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SUMMARY  
Background 
Alzheimer’s disease is a major health problem, affecting ~4·5% of people aged 60 and 
older in 2016 with over 43 million affected globally1. The traditional approach for 
detection evaluates an individual in the presence of symptoms. However, it has been 
established that amyloid deposits begin to accumulate years before symptoms begin to 
appear2,3. With improved technology, there is increased focus on risk reduction, timely 
diagnosis, and early intervention. Early identification of at-risk individuals may enable 
patients and their families to better prepare for and reduce the impact of this condition.  
Methods 
We obtained data for patients from two longitudinal retrospective cohorts (Alzheimer’s 
Disease Neuroimaging Initiative: ADNI and National Alzheimer’s Coordinating Center: 
NACC), including T1-weighted MRI and genetics data. The polygenic risk score (PRS) 
used in this study was built based on a published Genome Wide Association Study 
(GWAS) that identified variants associated with Alzheimer’s disease. Quantitative MRI 
features were obtained using a 3D U-Net neural network for brain segmentation. Cox 
proportional hazards (CPH) regression models were used with subjects censored at 
death or the last evaluation. Time-to-event was defined as the time it takes for an 
individual who is dementia-free at the baseline MRI to progress to dementia as defined 
by the criteria described by ADNI. Time-dependent ROC areas under curve (AUCs) 
were estimated in the presence of censored data. The time-dependent AUCs were 
compared among models using the Wilcoxon rank sum test for dependent samples. 
Data was binned into three groups according to survival probability to eight years after 
baseline and Kaplan-Meier survival analysis was used to estimate the probability of 
surviving at least to time t. Calibration for both training and validation cohorts was 
evaluated using the predicted survival probability, splitting samples into five risk groups 
of equal size based on the predicted survival probability.  
Findings 
We developed a model that predicts the onset of dementia over an eight-year time 
window in individuals with genetics data and a T1-weighted MRI who were dementia-
free at baseline. We then validated the model in an independent multisite cohort.  
We observed that models using PRS in addition to MRI-derived features performed 
significantly better as measured by time-varying AUC up to eight years in both the 
training (p = 0·0071) and validation (p = 0·050) cohorts. We observed improved 
performance of the two modalities versus MRI alone when compared with more invasive 
amyloid measures. The combined MRI and PRS model showed equivalent performance 
to cerebral spinal fluid (CSF) amyloid measurement up to eight years prior to disease 
onset (p = 0·181) and while the MRI only model performed worse (p = 0·040). Finally, 
we compared to amyloid positron emission tomography (PET) three to four years prior 
to disease onset with favorable results.  
Interpretation 
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Our finding suggests that the two modalities are complementary measures, in that MRI 
reflects near-term decline and the addition of genetics extends the prediction scope of 
quantitative MRI by adding additional long-term predictive power.  
The proposed multimodal model shows potential as an alternate solution for early risk 
assessment given the concordance with CSF amyloid and amyloid PET. Future work 
will include further comparison with amyloid PET (greater than four years) and with CSF 
(greater than eight years) as additional long-term data becomes available. Also, the 
model will be evaluated for its clinical utility in the “active surveillance” of individuals who 
may be concerned about their risk of developing dementia but are not yet eligible for 
assessment by amyloid PET or CSF.  
Funding 
Human Longevity, Inc  
Alzheimer's Disease Neuroimaging Initiative  
National Alzheimer’s Coordinating Center 
 
RESEARCH IN CONTEXT 
Evidence before this study 
The most significant known genetic factor in Alzheimer’s disease (AD) is the ε4 allele for 
the Apolipoprotein E (APOE) gene. Carriers of the allele have a three-fold increased risk 
of developing AD, whereas individuals who are homozygous have a 15-fold increased 
risk. Genome-wide association studies (GWASs) have identified many additional 
genetic variants that are associated with AD. Recent studies have shown that the risk 
for AD is better predicted by combining effects from several genetic variants into 
“polygenic risk scores” (PRS). Studies have also demonstrated that the age of onset for 
AD is better predicted using PRS rather than APOE status alone. Regional brain 
atrophy, as measured using volumetric MRI, is also an important biomarker for 
evaluating an individual’s risk of developing dementia. Previous predictions have shown 
that medial temporal lobe atrophy, as measured by a Hippocampal Occupancy Score 
(HOC) is highly associated with progression from MCI to AD. 
Added value of this study 
In the proposed model, the addition of genetics to MRI data lengthens the time over 
which the model can predict onset of dementia. The two measures appear to be 
complementary, with MRI showing near-term decline and genetics providing additional 
predictive power in the long-term. When compared to more invasive measures of 
amyloid, which have been shown to have long-term predictive power, we observed 
equivalent performance to CSF amyloid up to 8 years prior to disease onset and 
equivalent performance to amyloid PET three to four years prior to disease onset.  
Implications of all the available evidence 
Although MRI remains relatively expensive, it is less expensive, less invasive, more 
accessible, and more commonly available than amyloid PET. Furthermore, MRI is 
already part of standard clinical practice and this model may be applied to standard 
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clinical MRIs with no additional acquisition required. A recent survey of patients and 
their caregivers has highlighted a desire for access to better diagnostics, such as 
amyloid PET, to aid them in long-term legal, financial and healthcare planning. Our 
model, given the concordance with CSF and amyloid PET could be an alternate solution 
to fulfill this need. Furthermore, our model could facilitate the “active surveillance” of 
individuals who are high-risk and thereby enhance the possibility of early intervention.
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INTRODUCTION 
Description of Problem and Motivation 
Dementia is a clinical syndrome characterized by progressive deterioration in cognitive 
ability and reduction in capacity for independent living and functioning that results from 
brain damage. Brain damage can occur due to a variety of causes with the most 
common being Alzheimer’s disease (AD), although many Alzheimer’s patients also have 
damage resulting from vascular disease. Dementia is a major global health problem, 
affecting ~4·5% of people aged 60 and older in 2016 with over 43 million affected 
globally1. It exacts tremendous costs, both in terms of disability for those affected and in 
pure economic terms. The predicted cost of dementia is greater than $290 billion yearly 
in the United States alone4, and the disease is responsible for 30 million disability 
adjusted life years5. In the absence of a cure and with improved technology, there is 
increased focus on risk reduction, timely diagnosis, and early intervention. Early 
identification of at-risk individuals may enable patients and their families to better 
prepare for and reduce the impact of this condition. 
The traditional approach evaluates an individual in the presence of symptoms. 
However, it has been established that amyloid deposits begin to accumulate years 
before symptoms begin to appear2,3. Furthermore, lifestyle is key in influencing an 
individual’s risk6, and early risk identification provides greater opportunity for 
intervention and risk mitigation7. To accomplish the early identification of at-risk 
individuals, prediction must rely on evidence prior to the onset of symptoms. In certain 
diseases, such as coronary artery disease, there are clear biomarkers and calculated 
scores that aid physicians in predicting which patients are at high-risk. Although 
significant research effort has focused on the development of better models for 
predicting onset of dementia, particularly in the progression of individuals from mild 
cognitive impairment (MCI) to AD8–10, a predictive score, used clinically, that assess and 
individual’s risk is yet to be developed. Biomarkers that may be used include genotype, 
in particular APOE status, and quantitative magnetic resonance imaging (MRI). Testing 
for amyloid protein in the cerebral spinal fluid or in the brain may also be performed to 
determine whether a diagnosis of Alzheimer’s is indicated11. 
APOE genotype and other genetic risk analyses 
The most significant known genetic factor in AD is the ε4 allele for the Apolipoprotein E 
(APOE) gene. Carriers of the allele (heterozygous state with one of the other common 
variants) have a three-fold increased risk of developing AD, whereas individuals who 
are homozygous have a 15-fold increased risk. 20-25% of individuals with AD have at 
least one copy of the ε4 allele12. However, late onset dementia is a complex disorder 
influenced by environmental and genetic factors, with APOE variants accounting for the 
majority, but not all, of phenotypic variance13. To this end, genome-wide association 
studies (GWASs) have facilitated the identification of additional genetic variants 
associated with AD, although most have a limited effect13–15 and novel associations 
continue to be uncovered16. Some researchers have combined the effects of known 
variants into a polygenic hazard score. Such combined genetics scores have 
demonstrated better prediction of the age of onset for AD versus APOE status alone15,17 
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and may correlate with amyloid beta and tau accumulation, and cortical volume 
changes17. 
Quantitative MRI  
Regional brain atrophy, as measured using volumetric MRI, is another important 
biomarker for evaluating an individual’s risk of developing dementia. Previous 
predictions have shown that medial temporal lobe atrophy, as measured by a 
Hippocampal Occupancy Score (HOC) is highly associated with progression from MCI 
to AD18,19. Analysis of the signal intensity of the hippocampus and comparison to 
cognitively normal brains vs Alzheimer’s may also catch early evidence of Alzheimer’s 
disease20.  
Amyloid ß and Tau testing 
Presence of Alzheimer’s disease is also evaluated by determining whether significant 
levels of amyloid beta (Aß) proteins21 or tau22 are present in the CSF or in the brain. 
Results are acquired either via lumbar puncture or amyloid positron emission 
tomography (PET) imaging. Regardless of the method, measurement of Aß deposition 
in the brain may be used to stratify patients into high and low risk categories, and may 
impact clinical management21,23. 
Further studies using PET imaging have led to assessment of its utility for predicting 
disease progression using machine learning models. One such algorithm demonstrated 
the utility of using the information from a single PET scan in the prediction of disease 
progression for MCI individuals within 2 years24. 
Testing for Aß or tau, either via lumbar puncture or PET imaging is invasive (because of 
the need for an intravenous injection of radioactive dye), although work is progressing 
toward a less invasive blood test for tau25. Furthermore, although such testing may be 
available to the research community, it is not readily accessible in a clinical setting, due 
to low availability and high expense. As a result, it is neither appropriate nor feasible to 
perform testing for Aß or tau as a screening procedure or risk assessment for 
asymptomatic individuals.  
Prediction models in the literature 
To our knowledge, no existing model has integrated data to predict progression to 
dementia by cognitive normal individuals many years prior to diagnosis. Most existing 
models rely heavily on cognitive test results to drive their prediction and many have 
focused on the progression of individuals with MCI26,27. Predictions have been made 
using genetics alone8, MRI alone9,28, and through the combination of genetics with MRI 
and cognitive testing10,15,17.  
Modeling disease risk with Survival Models 
Survival Analysis is a statistical framework used to analyze how a set of variables 
influence a subject’s survival time or, more generally, the time to an event of interest. 
Typically, the goal of the analysis is to build a regression model to predict the time to 
event for each subject based on a set of covariates. A common challenge in building 
such models is that a fraction of the data is often censored, that is, the subject leaves 
the study before the occurrence of the event of interest.  
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The Cox proportional hazards (CPH) model is a standard statistical model for 
investigating the association between survival time and predictor variables and aims to 
compute a hazard function for each individual, which describes how the risk of the event 
evolves with time. The proportional hazards model assumes that the hazard function 
consists of two parts: a baseline hazard function, which is common to the whole 
population, and a multiplicative factor, which is unique for each individual. 

ℎ(𝑡, 	𝑥) = ℎ)(𝑡)𝑒+
,- = ℎ)(𝑡)𝑒+.-./+0-0/……/+2-2 

𝑆(𝑡, 𝑥) = 𝑆)(𝑡)4
5,6 

Where ℎ(𝑡, 	𝑥) is the hazard function for people at risk with predictors 𝑥, ℎ)(𝑡) is the 
baseline hazard function for the population of people with 𝑥=0, 𝑆(𝑡, 	𝑥) is the individual 
survival function, i.e., the probability a person's event occurs after each time t, and 𝑆)(𝑡) 
is the baseline survival function (𝑥=0). A powerful property of the CPH model is that it 
can handle censored data. 
Proposed Solution 
The gold standard for diagnosis of Alzheimer’s disease remains post-mortem 
neuropathological inspection, but amyloid PET has been found to be a useful diagnostic 
tool for Alzheimer’s disease in living patients29. Successful tools to identify Alzheimer’s 
disease earlier include those based on the presence of characteristic proteins in the 
CSF or in the brain. However, the detection of Aß via PET or lumbar puncture has 
significant drawbacks, limiting the clinical utility for low risk and asymptomatic 
individuals. Although MRI remains relatively expensive, it is less expensive, more 
accessible, and more commonly available than amyloid PET. Therefore, a model for 
prediction of dementia onset using MRI and genetics, rather than the more expensive 
and more invasive Aß testing, would make early prediction accessible for many more 
individuals. In the current study, we developed an improved prediction model leveraging 
quantitative MRI features and genetics to assess individuals’ long-term risk of dementia 
(Figure 1). 

 
Figure 1: Overview of the proposed model. A) The model uses inputs of genetics data and MRI data to determine an 
individual’s absolute risk  of dementia. Age and gender matched absolute risk comparisons with a reference cohort 
could be used to stratify low risk and normal aging from high risk individuals. B) The schematic describes the 
proposed model’s expected performance for each input modality. We hypothesize that combining MRI and genetics 
data is expected to have similar performance to amyloid measures and have improved performance than either MRI 
or genetics alone. 

Our model for an individual’s risk of developing Alzheimer’s primarily uses data from two 
sources: 1) the individual’s genotype, specifically regarding the gene variants that are 
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known to be associated with an inherited risk of developing Alzheimer’s and 2) an 
individual’s current neuroanatomical phenotype, using structural measurements derived 
from fully convolutional neural networks from MRIs of their brain. 
 
MATERIALS 
Training Cohort 
All longitudinal 3T and 1·5 T brain MRIs along with SNP genotype data, associated 
baseline diagnosis and demographic information were obtained from the Alzheimer’s 
Disease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was 
launched in 2003 with the primary goal of ADNI of testing whether serial magnetic 
resonance imaging (MRI), positron emission tomography (PET), other biological 
markers, and clinical and neuropsychological assessment can be combined to measure 
the progression of AD. For up-to-date information, see www.adni-info.org. 
Independent Multisite Validation Cohort 
The genetic data for this study were prepared, archived, and distributed by the National 
Institute on Aging Alzheimer’s Disease Data Storage Site (NIAGADS) at the University 
of Pennsylvania, and the baseline MRI was obtained from National Alzheimer’s 
Coordinating Center (NACC). NACC was established by the NIA/NIH to facilitate 
collaborative research between Alzheimer’s Disease Centers (ADC). The baseline MRI 
data used in this study was collected since 2005 as a part of NACC Uniform Data Set 
(UDS)30. Eleven individuals known to exist in both cohorts were excluded from the 
validation cohort. 
Table 1: Cohort description 

 Training Cohort Independent Multisite Validation Cohort 

Female/Male 46% female 56% female 

Age 73·0 ± 6·9 (55-91) years 74·0 ± 7·8 (54-95) years 

Number of 
individuals 

699 472 

Number of events 88 93 

Source ADNI NACC 

 
METHODS 
MRI features 
Quantitative MRI features were obtained from 3D brain MR images using a deep 
learning neural network method for brain segmentation31. This fully automated method 
improves upon existing semi-automated methods of brain segmentation by being very 
fast and consistently reproducible. Measurements of amygdala and hippocampus 
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volume were included in the prediction model directly. For a subset of the validation 
cohort, MRI features were pulled from previously extracted features in the validation 
database, as the MR images were not available for processing with the above-
mentioned method. 
Polygenic Risk Score 
The polygenic risk model used in this test was built based on a published Genome Wide 
Association Study (GWAS) that identified variants associated with Alzheimer’s disease 
(Supplemental Table S1)14. This GWAS was performed in individuals of European 
ancestry comprising approximately 26,000 cases and 48,000 controls. Additionally, the 
model includes the APOE ε4 variant, a well-known risk factor for Alzheimer’s disease32. 
The GWAS approach allows for the estimation of a variant-specific weight that is directly 
proportional to the strength of the association between the variant and the disease. A 
polygenic risk score is the sum of these weights for all variants that are shared between 
the polygenic risk model and the genome of the subject.  
Survival Model training 
Cox proportional hazards (CPH) regression models were used with subjects censored 
at death or the last evaluation. In the clinical setting, a CPH model can be used as a 
prediction tool to estimate an individual's relative and absolute risk of developing 
disease at time t. Survival models have the advantage of accounting for the variable 
duration of follow-up, time-to-event and censoring. Time-to-event was defined as the 
time it takes for an individual who is dementia-free at the time of the baseline MRI to 
progress to dementia as defined by the following criteria described by ADNI: Memory 
complaint by subject or study partner; Abnormal memory function by education adjusted 
cutoff on the logical memory ii subscale; Mini-mental state exam score (MMSE) 
between 20-26; Clinical dementia rating = 0·5 or 1·0; NINCDS/ADRDA criteria for 
probable AD. The baseline measurement was the date of the first MRI in the study. We 
leveraged the Breslow method33,34 to handle ties, where failures are only reported with 
day accuracy. At baseline, all individuals were dementia free, with a mixture of 
individuals with normal and MCI classification. Conversion rate was 12·5% in the 
internal training cohort and 19·3% in the external validation cohort.  
Survival Model Features 
Table 2: Features included in the integrated risk model for dementia 

 Feature Type Definition Feature 
Transformation 
Applied 

Age Demographic Age at visit Binned into two 
groups (<=73.2, 
>73.2) 

Amygdala volume  Imaging Sum of left and right hemisphere volumes of the 
amygdalae - roughly almond-shaped masses of gray 
matter inside each cerebral hemisphere, involved with the 
experiencing of emotions. 

Z-score transform 

Hippocampal 
Occupancy Score 
(HOC) 

Imaging HOC = H / (ILV + H) where: 
ILV = Sum of left and right hemisphere volumes of the 
inferior lateral ventricles. 

Natural logarithm, 
then Z-score 
transformation 
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H = Sum of left and right hemisphere volume of the 
hippocampi 

GWAS Genetics Polygenic risk score computed as defined above. Z-score transform 

Features were selected based on a significant p-value (<0·05) and feature importance 
using Cox (Table 2). A derived feature, HOC, was calculated as indicated in Table 3 
and normalized using a natural log transformation. The contribution of genetics to risk 
was assessed with the inclusion of polygenic risk as calculated according to values 
presented in Supplemental Table S1. All feature processing steps were the same on the 
external validation cohort as the internal training cohort.  
Since brain features are highly correlated with age, we leveraged a stratified model 
based on age rather than leveraging age as an input feature. We used only two age 
bins to prevent overfitting. When using the stratified model, the baseline hazards are 
allowed to be different for different strata. The hazard for an individual from stratum k is 
given by: 

ℎ7(𝑡|𝑥)	 = 	ℎ)7(𝑡)	𝑒𝑥𝑝{𝛽<𝑥} 

where	ℎ)7(𝑡) is the baseline hazard for stratum 𝑘, 	𝑘	 = 	1, 	 … , 	𝐾  

Model discrimination performance and generalization 
We evaluated the model’s ability to discriminate risk at each year using inverse 
probability censored weighting (IPCW) to measure the time-varying area under the 
curve (AUC) from receiver operating characteristic (ROC) curves and overall 
performance with concordance index. In the context of survival modeling, concordance 
index is the probability that for a pair of randomly selected samples, the sample with 
larger predicted risk will experience an event before the other. Details of the models and 
the relevant C-indices can be found in Supplemental Table S2.  
Time-dependent ROC curves and AUCs were estimated in the presence of censored 
data (Figure 2A&B). Time-varying AUCs for the MRI only, MRI and Genetics, CSF, and 
Amyloid PET models were compared using a Wilcoxon rank sum test for dependent 
samples. Five-fold cross validation was used to assess model performance on the 
training cohort. A test and train split strategy was not used during training due to a small 
data set. 
Calibration 
Both discrimination and calibration are critical for model validation. Even if a new 
prediction model discriminates well, if good calibration is not also achieved the model 
may perform poorly in a new patient population. Despite this, calibration is rarely 
reported in risk prediction studies35. We tested the combined MRI and Genetics model’s 
calibration, or its ability to produce unbiased estimates of risk, by measuring the degree 
of agreement between the estimated and observed survival probability. Survival 
probability estimations33,34 were collected for time periods from one year from baseline 
through the length of the testing cohort study (eight years).  
These calibration curves were visually inspected to determine whether or not the 
observed event frequencies matched the expected event probabilities for each group of 
samples. Calibration curves were expected to produce a linear relationship between 
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observed and expected probability of dementia and not deviate strongly from a 1:1 
relationship. Plots were created for calibration in both the training (ADNI) and test 
(NACC) datasets, respectively (Figure 2D&E, Supplemental Figure S1). The survival 
probability was predicted using the model built on training dataset (x-axis). All samples 
were split into five risk groups of equal size based on the predicted survival probability. 
The observed survival probability was estimated using Kaplan-Meier estimator on each 
risk group (y-axis). 
The strong agreement of predicted versus observed risk is expected for the cohort on 
which the model was trained (Figure 2E at eight years; Supplemental Figure S1A for 
years two, four, and six). The degree of over- or under-estimation of risk is minimal. 
Similarly, there is limited over- and under-estimation of risk in the validation cohort 
(Figure 2F at 8 years; Supplemental Figure S1B for years two, four, and six).  
Survival analysis 
Kaplan-Meier survival analysis was used to estimate the probability of surviving at least 
to time t (Figure 2C&D). Data was binned according to the predicted risk of developing 
dementia within 8 years from baseline in the following three risk groups: probability = 
0·0-0·25 and 0·25-0·75 and 0·75-1·0 and compared to the actual survival curve for the 
individuals in each bin. Error shown is standard deviation. We observe significant 
separation of the three groups (p<0·0001 for both training and validation cohorts) as 
well as good concordance of the observed and predicted survival curves. 
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Figure 2: Performance data for the training and validation cohorts. Discrimination performance using AUC for the 
ROC curves at years 1-8 prior to a progression event in the A) training and B) validation cohorts. Kaplan Meier plots 
showing survival probability from baseline to 8 years in the C) training and D) validation cohorts. Data is binned by 
predicted risk of developing dementia within 8 years from baseline: bin1: 0·0-0·25; bin 2: 0·25-0·75; bin3: 0·75-1·0) in 
the E) training and F) validation cohorts. Calibration plots for prediction 8 years prior to a progression event. 
Results 
PRS vs APOE 
A model using APOE alone instead of the PRS was built on the training dataset and 
evaluated for predictive performance in comparison with the one using the PRS. Figure 
3 illustrates the concordance index for each model in both the training and validation 
cohorts. In both cohorts, PRS produces a significantly higher C-index (Wilcoxon rank 
sum test). Statistics of the different genetic models are shown in Supplemental Table 
S3, in which the effect sizes for PRS are reported as the hazard-ratio per standard 
deviation. 
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Figure 3 Comparison of models using PRS versus APOE alone. C-indices were significantly higher in both the 
training (p=0.00024) and validation (p=0.0060) cohorts. 

MRI/PRS vs MRI only 
Two models (MRI only and combined MRI/PRS) were built on the training dataset and 
time-varying AUC was computed on both training and test datasets using the two 
models respectively (Figure 4). The AUCs in the combined model were significantly 
greater than those in the MRI only model in the training cohort (p=0·0071). Also, the C-
indices for were higher for the combined model vs MRI only in both the training 
(MRI/PRS CI=0·82; MRI CI=0·79) and validation (MRI/PRS CI=0·807, MRI CI=0·788) 
datasets. 
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Figure 4: Comparison of the proposed model using MRI and PRS versus a model using only MRI features in the A) 
training and B) validation cohorts. A similar trend is seen in the comparison of time-varying AUC between MRI+PRS 
and MRI alone when the training and validation cohorts were reversed (C&D). *In the validation cohort (and therefore, 
the reverse training cohort), there were few events at year one in the validation cohort and no events in high genetic 
risk individuals within the first year (see Supplemental Figure S2 and Table S4).  

Comparison with Amyloid Beta 
Models were built on the training dataset using CSF amyloid levels or amyloid PET 
(florabetapir) and time-varying AUC was computed on both training and test datasets for 
comparison with the combined model (Figure 5). MRI/PRS showed equivalent 
performance to cerebral spinal fluid (CSF) amyloid measurement up to eight years prior 
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to disease onset (p = 0·181), whereas MRI alone showed worse performance (p = 
0·040). 

 
Figure 5: Comparison of MRI/PRS model, MRI only model, and A) a model using CSF amyloid levels, B) a model 
using Global SUVr in an Avid study36; C) a model using Global SUVr in a UC Berkeley study37. 
Discussion 
Individuals who are asymptomatic but are concerned about their risk of dementia 
currently have few tools to assess their potential risk. Widely available genetic testing, 
such as APOE status, may result in a false sense of security, or cause undue alarm. 
More reliable tests, such as the detection of Aß via PET or lumbar puncture have 
significant drawbacks, limiting the clinical utility for low risk and pre-symptomatic 
individuals. Nonetheless, early risk identification is desirable, as it provides greater 
opportunity for intervention and risk mitigation7, potentially enabling individuals and 
families to better prepare for, postpone the effects of and reduce the severity of the 
disease’s impacts. In particular, modifiable lifestyle factors have a significant influence 
on an individual’s risk6, including key factors such as management of type II diabetes, 
managing hearing loss, and reducing alcohol use38–40.  
Although MRI remains relatively expensive, it is more affordable, more accessible, and 
more commonly available than amyloid PET. Therefore, a model for prediction of 
dementia onset using MRI and genetics, rather than the more expensive and more 
invasive Aß testing, would make early prediction available for many more individuals.  
In this work, we sought to develop a method that could be accessible to low-risk and 
pre-symptomatic individuals.  
Significant findings 
We show that the integration of polygenic risk with deep learning-derived structural MRI 
features improves the prediction of dementia onset. While structural MRI is a strong 
biomarker by itself for both detection and short-term prediction, it does not have the 
ability to differentiate individuals prior to the anatomical changes which occur later in the 
disease trajectory. The addition of genetics in the form of a PRS to quantitative MRI 
features extends the time at which a model can accurately predict progression to 
dementia (Figure 4). 
We hypothesize that the two modalities are complementary measures. MRI reflects 
near term decline while the genetics extends the prediction scope of quantitative MRI by 
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adding long-term predictive power. Support of this hypothesis is provided by the 
improved performance of the combined model versus MRI alone when compared with 
more invasive amyloid measures (Figure 5). Furthermore, we show that the use of 
structural MRI features in combination with polygenic risk has equivalent performance to 
amyloid CSF up to eight years prior to disease onset (Figure 5A; p = 0·181; see 
Supplemental Table S2). We also see equivalent performance to amyloid PET 3-4 
years prior to disease onset (Figure 5B&C; see Supplemental Table S2). 
Clinical application 
Although MRI remains relatively expensive, it is less expensive, more accessible, and 
more commonly available than amyloid PET. Furthermore, MRI is already part of 
standard clinical practice, and the model proposed herein may be applied to standard 
clinical MRIs with no additional acquisition required. A recent survey of patients and 
their caregivers has highlighted a desire for access to better diagnostics, such as 
amyloid PET, to aid them long-term legal, financial and healthcare planning41. Given its 
concordance with CSF and amyloid PET, the proposed multimodal model shows 
potential as an alternate solution for early risk assessment. Conceivably, the model 
could be considered for active surveillance of individuals who are concerned about their 
risk of developing dementia but are not eligible for invasive testing such as amyloid 
PET.  
Additional applications 
Since genetic sequencing and MRI are minimally invasive, our model could be used as 
a research subject risk stratification approach for clinical studies. For instance, 
identifying high-risk individuals would greatly enhance the efficiency of studies that are 
investigating the efficacy of new therapies for dementia.  
Limitations 
Although, the APOE e4 allele is a major risk factor for AD, odds ratios vary considerably 
among ethnic groups42,43, with the highest risk in East Asians42,44, followed by non-
Hispanic Caucasians42,45,46 and lowest in African ancestry populations42,47–49. This may 
be the result of environmental factors, or population-specific genetic factors, with some 
evidence suggesting the latter43. Nonetheless, the odds-ratios derived from European 
studies of AD cannot be applied directly to non-European populations. Similarly, 
European-derived polygenic risk scores are not portable to other populations50. 
Although the current model is only applicable to Europeans, the polygenic risk score 
feature can easily be substituted with an ancestry-appropriate GWAS for application to 
non-European populations. 
Future work 
We plan to investigate our model in application to larger and more diverse cohorts, as 
there were a limited number of events in our cohort. This may also allow us to improve 
our PRS model. 
Also, further comparison with amyloid PET (greater than four years) and with CSF 
(greater than eight years) as additional long-term data becomes available. Also, the 
model will be evaluated for its clinical utility in the active surveillance of individuals who 
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may be concerned about their risk of developing dementia but are not yet eligible for 
more invasive imaging such as amyloid PET. 
Conclusion 
Early identification of individuals that are at-risk for dementia requires biomarkers that 
are evident prior to the onset of symptoms. Unlike many chronic conditions, there is no 
reliable risk score or assessment tool to help physicians identify high-risk patients. 
Other than standard cognitive tests, such as the MMSE, and basic genotyping, such as 
for APOE status, no simple test exists which can help individuals and their physicians 
assess an individual’s risk of developing dementia in the absence of symptoms. 
Although MRI remains relatively expensive, it is already part of standard clinical 
practice, and genotyping is rapidly becoming more affordable and available. Therefore, 
the testing required for the model described in this manuscript is accessible and can be 
performed with minimal invasiveness, yet predicts with the same accuracy as the more 
invasive and less available CSF or amyloid PET. This model could greatly impact 
dementia screening. Early identification of high-risk individuals could facilitate the 
creation of “active surveillance” programs which could monitor individuals who are not 
yet symptomatic and assist them in making lifestyle changes which might postpone 
onset of symptoms or reduce their severity. Furthermore, active surveillance would also 
help individuals and their families to better prepare for the impacts of the disease. 
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Supplement 
 
Table S 1 Twenty variants included in polygenic risk model. 

rsID Chromosome Position* Reference 
allele 

Risk 
allele 

Odds Ratio† Beta 
coefficient 

rs429358 chr19 44908684 T C 3·630 1·289 
rs6656401 chr1 207518704 A A 1·180 0·166 
rs6733839 chr2 127135234 C T 1·220 0·199 
rs10948363 chr6 47520026 A G 1·100 0·095 
rs11771145 chr7 143413669 G G 1·111 0·105 
rs9331896 chr8 27610169 C T 1·163 0·151 
rs983392 chr11 60156035 A A 1·111 0·105 
rs10792832 chr11 86156833 A G 1·149 0·139 
rs4147929 chr19 1063444 A A 1·150 0·140 
rs9271192 chr6 32610753 C C 1·110 0·104 
rs28834970 chr8 27337604 T C 1·100 0·095 
rs11218343 chr11 121564878 T T 1·299 0·262 
rs10498633 chr14 92460608 G G 1·099 0·094 
rs35349669 chr2 233159830 C T 1·080 0·077 
rs190982 chr5 88927603 G A 1·075 0·072 
rs2718058 chr7 37801932 A A 1·075 0·072 
rs1476679 chr7 100406823 C T 1·099 0·094 
rs10838725 chr11 47536319 T C 1·080 0·077 
rs17125944 chr14 52933911 T C 1·140 0·131 
rs7274581 chr20 56443204 T T 1·136 0·128 

*Base pair position as per human reference assembly GRCh38. 
†Odds ratio are as per the published GWAS risk score (rs42935832; all other variants14). Beta coefficients are 
log(Odds Ratio). 
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Table S 2 Comparison of Model Concordance Indices 

Model Description C-Index Training Dataset Data Assessed   

APOE versus PRS (Instantaneous Age Adjusted Risk) 

APOE Only 0·709 611 controls/88 cases (ADNI) 5-fold Cross-validation Same as 
“Training Data” 

PRS Only  0·731 611 controls/88cases (ADNI) 5-fold Cross-validation Same as 
“Training Data” 

Training Cohort - MRI only versus MRI/PRS (Age Stratified 1-8 years after baseline Imaging) 

MRI only  0·790 Training Cohort (Described in Table 2) Same as “Training Data” 

MRI/PRS   0·820 Training Cohort (Described in Table 2) Same as “Training Data” 

Validation Cohort - MRI only versus MRI/PRS (Age Stratified 1-8 years after baseline Imaging) 

MRI only  0·788 Training Cohort (Described in Table 2) Independent Multisite Validation 
Cohort (Table 2) 

MRI/PRS   0·807 Training Cohort (Described in Table 2) Independent Multisite Validation 
Cohort (Table 2) 

Reverse Training Cohort - MRI only versus MRI/PRS (Age Stratified 1-8 years after baseline Imaging) 

MRI only  0·814 Independent Multisite Validation Cohort (Described in 
Table 2) 

Training Cohort (Described in Table 
2) 

MRI/PRS   0·821 Independent Multisite Validation Cohort (Described in 
Table 2) 

Training Cohort (Described in Table 
2) 

Validation Cohort - MRI only versus MRI/PRS (Age Stratified 1-8 years after baseline Imaging) 

MRI only  0·779 Independent Multisite Validation Cohort (Described in 
Table 2) 

Training Cohort (Table 2) 

MRI/PRS   0·814 Independent Multisite Validation Cohort (Described in 
Table 2) 

Training Cohort (Table 2) 

CSF-derived Amyloid Measures versus MRI only and MRI/PRS (Age Stratified 1-8 years after baseline Imaging) 

CSF  0·809 N = 518 events = 63 Subset of Training Cohort 
(Described in Table 2) 

5-fold Cross-validation Same as 
“Training Data” 

MRI only 0·793 N = 518 events = 63 Subset of Training Cohort 
(Described in Table 2) 

5-fold Cross-validation Same as 
“Training Data” 

MRI/PRS   0·815 N = 518 events = 63 Subset of Training Cohort 
(Described in Table 2) 

5-fold Cross-validation Same as 
“Training Data” 

Study 1: PET-derived Amyloid Measures versus MRI only and MRI/PRS (Age Stratified 1-4 years after baseline Imaging) 

Amyloid-PET 
(UCB)  

0·832 N = 482 events = 39 Subset of Training Cohort 
(Described in Table 2) 

5-fold Cross-validation Same as 
“Training Data” 

MRI only 0·762 N = 482 events = 39 Subset of Training Cohort 
(Described in Table 2) 

5-fold Cross-validation Same as 
“Training Data” 

MRI/PRS    0·785 N = 482 events = 39 Subset of Training Cohort 
(Described in Table 2) 

5-fold Cross-validation Same as 
“Training Data” 
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Study 2: PET-derived Amyloid Measures versus MRI only and MRI/PRS (Age Stratified 1-3 years after baseline Imaging) 

Amyloid-PET 
(sPAP)  

0·779 N = 413 events = 44 Subset of Training Cohort 
(Described in Table 2) 

5-fold Cross-validation Same as 
“Training Data” 

MRI only 0·792 N = 413 events = 44 Subset of Training Cohort 
(Described in Table 2) 
 

5-fold Cross-validation Same as 
“Training Data” 

MRI/PRS    0·829 N = 413 events = 44 Subset of Training Cohort 
(Described in Table 2) 

5-fold Cross-validation Same as 
“Training Data” 

 
Table S 3 Comparison of Different Genetics Models.  

Dataset Feature C-Index Hazard Ratio -log10(P) 
NACC PRS 0·63 1·5 5·1 
NACC APOE4 Heterozygous 0·62 2 2·6 
NACC APOE4 Homozygous 0·62 5·1 4·9 
ADNI PRS 0·72 2·1 13·2 
ADNI APOE4 Heterozygous 0·70 4·9 9·7 
ADNI APOE4 Homozygous 0·70 8·2 8·3 

 
Table S 4 Survival probability by year, genotype (number of e4 alleles present) and dataset.  

# of e4 0 0 1 1 2 2 
Dataset ADNI NACC ADNI NACC ADNI NACC 
Baseline 1.000 1.000 1.000 1.000 1.000 1.000 
Year 1 0.984 0.986 0.95 0.957 0.891 1.000* 
Year 2 0.966 0.961 0.829 0.896 0.766 0.804 
Year 3 0.932 0.921 0.739 0.835 0.643 0.731 
Year 4 0.925 0.901 0.692 0.776 0.643 0.511 
Year 5 0.91 0.871 0.63 0.75 0.536 0.365 
Year 6 0.91 0.855 0.581 0.716 0.268 0.365 
Year 7 0.874 0.834 0.528 0.697 0.268 0.365 
Year 8 0.825 0.78 0.403 0.636 0.268 0.365 

*Due to the size of the dataset, there were no individuals homozygous for APOE e4 who progressed to dementia in 
the first year in the validation cohort. 
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Figure S 1 Calibration plots in the training and validation cohorts for prediction 2, 4, & 6 years prior to a progression event. 
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Figure S 2 Plots illustrating the survival probability of individuals categorized by APOE genotype. Due to small sample size in 
the validation cohort at year 1. *There were no individuals homozygous for APOE e4 who progressed to dementia in the first 
year in the validation cohort. 
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