets (Baron et al., 2016; Grün et al., 2016; Lawlor et al., 2017; 
Muraro et al., 2016; Segerstolpe et al., 2016) of the endocrine human pancreas, shown as clusters in a two-
dimensional UMAP embedding. (C) Major cell types identified from sNuc-Seq of the human pancreas shown as 
clusters in a two-dimensional UMAP embedding. 
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Characterization of adult human pancreatic cell types 
     The two-dimensional UMAP embedding of the sNuc-seq data illustrates distinct cell clusters 
(Figure 2A). The comprehensive cell representation in our data aligns well with the known 
composition of the healthy human pancreas, with the majority of analyzed nuclei belonging to 
two predominant clusters derived from exocrine pancreatic epithelial cells. Acinar cells, 
accounting for 70% of the nuclei, were identified based on the expression of digestive enzymes 
such as CPA1/2, PRSS1 and hallmark transcription factors (TFs) such as RBPJL or FOXP2. 
Strikingly, our analysis revealed unanticipated heterogeneity in this cell type (see below). Ductal 
cells represented 18.5% of the nuclei and expressed cardinal regulators or markers like CFTR, 
ANXA4, and SLC4A4 (Figure 2B). Unlike in prior studies (Arda et al., 2016; Enge et al., 2017; 
Muraro et al., 2016; Segerstolpe et al., 2016), we identified two distinct ductal subtypes (Figure 
2A) and visual inspection of the principal component loadings confirmed that the two subtypes 
were separated along the third principal component (Figure 2C). The smaller subtype 
(accounting for 1% of the total ductal cells) was characterized by higher expression of genes 
linked to mucous secretion such as the mucin gene MUC5B (hereafter, “MUC5B+ ductal cells”), 
the trefoil factor genes TFF1, TFF2, TFF3, and the cysteine rich secretory protein 3 CRISP3 
(Figure 2C-D). The other ductal subtype, by contrast, showed higher expression of classical 
ductal cell markers such as the chloride channel gene CFTR, the sodium bicarbonate 
cotransporter gene SLC4A4, and the secretin receptor SCTR: collectively, these genes are 
known regulators of ductal cell secretory function (Figure 2C, 2D) (Baron et al., 2016). Thus, our 
study provides evidence for unsuspected molecular, and possible functional, heterogeneity in 
human pancreatic ductal cells. 
     

 
Figure 2. Characterization of ductal cell subtypes.  
(A) Major cell types identified from sNuc-Seq of the human pancreas shown as clusters in a two-dimensional UMAP 
embedding. (B) Dotplot showing the expression of specific markers in ductal (including ductal and MUC5B+ ductal) 
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and acinar (including acinar-i, acinar-s and acinar-REG+) cells. (C) On the top, scatter plot of ductal and MUC5B+ 
ductal cells across the principal component 2 and 3. On the bottom, line plot showing the moving average profile of 
indicated genes across the principal component 3. (D) Ridge plots showing distinct markers expressed in ductal and 
MUC5B+ ductal cells. 

 
     One major group of sNuc-seq clusters contained endocrine cells (approximately 6% of the 
total number of nuclei) and their identity was confirmed by the expression of known specific 
hormone genes, namely glucagon (GCG, alpha cells), insulin (INS, beta cells), pancreatic 
polypeptide (PPY, gamma cells) and somatostatin (SST, delta cells) (Figure 3A). Other clusters 
included endothelial cells (1.9% of total nuclei), characterized by the expression of FLT1, 
PLVAP, VWF, CD36 and SLCO2A1 and macrophages (0.7% of the total nuclei), expressing 
CD74, PTPRC, ZEB2, HLA-DRA, HLA-DRB1 and HLA-DPA1 (Figure 3B). We also identified 
clusters of pancreatic stellate cells (PSCs), which have recognized key roles in normal (Erkan et 
al., 2012) and diseased pancreas states such as pancreatitis and pancreatic cancer (Shi et al., 
2019). We distinguished two distinct states of PSCs in the pancreas from previously-healthy 
donors, called quiescent (qPSCs) and activated pancreatic stellate cells (aPSCs); based on our 
cell isolation strategy, these states are unlikely to reflect an artefact of culturing conditions 
(Baron et al., 2016). qPSCs expressed higher levels of SPARCL1 mRNA, similar to hepatic 
stellate cells (Coll et al., 2015), and also PDGFRB and FABP4, which likely regulate retinoid-
storage (Figure 3B and Figure S3) (D’Ambrosio et al., 2011). Moreover, qPSCs were enriched 
in mRNAs encoding the intermediate filament protein desmin (DES) and integrins such as 
ITGA1, known regulators of cell structure (Figures 3B and Figure S3). When PSCs activate, 
they acquire a myofibroblast-like morphology, and are able to migrate and remodel the 
extracellular matrix (ECM) (Erkan et al., 2012). Both qPSCs and aPSCs express COL4A1 and 
COL4A2, but aPSCs showed higher levels of mRNAs encoding other collagens such as 
COL5A2, COL6A3 and components of the basement membrane such as laminin proteins 
LAMA2 and LAMB1 (Figure 3B and Figure S3). Furthermore, in aPSCs we detected higher 
mRNA levels of SLIT2 and LUM, known mediators of fibrogenesis and migration in hepatic 
stellate cells (Bracht et al., 2015; Chang et al., 2015) (Figure 3B and Figure S3). We also 
detected a cluster of Schwann cells (80 nuclei, 0.02% of total) that expressed characteristic 
markers like CDH19, S100B, CRYAB, PMP22 and SCN7A (Figure 3B). Over-representation 
analysis showed the enrichment of specific terms such as “axonogenesis”, “synapse 
organization” and “synapse assembly” (Figure 3C). By contrast, we did not detect transcripts 
encoding genes associated with Schwann cell dedifferentiation and reduced myelin sheath 
formation, that can be upregulated by cell extraction and culture (Baron et al., 2016). 
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Figure 3. Characterization of other pancreatic cell types.  
(A) UMAP plots showing the expression of the endocrine cell markers GCG (alpha cells), INS (beta cells), PPY 
(gamma cells) and SST (delta cells). (B) Dotplot showing the expression of specific markers in Schwann, quiescent 
stellate, activated stellate, endothelial cells and macrophages. (C) Enrichment map of gene ontology terms enriched 
in Schwann cells. 

 
Heterogeneity of acinar cells in the adult human pancreas 
     sNuc-seq data for acinar cells provided an unprecedented opportunity for rigorous 
assessment of acinar cell heterogeneity, a feature not revealed in prior transcriptomic studies of 
the human pancreas. One population of acinar cells (acinar-REG+) expressed higher levels of 
mRNAs encoding the regenerating (REG) protein family members such as REG3A, REG3G and 
REG1B (Figure 4A and Figure S4). Acinar-REG+ cells were reported in a previous scRNA-seq 
study (Muraro et al., 2016) and represent a population of cells linked to development of 
pancreatic lesions such as acinar-to-ductal metaplasia (ADM) and pancreatic intraepithelial 
neoplasia (PanIN) (Li et al., 2016; Liu et al., 2015). 
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Figure 4. Characterization of acinar cells in the adult human exocrine pancreas.  
(A) Heatmap of acinar and ductal cell specific genes. (B) Bar plots showing KEGG pathways enriched in acinar-s and 
acinar-i cells. (C) Example image of RNA-FISH for CPB1 and AMY2A. In the magnified views, the horizontal triangles 
indicate cells with high intensity RNA-FISH signal, while vertical triangles indicate cells with low-intensity RNA-FISH 
signal. Scale bar = 50 μm. (D) Quantification of low intensity and high intensity AMY2A and CPB1 RNA-FISH signal 
in human pancreas sections. The nuclei (n=14,788, 20 images) were classified based on k-means clustering applied 
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to the frequency distributions of pixel counts per nucleus. Error bars indicate standard error of the mean of two 
independent experiments. (E) PAGA abstracted graph showing the most probable subgraph representing the data 
manifold. Each node corresponds to a cell type, while the size of nodes is proportional to the number of cells in each 
cluster. (F) Cell density of pancreatic cell types along a pseudotime trajectory reflecting their transcriptomic similarity. 

 
     Strikingly, we detected two additional subtypes of acinar cells not previously identified in 
human scRNA-seq experiments. These two clusters had distinct UMI levels per nucleus, but a 
similar number of expressed genes, denoting a distinct complexity of their transcriptomes 
(Figure S5A). We characterized these two populations by analyzing differentially expressed 
genes followed by gene over-representation analysis. The acinar cell subtype with higher 
numbers of UMIs was characterized by higher expression levels of 21 genes (Table S2) 
encoding for digestive enzymes. Further quantification revealed that 50% of the transcriptome of 
this cell type encodes for digestive enzyme genes (Figure S5A), confirming previous reports 
estimating that the majority of the mRNA molecules in a pancreatic acinar cell encode for fewer 
than 30 proteins (Harding et al., 1977; Hoang et al., 2016). Based on this feature of their 
transcriptome, we named this subset, “secretory acinar cells” (hereafter, acinar-s). Gene over-
representation analysis showed the enrichment of “Ribosome”, “Protein processing in the 
endoplasmic reticulum” and “Protein export” terms (Figure 4B), consistent with the view that 
acinar cells have the highest rate of protein synthesis of any human cell (Kubisch and Logsdon, 
2008).  
 

     The other distinct acinar cell type revealed by our analysis also expressed digestive enzyme 
genes, but at markedly lower levels compared to acinar-s cells (<4% versus >50%: Figures 4A, 
S5A). Gene over-representation analysis showed enrichment of terms including “Protein 
processing in the endoplasmic reticulum”, “Insulin signaling pathway”, “Endocytosis” and 
“Glucagon signaling pathway” (Figure 4B). Thus, these acinar cells appear less robust in their 
protein secretion, and instead enriched for responsiveness to external stimuli - like islet signals 
(Barreto et al., 2010), and activation of the endocytic pathway. We named this subset, “idling 
acinar cells” (hereafter, acinar-i). 
 

     To validate our sNuc-seq findings further, and to evaluate potential role(s) of the acinar-s and 
acinar-i cells in the healthy pancreas, we combined experimental and computational 
approaches. First, we performed RNA-FISH on the same samples used for nuclei isolation. 
Successful RNA-FISH experiments using probes for CPB1 (Carboxypeptidase) and AMY2A/B 
(Amylase) were performed and after quantification (Figure S5C) we confirmed the existence of 
distinct acinar cells expressing different levels of digestive enzyme genes (Figure 4C-D). In 
particular, mRNA of CPB1 and AMY2A/B showed heterogeneity across the tissue and, in 
agreement with sNuc-seq results, we were able to distinguish two classes characterized by 
differential RNA-FISH signal (Figure 4C-D).  
 

     Second, we applied SCENIC, a computational tool for inferring transcription factor-target 
regulatory networks (regulons) from single cell gene expression (Aibar et al., 2017). Both the 
acinar-s and acinar-i subtypes showed activation of the regulon CREB3L1, likely involved in the 
basal secretory activity of the cells (Figure S5B). The XBP1 regulon shows high activation in 
acinar-s cells in agreement with the role of this transcription factor in the unfolded protein 
response (UPR) pathway (Lee et al., 2003), and consistent with the view that biosynthetic 
activity and accompanying increase of endoplasmic reticulum (ER) stress are higher in acinar-s 
cells (Figure S5B). Notably, only acinar-s cells showed activation of regulons associated with 
the maintenance of acinar cell identity such as GATA4, NR5A2 and MECOM (Figure S5B). 
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     Third, we elucidated relationships between acinar-s or acinar-i subtypes and other pancreatic 
cell types using partition-based graph abstraction (PAGA) (Wolf et al., 2019). With PAGA 
representation, nodes represent distinct cell “states”, while edges indicate potential routes of cell 
transitions between them. Here, we included cell types which are known to derive from a 
common multipotent progenitor during embryonic development (Zhou et al., 2007), namely 
acinar and ductal cells in the exocrine compartment, and alpha, beta, gamma and delta cells in 
the endocrine compartment. This unsupervised approach places acinar-i cells in a central 
position, showing similar connections to the majority of the other cell types such as ductal and 
endocrine cells (Figure 4E). Fourth, we exploited the principle of pseudotime analysis to order 
cells on the basis of the similarity of their transcriptome (Trapnell, 2015). Interestingly, acinar-i 
cells occupy an intermediate position between acinar and ductal cells, reflecting the known 
plasticity of acinar cells and their ability to convert towards the ductal lineage (Figure 4F) (Storz, 
2017).  
 
Single nucleus sequencing of the human neonatal pancreas 
     A wealth of data is available about the embryonic development of pancreas in mammals 
(Jennings et al., 2015; Kim et al., 2020; Larsen and Grapin-Botton, 2017), but much less is 
known about the postnatal development of this organ. Here, we procured two 1-day old samples 
(Table S3) from one male and one female donor and generated sNuc-seq data from 10,528 
nuclei, with an average number of UMIs and genes per nucleus of 964 and 628, respectively 
(Figure 5A). We identified different cell types and cellular compositions specific for this 
developmental stage (Figure 5B-C). In particular, the exocrine neonatal compartment (acinar 
and ductal cells) accounts for around 50% of the organ, while it constitutes about 90% of the 
adult pancreas, in agreement with early studies of postnatal growth performed in rodents 
(Figure 5C) (Elsässer et al., 1994; Kachar et al., 1979; Sidorova and Babaeva, 1968). Moreover, 
at the postnatal stage, pancreatic endocrine cells account for 22% of detected cells in neonates 
compared to 6% in the adult (Figure 5C). Endocrine cells showed changes in cellular 
composition, with neonatal delta cells, the third major cell type of endocrine islets, accounting 
for 29% of the endocrine cells compared to 15% in adults (Figure 5D) (Rahier et al., 1981; 
Stefan et al., 1983). Alpha and beta cells accounted for 21% and 48% of the neonatal endocrine 
cells, in line with findings in humans and pigs (Figure 5D) (Kim et al 2020; M. Brissova, A. 
Powers, S.K. Kim, unpubl. results). While we did not detect a gamma cell population, we 
captured 42 GHRL+ (Ghrelin) epsilon cells in the endocrine compartment (Figure 5B) (Wierup et 
al., 2002). Ghrelin binds to cell-surface receptors like GHSR, and is known to play an 
insulinostatic function (DiGruccio et al., 2016; Reimer et al., 2003). Differential gene expression 
analysis of epsilon cells revealed that after ghrelin (GHRL), the second most differentially 
expressed gene is ACSL1, encoding for an Acyl-CoA synthetase enzyme which catalyzes the 
unique addition of an octanoyl group to ghrelin, a modification which is essential for its optimal 
biological activity (Gutierrez et al., 2008; Hougland, 2019). Other epsilon cell markers identified 
in this study include the annexin family member ANXA13, the proline-, histidine-, the calcium 
permeant cation channel TRPC4 and the asialoglycoprotein receptor ASGR1 (Figure 5E). 
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Figure 5. Characterization of the cellular composition of neonatal healthy pancreas. 
(A) On the left, the boxplots show the distribution of UMIs per nucleus for each neonatal sample processed in this 
study. On the right, the boxplots show the distribution of genes per nucleus for each neonatal sample. (B) Major cell 
types identified from sNuc-Seq of the human neonatal pancreas shown as clusters in a two-dimensional UMAP 
embedding. (C) Frequency of different cell types in adult and neonatal pancreas. (D) Frequency of different endocrine 
cells in the adult and neonatal pancreas. (E) Dot plot of distinct genes expressed in neonatal endocrine cells. 
 
     In exocrine cells from neonates, like in adults, we detected acinar-i and acinar-s cells, 
including similarities of UMI and gene count distributions (Figure 6A). For example, 4% of the 
transcripts of neonatal acinar-i cells encode for digestive enzyme genes compared to 33% in 
acinar-s, similar to the levels found in cognate adult cells (Figure 6A). However, we did not 
detect AMY2A, AMY2B and PNLIP in neonatal acinar-s cells, consistent with prior findings that 
little to no pancreatic amylase or lipase enzyme activity is detectable in newborns (Figure 6B) 
(Lebenthal and Lee, 1980; Zoppi et al., 1972). Moreover, we did not detect a population of 
acinar-REG+ cells in neonatal samples, suggesting a further layer of REG protein regulation 
during postnatal to adult maturation (Figure 5B). In the ductal compartment, we did not detect 
the MUC5B+ population, but this may reflect low duct cell yields from human neonatal pancreas 
(Figure 5B).  
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Figure 6. Characterization of the acinar, endothelial and immune constituents of the neonatal healthy 
pancreas. 
(A) Quantification of UMI per nucleus (left) and genes per nucleus (center) for the different acinar cell states. On the 
right, the percentage of transcriptome encoding for digestive enzymes (Table S2) is represented. (B) Violin plot 
showing the expression level of selected digestive enzyme genes in adult and neonatal pancreas. (C) Heat map 
showing different genes expressed in three different endothelial cell types. (D) Heat map depicting the number of all 
possible interactions between the analyzed cell types of the neonatal pancreas as calculated by CellPhoneDB. (E) 
Enrichment map of gene ontology terms enriched in angiogenetic endothelial cells. (B) Dot plot of specific lymphatic 
endothelial cell markers. (F) Dot plot showing the expression of specific genes in macrophages (MΦ), B and T cells. 
(G) Dot plot of specific lymphatic endothelial cell markers. (H) Dot plot depicting selected MΦ-angiogenetic 
endothelial interactions enriched in healthy neonatal pancreas. (I) Scatter plot in Diffusion map basis (components 1 
and 2) of combined neonatal and adult beta cells, colored by pseudotime (left) or by age of the donor (right). 

 
     Unlike in the adult pancreas, we observed evidence of endothelial cell heterogeneity in 
neonatal samples (Figure 6C). For example, in addition to an “adult-like” endothelial signature, 
we observed an “angiogenetic” endothelial type enriched for mRNA previously linked to 
programs of blood vessel morphogenesis and extracellular matrix remodeling (Figure 6E). 
Furthermore, on the basis of the expression of canonical markers such as LYVE1, PDPN, FLT4 
and PROX1, we also identified a population of lymphatic endothelial cells that was not detected 
in the adult pancreas (Figure 6G) and that most likely functions to collect interstitial fluid 
containing cell debris (Cesmebasi et al., 2015; O’Morchoe, 1997).  
     Few immune cells were detected in the human adult healthy pancreas, even though 
localization of immune cells to the pancreas can be dramatically altered in pancreatic diseases 
(Zheng et al., 2013). By contrast, in the neonatal pancreas we identified an abundance of at 
least three immune populations including follicular B cells (CD19, CR2, CD22, FCER2), T 
lymphocytes (CD247/CD3Z, CD3G, IL7R) and macrophages (CD14, CD86, CSF2RA) (Figure 
5B and 6F). To further clarify the potential cell-cell interactions of macrophages with other cell 
types in the neonatal pancreas, we applied CellPhoneDB, a statistical framework used to predict 
cellular interactions (ligand-receptor) from single-cell transcriptomics data (Vento-Tormo et al., 
2018). Analysis of cell-cell interactions revealed that macrophages have a higher number of 
interactions with angiogenic endothelial cells (Figure 6D), supporting the view from studies of 
other organs that macrophages regulate vascular development and remodeling (Fantin et al., 
2010; Nucera et al., 2011). Among the ligand-receptor interactions revealed by CellPhoneDB 
between macrophages and angiogenetic endothelial cells, we noted specific sets of ligands and 
receptors, such as the TAM receptors (AXL, MERKT, and the ligand GAS6), usually active in 
tissues subject to remodeling and involved in the phagocytosis of apoptotic cells (Lemke, 2013) 
and members of the Notch pathway including the NOTCH2 receptor and the antagonistic 
ligands DLL4, JAG1 and JAG2 (Pitulescu et al., 2017). Moreover, a strong interaction was 
predicted between CD74 and APP, suggesting an important role for APP in pancreatic neonatal 
angiogenesis (Figure 6H). 
 

     We next used sNuc-seq data to investigate age-dependent development, with a specific 
focus on beta cells. Beta cells are not fully functional at the perinatal stage but their functions, 
including glucose-regulated insulin secretion, mature with age (Arda et al., 2016). To investigate 
changes across the two different age groups (neonatal and adult), we combined the two 
datasets and performed diffusion pseudotime analyses (Haghverdi et al., 2016). Pseudotime 
ordering recapitulated donor age (Figure 6I), thereby permitting us to model gene expression 
using a generalized additive model and to identify highly dynamic genes. We identified groups 
of genes showing increasing or decreasing expression levels across pseudotime (Figure S6A). 
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Some of the genes expressed at lower levels in adult samples are involved in beta cell 
proliferation such as PDZD2, IGFBP5 and CDK6  (Blum et al., 2012; Gleason et al., 2010; Ma et 
al., 2006; Suen et al., 2008; Takane et al., 2012) (Figure S6A-B). PLAG1, a protein known to 
decline within a few days after birth and known to inhibit insulin secretion in neonatal murine 
islets (Hoffmann and Spengler, 2012), was also detected in neonatal samples (Figure S6A-B). 
By contrast, CD99, whose expression increases in adult mouse islets (Aguayo-Mazzucato et al., 
2017), also had increased mRNA levels in adult human beta cells (Figure S6A-B). In human 
adults, we also detected higher levels of RASD1 and SYT16, genes previously reported to be 
upregulated in human islets exposed to relatively high glucose (Hall et al., 2018; Huang et al., 
2018). Genes encoding members of the secretogranin-chromogranin family like SCG2, SCG5 
and CHGB, known for their essential role within the insulin secretory granule, were also more 
highly expressed in adult beta cells (Bearrows et al., 2019; Obermüller et al., 2010; Suckale and 
Solimena, 2010) (Figure S6A-B). Thus, by applying sNuc-seq to tissues procured at specific 
developmental stages – our work reveals markers and unrecognized possible regulators of 
human beta cell functional maturation. 
 
In situ sequencing of the human pancreas localizes mRNA 
     To elucidate the role of the different heterogeneous cell states identified in our study we 
integrated our sNuc-Seq results with in situ sequencing (ISS) using matching tissues processed 
for nuclei isolation (Figure 1A). ISS combines the use of padlock probes and rolling circle 
amplification directly in tissue sections, permitting targeted measures of expression by genes of 
interest, and identification of cell markers and cell subtypes at single cell resolution (Figure S7A) 
(Ke et al., 2013; Qian et al., 2019). In our analysis we selected 83 marker genes (Table S4) 
identified from sNuc-seq that distinguish pancreatic cell types, then applied ISS to tissue from 
one juvenile (1.5 years old donor) and two adult (30 and 53 years old) donors. ISS-based 
mRNA localization (Figure S7A) was used to generate spatial cell maps by applying Spot-based 
Spatial cell-type Analysis by Multidimensional mRNA density estimation (SSAM), a 
segmentation-free algorithm that identifies cell-type signatures from spatially resolved in situ 
transcriptomics data (Figure 7A and Figure S7B) (Park et al., 2019).  
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Figure 7. In situ sequencing of the human healthy pancreas. 
(A) On the left, the cell map generated by SSAM from a tissue section of an adult donor (AFHE365-head). On the 
right, magnified views showing macroscopic features such as (1) quiescent and activated stellate cells in the 
connective tissue, (2) interlobular duct enriched in MUC5B+ ductal cells, (3) and (4) endocrine islets enriched in alpha 
and beta cells, but also including delta, endothelial cells and macrophages. Scale bar = 1 mm. (B) Bar plot comparing 
the numbers of cells identified via sNuc-seq with the normalized surface area calculated by SSAM for each cell type. 
(C) Line plot showing the results of the spatial modelling analysis for the alpha cells. (D) Line plot showing the results 
of the spatial modelling analysis for the beta cells. (E) Line plot showing the results of the spatial modelling of islet 
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cells (combination of alpha, beta, gamma and delta cells). Stellate include “activated” and “quiescent” stellate cells, 
ductal includes “ductal” and “MUC5B+ ductal” cells, acinar includes acinar-i, acinar-s and acinar-REG+ cells. 

 
     SSAM cell maps contained all the cell types identified by sNuc-seq, and permitted ready 
recognition of multicellular tissue features including endocrine islets, interlobular ducts and 
stellate cells in the connective tissue of septae (Figure 7A, magnified views). The proportion of 
cell types detected by SSAM cell maps also corresponded well with those detected using sNuc-
seq (Figure 7B), further confirming the robustness of our sNuc-Seq analyses. To probe spatial 
relationships between pancreatic cell types, we performed empirical statistical modelling of cell 
type proximity (Methods). Initially, to confirm the validity of this approach, we quantified spatial 
relations within unambiguous multicellular structures. For example, SSAM modelling results 
confirmed the mutual proximity of alpha and beta cells (Figure 7C-D), reflecting their 
characteristic localization within the islets. Furthermore, the delta and gamma cells (also part of 
the endocrine islets, but in much smaller numbers) are the second and third most likely cell 
types to be found within a distance of 20-80 μm from alpha and beta cells (Figure 7C-D). We 
looked at non-epithelial cell types in close proximity to the endocrine islets and found that 
endothelial cells are the closest ones (Figure 7E), as they support high oxygen demand, and the 
glucose-sensing and endocrine functions of islets (Bonner-Weir and Orci, 1982; In’t Veld and 
Marichal, 2010). Analysis of ISS provided further insights into the intra- and inter-islet 
architecture. Quantification of islet size revealed a higher frequency of small islets (radius 
smaller than 40 μm) in juvenile tissue compared to the adult (Figure 8A). We then performed 
proximity analysis on cells located outside of the islets and discovered that, in the juvenile 
sample (1.5 years), alpha cells are the most proximal (in the first 40 μm) followed by beta cells, 
suggesting enrichment of alpha cells in the mantle of the islets, while beta cells preferentially 
locate in the core (Figure 8B) (Bonner-Weir et al., 2015; Bosco et al., 2010). Importantly, this 
trend is diminished in adult samples (30 and 53 years), reflecting an age-dependent increase of 
architectural heterogeneity in adult islets (Figure 8B) (Dybala and Hara, 2019). We then 
calculated the distance between the centroids of manually annotated endocrine islets; in both 
neonatal and adult samples, we found a minimum distance of 400 μm, providing quantification 
of pancreatic islet dispersion during pancreas morphogenesis (Figure 8D) (Hastings et al., 1992; 
Pauerstein et al., 2017).   
     We also investigated the spatial relations of the new acinar cell states identified in this work. 
In particular, the acinar-s and the acinar-i cells did not show a specific cell neighborhood (Figure 
S8), a result in agreement with their vast abundance (about 80%) in the tissue. By contrast, 
acinar-REG+ cells appeared to localize significantly closer to islet cells, like delta and gamma 
cells (Figure 8C) (Muraro et al., 2016), and to macrophages. This latter finding is consistent with 
prior reports that REG3A/PAP protein modulates chemoattraction and activation of 
macrophages in pancreatic disease and in neural tissues (Gironella et al., 2013; Namikawa et 
al., 2006; Viterbo et al., 2008). Together, these results highlight how mRNA localization 
combined with sNuc-seq can be used to identify cell types and reconstruct known and 
unrecognized morphological patterns in the pancreas. 
 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted May 3, 2020. ; https://doi.org/10.1101/733964doi: bioRxiv preprint 

https://doi.org/10.1101/733964
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 8. Characterization of intra and inter-islet architecture. 
(A) On the left, histogram and density line showing the distribution of juvenile islet radii. On the right, histogram and 
density line showing the distribution of adult islet radii. (B) Line plot showing the results of the spatial modelling 
analysis for any cell surrounding the endocrine islets. (C) Line plot showing the results of the spatial modelling 
analysis for the acinar-REG+ cells. (D) Each row of the heatmaps represent a single islet in each sample. The 
distances between the centroids of each islet and all the other islets were calculated and the scaled intensity of the 
frequency is represented in each row. High (red) and low (blue) values indicate higher or lower presence of other 
islets at the specific distance, respectively. 

 

Discussion 
     Here, we constructed a comprehensive human pancreas cell atlas by combining high-
throughput nuclear RNA sequencing and RNA localization. To achieve this, we developed novel 
strategies for nucleus isolation from human pancreas that could be applied to other challenging 
tissues and to archived clinical samples. Moreover, we successfully generated the first in situ 
sequencing dataset of the juvenile and adult pancreas. These approaches revealed 
unsuspected heterogeneity in pancreatic cells and cellular interactions, including age-dependent 
cellular arrangements. Together, our findings provide an unprecedented, comprehensive 
resource for the community of science focused on pancreas and organ biology. 
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     The heterogeneity of the exocrine pancreas has been previously investigated using immuno 
histology-based assays (Adelson and Miller, 1989; Uchida et al., 1986), but recent single cell 
analyses (Muraro et al., 2016; Segerstolpe et al., 2016; Tritschler et al., 2017; Wollny et al., 
2016) have suggested that high-throughput sequencing could be a powerful tool to reveal 
undetected singularities in pancreatic exocrine cell types. However, the inference of pancreatic 
exocrine cell heterogeneity in prior work was based on relatively small sample sizes, reflecting 
the primary focus of these studies on islet biology (Wollny et al 2016: Baron et al 2016). From 
studies of over 120,000 pancreatic cells, we found evidence of three distinct acinar cell 
populations (acinar-i, acinar-s and acinar-REG+), distinguished by differential expression of 
digestive enzyme genes, distinct activation of pancreatic gene regulatory networks, expression 
of specific protein family genes and distinct cell neighborhoods. In vitro systems (like cell lines 
or organoids) that reconstitute mature human acinar cells in their native architecture have not 
yet been achieved, therefore precluding functional validation analyses in such systems. Instead, 
we used orthogonal approaches to validate our sNuc-seq results and to infer cellular and 
signaling mechanisms, including a combination in human pancreas of RNA-FISH, in situ 
sequencing and modern computational approaches. RNA-FISH and in situ sequencing 
approaches have not been robustly applied to human pancreas since, as for sNuc-seq, elevated 
RNA degradation typically hinders these experiments. Together, the assays performed in this 
study elucidated the potential role of the distinct acinar cell states we identified.  
 

     Our studies revealed that acinar-REG+ cells were absent in the neonatal pancreas, 
suggesting that their function might be specific for the adult tissue. Previous scRNA-seq studies 
described a subset of acinar cells with lower expression levels of digestive enzyme genes and 
their localization around the endocrine islets (Muraro et al., 2016). Those findings were 
recapitulated by our sNuc-seq. Moreover, application of in situ sequencing analyses - for the 
first time, to our knowledge - in the human pancreas, revealed significant localization of acinar-
REG+ near macrophages, nominating acinar-REG+ cells as possible regulators of pancreatic 
inflammatory processes. The acinar-s cell state conforms to a “classical” view of the pancreatic 
acinar cell, which is characterized by a specific gene regulatory network and mainly committed 
to the production, processing and regulated secretion of pancreatic zymogens. In acinar-i cells 
we find evidence suggesting that hydrolytic enzyme production may be reduced, compared to 
acinar-s cells. We speculate that this acinar cell “state” (Morris, 2019) could be a protective 
adaptation to periods of intense zymogen production and increased endoplasmic reticulum 
stress. If so, acinar-i cells might be analogous to a subset of postulated metabolically-stressed 
islet beta cells (Baron et al., 2016; Szabat et al., 2016; Xin et al., 2018). Acinar-i cells showed a 
decreased activation of acinar cell gene regulatory networks and occupied a central position in a 
PAGA lineage relation graph, and we speculate that these cells might have the capacity to 
convert into other pancreatic cell types, including both ductal and endocrine cells (Stanger and 
Hebrok, 2013). Further investigations should clarify how acinar heterogeneity is achieved and 
maintained during homeostasis, whether the acinar-i, acinar-s and acinar-REG+ cells can 
interconvert under physiological conditions, and what - if any - impact the acinar cell 
heterogeneity has in development of pancreatic exocrine disorders like pancreatitis, acinar-to-
ductal metaplasia, and pancreatic ductal adenocarcinoma. Here, we did not identify centro-
acinar cells, which have been postulated to include pancreatic progenitor cells (Rovira et al., 
2010). Future studies could clarify the transcriptome of centro-acinar cells in the human 
pancreas, and their possible lineage or spatial relation with the acinar cell and ductal cell types 
captured in our datasets. 
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     Here we also demonstrated the feasibility of deploying our nuclei isolation strategy for 
pancreas from children and neonates. This has revealed developmental dynamics in the 
pancreas, unique immune interactions (involving B, T cells, and macrophages), and changes in 
cellular composition compared to the adult pancreas. For example, within the endocrine 
compartment we detected a higher number of delta cells compared to those in the adult. Since 
somatostatin output by delta cells is known to inhibit cell proliferation and to promote apoptosis 
(Patel and Srikant, 1997), our findings raise the possibility that delta cells might play an 
important developmental role in controlling pancreatic expansion and maturation. Furthermore, 
we identified distinct endothelial cell states, including angiogenetic endothelial cells in neonatal 
pancreata that may reflect the increased supply of nutrients required by the rapidly replicating 
cells at this developmental stage; in particular, neonatal islets rapidly develop extensive 
glomerular-like circulatory structures which ensures the spatial proximity of endocrine cells to 
arterial blood (Bonner-Weir, 1988; Bonner-Weir and Orci, 1982; Cleaver and Dor, 2012). Here, 
application of modern, powerful computational tools also helped identify a previously uncharted 
landscape of cell-cell interactions. This included evidence of interactions between macrophages 
and endothelial cells in the neonatal pancreas, and possible ligand-receptor interactions 
involved in organ remodeling during growth (Geutskens et al., 2005). Our studies also revealed 
aspects of human endocrine pancreas development and regulation. The combination of adult 
and neonatal datasets allowed pseudotime analyses, and nominated candidate regulators and 
effectors of beta cell maturation, including age-dependent restriction of beta cell proliferation 
and development of secretory activities (Arda et al., 2016; Bonner-Weir, 2000). ISS analyses 
confirmed differences in islet size and intra-islet architecture between juvenile and adult 
pancreatic tissue, and provided evidence for possibly stereotyped dispersion of islets throughout 
the human pancreas, like in rodents (Pauerstein et al., 2017). In summary, our studies combine 
technical innovations to produce a human pancreas cell atlas that provides conceptual 
advances and reveals cellular, genetic, signaling and physiological mechanisms regulating 
pancreatic cells in health and disease. 
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Supplementary Materials 
 
Supplementary Table 1. Adult and juvenile human donor metadata 
 

Sample ID Sex Age 
(years) 

Pancreatic 
disease Diabetes Procurement 

lab 
Pancreas 
location # cells 

AFHE365-body F 53 None None Stanford, USA Body 

22,288 AFHE365-head F 53 None None Stanford, USA Head 

AFHE365-tail F 53 None None Stanford, USA Tail 

AFES448-head M 30 None None Stanford, USA Head 

34,167 

AFES448-
midbody M 30 None None Stanford, USA Mid-Body 

AFES448-body M 30 None None Stanford, USA Distal 
Body 

AFES448-tail M 30 None None Stanford, USA Tail 

AGBR024-body M 1.5 None None Stanford, USA Body 

33,196 AGBR024-head M 1.5 None None Stanford, USA Head 

AGBR024-tail M 1.5 None None Stanford, USA Tail 

TUM-13 F 46 Neuroendocrine 
Tumor N/A Munich, 

Germany Tail 5,233 

TUM-C1 M 77 
Pancreatic 

Ductal 
Adenocarcinoma 

N/A Munich, 
Germany Body 7,967 

TUM-25 F 59 
Mixed 

Muellerian 
Tumor 

N/A Munich, 
Germany Body 9,712 
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Supplementary Table 2. Table of digestive enzyme genes 
 

Gene name 

PNLIP 

PRSS1 

PRSS3 

CEL 

CELA2B 

CELA2B 

CELA3A 

CELA3B 

AMY2A 

AMY2B 

CPA1 

CPA2 

CPB1 

CTRB1 

CTRB2 

CLPS 

PLA2G1B 

SPINK1 

KLK1 

RNASE1 

CTRC 

SYCN 
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Supplementary Table 3. Neonatal human donor metadata 
 

Sample ID Sex Age 
(days) 

Pancreatic 
disease Diabetes Procurement lab Pancreas 

location # cells 

IIAM M 1 None None Stanford, USA N/A 5,100 

ST19 F 1 None None Stanford, USA N/A 5,428 
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Supplementary Table 4. ISS target gene list 
  

ABCC8 FABP5 MEG3 SERPINE1 

ACTA2 FBLN1 MUC5B SLC4A4 

ADIRF FLT1 MUC6 SLC8A1 

AMY2A G6PC2 PDK4 SLCO2A1 

ANXA4 GC PIGR SLPI 

APOD GCG PIK3R3 SOX10 

B2M HLA-DRA PKHD1 SPARCL1 

BICC1 IAPP PLP1 SST 

CALD1 ID1 PLVAP SYT8 

CD14 INS PMP22 TENM2 

CD7 INSR PNLIP TFF3 

CD74 IRX2 PNLIPRP1 TGFBR3 

CDH19 ITGA7 PPY THSD7A 

CFTR KCNMB2 PRSS1 TIMP3 

CHRM3 KCNT2 RBP4 TRHDE 

CPA2 KRT19 RBPJL TRPM3 

CRYAB LCN2 REG3A TTR 

CTRB1 LDB2 REG3G VWF 

CUZD1 LOXL4 S100B ZEB2 

DCN LRIG1 SCN7A ZNF385D 

FABP4 MECOM SCTR  
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Figure S1. sNuc-seq library generation and integration with scRNA-seq datasets, Related to Figure 1 
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(A) Electropherogram of bulk RNA extracted from snap-frozen pig pancreatic tissue subject to either 7 or 30 minutes 
of total cold ischemia (B) Electropherograms of bulk RNA extracted from snap-frozen human pancreatic tissue (Bulk 
tissue). RNA was extracted from nuclei that were isolated from the same tissue as in lane 2 by using either a citric 
acid buffer or the standard buffer (lanes 3 and 4). (C) Gel view of the same samples as in (B). (D) Yield of cDNA from 
a sample processed with either the standard or the citric acid-based protocol. The same number of nuclei and PCR 
cycles were used for both conditions. (E) On the left, the boxplots show the distribution of Unique Molecular 
Identifiers (UMIs) per nucleus for each sample processed in this study. On the right, the boxplots show the 
distribution of genes per nucleus for each sample. The red dashed lines represent mean values (1,287 for UMIs and 
692 for the genes). (F) Merged sNuc-Seq and previously published scRNA-seq datasets shown in a two-dimensional 
UMAP embedding before batch effect removal. (G) Following batch-effect removal, sNuc-seq data were split by 
sample of origin and shown in a two-dimensional UMAP embedding. 
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Figure S2. Different proportion of cells detected by sNuc-seq and scRNA-seq, Related to Figure 1 
(A) Barplots showing the proportion of cell types identified in each sNuc-seq sample. (B) Gaussian kernel density 
estimation was used to calculate the density of cells and was represented in the UMAP embedding for the two distinct 
technologies, namely scRNA-seq and sNuc-seq. High density values indicate strong contribution of the cells to the 
overall dataset (i.e. exocrine cells have higher contribution in sNuc-seq and endocrine cells in scRNA-seq). 
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Figure S3. Differential gene expression between stellate cells, Related to Figure 3 
Volcano plot showing differentially expressed genes between activated and quiescent stellate cells. Red dots 
represent genes with average log expression >0.5 and an adjusted p-value <0.05. 
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Figure S4. RNA-FISH in the healthy human pancreas, Related to Figure 4 
Example image of RNA-FISH for CPB1 and REG3A in the human adult healthy pancreas. Acinar-REG+ cells 
constitute a subset of CPB1+ acinar cells. 
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Figure S5. Characterization of acinar-i and acinar-s cells, Related to Figure 5 
(A) Quantification of UMI per nucleus (left) and genes per nucleus (center) for the different acinar cell states. On the 
right, the percentage of transcriptome encoding for digestive enzymes (Table S2) is represented. (B) SCENIC 
regulons specifically active in the acinar-i and acinar-s cells. Above each plot, the transcription factor is indicated. (C) 
Pipeline applied for the quantification of differential RNA-FISH signal. Raw RNA-FISH images were thresholded to 
remove the background signal and a nuclear segmentation mask was generated by applying a deep-learning 
algorithm to the DAPI channel of the same image. Signal was quantified for each nucleus and the signal distribution 
was used to identify acinar cells expressing different level of digestive enzyme genes as explained in Materials and 
Methods. 
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Figure S6. Gene expression changes in beta cell from neonatal to adult stage, Related to Figure 6 
(A) Heat map showing gene expression changes across pseudotime reflecting beta cell maturation, from neonatal to 
adult. (B) The dots indicate the expression levels of individual cells colored by age type in the β-cell cluster. The blue 
lines approximate expression along the inferred trajectory by polynomial regression fits. 
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Figure S7. In situ sequencing signal and cell maps, Related to Figure 7 
(A) On the left, localization of different marker genes in an endocrine islet (SST for delta cells, INS for beta cells, 
GCG for alpha cells, B2M for endothelial cells) as captured by ISS. On the right, markers for ductal (BICC1, CFTR, 
MUC6) and acinar cells (PRSS1, REG3A) as captured by ISS. (B) Cell map generated by SSAM from a tissue 
section of the sample AFES448-midbody. (C) Cell map generated by SSAM from a tissue section of the sample 
AGBR024-head. (D) Cell map generated by SSAM from a tissue section of the sample AGBR024-body. For the 
metadata, see Table S1. Scale bar = 1mm. 
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Figure S8. Statistical modelling of spatial relationship for different pancreatic cell types, Related to Figure 
8 
Line plot showing the results of the modelling analysis for 11 different cell types. 
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Materials and Methods 
 
Human and pig pancreas samples 
Samples from Stanford University were procured from non-diabetic cadaveric organ donors. All 
studies involving human specimens were conducted in accordance with Stanford University 
Institutional Review Board guidelines. Deidentified human pancreata were procured from 
previously healthy, non-diabetic donors with less than 12-hour cold ischemia time through the 
Center for Organ Recovery and Education, CORE, Pittsburgh, PA, USA), International Institute 
for the Advancement of Medicine (IIAM, Edison, New Jersey, USA), and National Diabetes 
Research Institute (NDRI, Philadelphia, PA, USA) as reported previously (Goodyer et al., 2012). 
Within minutes of removal from cold transportation media, tissue blocks of 2 cm × 1 cm × 0.2 
cm were excised from 3-4 anatomic locations (i.e. head, body, mid-body, and tail) and then 
immediately transferred into liquid nitrogen to snap freeze. The frozen samples were shipped 
and stored at -80°C until they were used for nuclei isolation and sequencing. Samples from 
TUM were procured from non-diseased pancreatic tissue from patients undergoing partial 
pancreatectomy. Tissue blocks of 0.5 cm × 0.5 cm × 1 cm were collected immediately after 
removal of the pancreas, placed into cryo tubes and transferred into liquid nitrogen. The 
samples were stored at -196°C until they were used for sequencing. The study was approved by 
the hospital Ethics Committee (number 403/17S). To further dissect the preanalytical problems 
in procurement of pancreatic tissue for single-cell sequencing, we also sampled pancreatic 
tissue from healthy pigs sacrificed due to other reasons (approved by local authorities AZ .3-8-
07, Regierung von Oberbayern, München, Germany) under completely standardized conditions. 
The pancreas was removed after the heartbeat had stopped and tissue blocks (0.5 cm × 0.5 cm 
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× 1 cm) were sampled at different time points (15 min and 30 min cold ischemia time) and 
transferred into liquid nitrogen. The samples were stored according to the requirements of 
fixation solution/procedure. To check for morphological integrity of the tissue, a paraffin block 
and hematoxylin-eosin stained slide was produced from each sampling site and evaluated by 
two experienced pathologists (S.B. and K.S.). 
 
Nuclei isolation 
Snap-frozen pancreatic tissue samples were cut into pieces <0.3 cm and homogenized with one 
stroke of “loose” pestle in 1 mL citric-acid based buffer (Sucrose 0.25 M, Citric Acid 25 mM, 
Hoechst 33342 1 μg/mL) using a glass dounce tissue grinder. The tissue was incubated on ice 
for 5 minutes and then homogenized with 5-10 more strokes. After further 5 minutes of 
incubation, tissue was homogenized with 3-5 strokes using the “loose” pestle and then 5 more 
strokes using the “tight” pestle. Homogenate was filtered through a 35-μm cell strainer and 
centrifuged for 5 minutes at 500 x g at 4°C. Supernatant was carefully removed, nuclei were 
resuspended in 1 mL of citric acid buffer and the centrifugation step was repeated. Nuclei were 
then resuspended in 300 μL of cold resuspension buffer (KCl 25 mM, MgCl2 3 mM, Tris-buffer 
50 mM, RNaseIn 0.4 U/μL, DTT 1mM, SuperaseIn 0.4 U/μL, Hoechst 33342 1 μg/mL). Nuclei 
were counted on a Countess II FL Automated Cell Counter, diluted to the desired concentration 
and immediately loaded on the 10X Chromium controller. 
 
10X sample processing, library preparation and sequencing 
Samples were prepared according to the 10x Genomics Single Cell 3′ v2 and 10x Genomics 
Single Cell 3′ v3 Reagent Kit user guide with small modifications. The nuclei were diluted using 
an appropriate volume of resuspension buffer without Hoechst (KCl 25 mM, MgCl2 3 mM, Tris-
buffer 50 mM, RNaseIn 0.4 U/μL, DTT 1mM, SuperaseIn 0.4 U/μL) for a target capture of 
10,000 nuclei.  After droplet generation, samples were transferred onto a pre-chilled 96-well 
plate (Eppendorf), heat-sealed and reverse transcription was performed using a Bio-Rad C1000 
Thermal Cycler. After the reverse transcription, cDNA was recovered using the Recovery Agent 
followed by a Silane DynaBead clean-up step. Purified cDNA was amplified for 15 cycles before 
bead cleanup using SPRIselect beads (Beckman). Samples were quantified using an Invitrogen 
Qubit 4 Fluorometer. cDNA libraries were prepared according to the Single Cell 3′ Reagent Kits 
v2 and Single Cell 3′ Reagent Kits v3 guide with appropriate choice of PCR cycle number based 
on the calculated cDNA concentration. Final libraries were sequenced with the NextSeq 500 
system in high-output mode (paired-end, 75 bp). 
 
Single-cell RNA sequencing data analysis 
Alignment 
Gene expression was quantified using the default 10X Cell Ranger v3 pipeline but we used a 
curated genome annotation of the GRCh37/hg19 Reference - 2.1.0 provided by 10X, in which 
the INS-IGF2 gene sequence overlapping with the INS gene sequence was removed 
(Wernersson et al., 2015). Introns were annotated as “mRNA”, and intronic reads were included 
in expression quantification matrix. 
Quality control and downstream analyses 
During nuclei isolation, the cytoplasmic content of each cell (including mature mRNA) is 
released in the nuclei suspension. To reduce the background levels of this ambient RNA, nuclei 
were washed twice or three times before loading on the 10X Chromium controller. However, 
enzymatic digestive genes are highly expressed and known to be the source of contamination in 
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bulk and scRNA-seq studies (Nieuwenhuis et al., 2019) hence we applied SoupX for 
background correction to the matrix generated by the 10X Cell Ranger v3 pipeline (Young and 
Behjati). In SoupX the ambient RNA expression is estimated from the empty droplets (i.e. 
droplets containing less that 10 UMI) and the expression of these genes is calculated and 
compared with their proportion in the ambient RNA profile. To calculate the contamination 
fraction, we used the PRSS1 gene. The contamination fraction derived from the expression of 
PRSS1 was used to calculate the fraction of each droplet expression corresponding to the 
actual cell. Finally, this fraction and the ambient profiles are subtracted from the real expression 
values to generate the background-removed expression matrices. Quality control (QC) analyses 
were performed on the basis of guidelines recently described (Amezquita et al., 2020). In 
particular, UMI and genes were filtered for each sample after visual inspection of QC metric 
diagnostic plots. In general, nuclei with a minimum number of genes between 150-400 and 
maximum number of genes between 2000-5000 were kept. Moreover, nuclei containing more 
than 3% of mitochondrial reads were excluded from downstream analyses. In addition to the 
general QC described above, we removed small clusters of nuclei co-expressing acinar and 
ductal markers, namely CFTR and PRSS1. Downstream analyses were performed using the R 
package Seurat version 3.0 and included also five previously published scRNA-seq datasets 
(Stuart et al., 2019). Each sNuc-seq dataset was scaled by library size and log-transformed 
(using a size factor of 10,000 molecules per cell). For each sample, the top 2,000 most variable 
genes were identified and the sNuc-seq and scRNA-seq datasets were integrated using the 
“FindIntegrationAnchors” and “IntegrateData” available in Seurat 3.0 (Stuart et al., 2019). Data 
were scaled to unit variance and zero mean and the dimensionality of the data was reduced by 
principal component analysis (PCA) (30 components) and visualized with UMAP (McInnes et 
al., 2018). Clustering was performed using the Louvain algorithm on the 30 principal 
components (resolution = 1.0). Small clusters including Schwann cells and MUC5B+ ductal cells 
were manually assigned. Cluster-specific markers were identified with the “FindAllMarkers” 
function and clusters were assigned to known cell types on the basis of their specific markers 
(described in the main text). Clusters that appeared to correspond to the same cell types were 
merged. The density map in Figure S4B was calculated and plotted using the 
“embedding_density” function of Scanpy version 1.4.2 (Wolf et al., 2018).  
Reconstruction of lineage relationships and trajectories in the adult pancreas dataset 
To infer the lineage relationships and global transcriptomic similarity between different adult 
pancreatic cell types, we performed partition-based graph abstraction (PAGA) analysis that 
provides an interpretable graph-like map by measuring cluster connectivity (Wolf et al., 2019). 
PAGA was calculated using the tl.paga function implemented in Scanpy (v. 1.4.2) with an edge 
significance threshold of 0.6. The output of this function is an adjacency network where nodes 
are cell types and the edges represent connections between them. Here, the edge weights 
signify the confidence of a connection calculated based on a measure of cluster connectivity. 
Both PCA (tl.pca function implemented in Scanpy) and ICA (FastICA function implemented in 
sklearn.decomposition) (Pedregosa et al., 2011) were applied as linear dimension reduction 
methods leading to the same result. The pseudotemporal ordering of the cells was computed 
using the tl.dpt function of Scanpy by setting a root cell within the acinar-i cell population. Linear 
dimension reduction was performed using ICA (Pedregosa et al., 2011) and the calculated 
components were used to compute the neighbourhood of the single cell graph using the 
sc.pp.neighbors function using 50 nearest neighbors in an adaptive Gaussian kernel.  
Gene expression dynamics of beta cell maturation 
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The adult and neonatal datasets were merged using Seurat version 3.0 (Stuart et al., 2019) and 
the count matrices of beta cells were exported for further analyses in Scanpy (v. 1.4.2) (Wolf et 
al., 2018). Linear dimension reduction was performed using PCA followed by an unsupervised 
diffusion map analysis with the tl.diffmap() function on the first 15 neighbors. We removed 
acinar (Table S2) and ductal markers (CFTR, BICC1, ANXA4) as they represent contamination 
from other cell types and computed pseudotemporal ordering using the tl.dpt function of Scanpy 
by setting a root cell within the neonatal population (Wolf et al., 2018). A generalized additive 
model (GAM) was then used for modeling gene expression profiles as nonlinear functions of 
pseudotime for neonatal and adult lineages (Hastie, 2019). The top 105 genes that are a 
function of pseudotime are plotted as an annotated heatmap (Figure S11) (Gu et al., 2016). 
 
Regulon - SCENIC analysis 
SCENIC (Aibar et al., 2017) is able to infer gene regulatory networks from single cell gene 
expression data through three main steps: (a) identification of co-expression modules between 
TF and putative targets; (b) within each co-expression module, derivation of direct TF-target 
gene interaction based on enrichment of TF motif in the promoter of target genes, as to 
generate “regulons”; (c) for each cell, the regulon activity score (RAS) is calculated. In this work, 
we applied the python implementation of SCENIC (pySCENIC) to downsampled datasets 
(30,000 nuclei) and the RAS was projected onto the UMAP embedding calculated by Seurat. 
 
Gene over-representation analysis  
Symbol gene IDs were converted to Entrez gene IDs using the R package “annotables” 
(Turner). The Gene Ontology over-representation analysis was performed using the “enrichGO” 
function of the clusterProfiler R package (Yu et al., 2012) (using adjusted p-value <0.05 and 
average log(Fold Change) >0.25). The KEGG over-representation test was performed using the 
“enrichKEGG” function and the enrichment maps in Figure 2D and Figure S10A were generated 
using the “emaplot” function. 
 
Histology and RNA-FISH 
To perform RNA-FISH in the human pancreas, we used thin snap-frozen (2 mm) biopsies for 
formalin fixation and paraffin embedding, reasoning that the fixation of the tissue would be faster 
due to the thinness of the tissue, limiting the degradation processes. Therefore, human 
pancreatic snap-frozen samples were fixed in 10% formalin at 4°C for 14-16 hours and paraffin-
embedded. Sections (4 μm) were cut from FFPE pancreatic tissue and processed for RNA in 
situ detection using the RNAscope Multiplex Fluorescent Reagent Kit v2 according to the 
manufacturer’s instructions (Advanced Cell Diagnostics). RNAscope human probes used were: 
Hs-CPB1 (#569891-C3), Hs-RBPJL (#581131), Hs-AMY1A (#503551-C2, targeting also 
AMY1B, AMY1C, AMY2A and AMY2B), Hs-REG3A (#312061). RNA-FISH images were 
acquired on a Leica SP8 confocal laser-scanning microscope equipped with a 40x/1.30 oil 
objective (Leica HC APO CS2). 
 
RNA-FISH image analysis  
Automated nuclei instance detection and segmentation were implemented and performed using 
a deep learning object detection and instance segmentation workflow based on the Mask R-
CNN architecture (He et al., 2017). The neural network was initialized using pre-trained models 
trained on the Microsoft COCO: Common Objects in Context dataset (Lin et al., 2014) and fine-
tuned on curated datasets of nuclei images. Nuclei images on the DAPI channel were used as 
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inputs for the neural network to produce segmentation for each individual nucleus. The nuclei 
sizes were calculated using these segmented nuclei masks, and objects <150 pixels were 
filtered out and excluded from subsequent analyses. 
To perform transcript abundance analysis, the RNA-FISH channels were thresholded and 
binarized by computing the gray-level moments of the input images as implemented in Fiji. 
Transcript abundance was estimated by overlaying the nuclei masks on the thresholded probe 
channels and calculating the number of pixels within each mask. In order to account for 
transcript signals that are predominantly localized outside of the nuclei masks, we expanded the 
nuclei masks by morphological dilation (3 iterations using a 7x7 elliptical kernel) as implemented 
in OpenCV (Bradski, 2000) prior to quantification. We then performed k-means clustering on the 
frequency distributions of pixel counts per cell (nucleus) to identify and separate the cells into 
population classes (e.g. high, low, and negative expression/abundance). A cluster number of 3 
was selected for the FISH signals to better capture gradual differences between cells. 
 
In situ Sequencing by CARTANA 
Sections (4 μm) were cut from FFPE pancreatic tissue prepared as described for RNA-FISH. 
Four DNA probes for each target gene (6 base sequences with a minimum of 2 bases difference 
between all barcodes) were designed and supplied by CARTANA. Tissue fixation, reverse 
transcription, probe ligation, rolling circle amplification and fluorescence labeling were 
performed according to the manufacturer instructions (Neurokit 1010-01, CARTANA, Sweden). 
To reduce lipofuscin autofluorescence, 1X Lipofuscin Autofluorescence Quencher (Promocell) 
was applied for 30 seconds before fluorescence labeling. Samples were then shipped to 
CARTANA (Solna, Sweden) for the sequencing step. The result table of the spatial coordinates 
of each molecule for the 83 targets together with the reference DAPI image per sample were 
provided by CARTANA. 
 
SSAM and neighborhood analysis  
For the analysis of the ISS data, the topographies of the primary tissue samples were 
reconstructed using the SSAM tool. In the first step, a list of cell-type-wise mRNA expression 
signatures was compiled based on prior knowledge and by-eye evaluation of the ISS data. To 
remove apparent noise from the dataset, all mRNA spots with a critical distance above 10um to 
its same cell type nearest neighbor were discarded (amounting to exclusion rates of 51%, 65%, 
50%, and 64% of the respective samples). In the next step we created 83 gene-wise integrated 
mRNA expression densities using SSAM’s kernel density estimation (KDE) algorithm with a 
Gaussian kernel and a bandwidth parameter of 3um. To infer the spatial tissue composition, 
these spatial expression maps were integrated further using SSAM’s cell type mapping function 
on the pre-compiled cell-type/mRNA expression matrix. Each pixel was assigned the cell type 
that maximized the Pearson correlation between the expected expression profile and the 
inferred local expression mRNA densities. A pixel-wise assignment threshold of total expression 
of 0.005 was applied to discard low-confidence regions. Areas with a correlation value below 0.3 
were discarded as inconclusive.  
For the neighborhood analysis, a circular area with a radius of 800um was considered around 
each pixel. This area was subdivided into 200 equal-spaced ring-shaped distance intervals. The 
average surface area of the different tissue types inside each distance interval could then be 
correlated to the tissue type present at the center pixel. This resulted in an exhaustive, pixel-
wise co-occurence map per combination of tissue type and per distance interval. The mean 
values across the spatial dimension of all map pixels covered by a certain cell type was then 
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used to create a probability matrix of co-occurence of all tissue types and at all different 
distance intervals. The distance-occurence profile was plotted for all cell-cell combinations to 
recover recurring spatial patterns in cellular topography. For each visualization plot, a vortex 
tissue needed to be chosen as a central anchor point to plot the other tissues against. Then, a 
co-occurrence profile between the vortex tissue and the peripheral tissue was created by 
calculating the distance-wise ratios between the occurrence probability of the peripheral tissue 
around the vortex tissue and the expected global occurrence probability of the peripheral tissue. 
When plotted against the distance measure, this profile can be interpreted as the factor of 
increase or decrease of observing a given tissue type after learning the tissue type of your 
current location. 
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