1 WhichTF is dominant in your open chromatin data?

2 Yosuke Tanigawa^{1*}, Ethan S. Dyer^{2,3,7*}, Gill Bejerano^{1,4,5,6,+}

^	`								
	4	1	Department	of Riomedical	Data Science	School of Medicine	Stanford Universit	v Stanford	CA LISA
-	,	1.	Department	of Biolification	Data Science,	School of Miculenic	, stamoru Omversit	y, Stamolu,	, CA , USA .

- 4 2. Stanford Institute for Theoretical Physics, Stanford University, Stanford, CA, USA
- 5 3. Department of Physics and Astronomy, Johns Hopkins University, Baltimore, MD, USA
- 6 4. Department of Developmental Biology, Stanford University, Stanford, CA, USA.
- 7 5. Department of Computer Science, Stanford University, Stanford, CA, USA.
- 8 6. Department of Pediatrics, Stanford University School of Medicine, Stanford University, Stanford, CA, USA.
- 9 7. Current address: Google, Mountain View, CA, USA
- 10 * These authors contributed equally and ordered by age
- 11 + Corresponding author (G.B. bejerano@stanford.edu)

12 Abstract

13	We present WhichTF, a novel computational method to identify dominant
14	transcription factors (TFs) from chromatin accessibility measurements. To rank TFs,
15	WhichTF integrates high-confidence genome-wide computational prediction of TF binding
16	sites based on evolutionary sequence conservation, putative gene-regulatory models, and
17	ontology-based gene annotations. Applying WhichTF, we find that the identified dominant
18	TFs have been implicated as functionally important in well-studied cell types, such as NF-
19	κB family members in lymphocytes and GATA factors in cardiac tissue. To distinguish the
20	transcriptional regulatory landscape in closely related samples, we devise a differential
21	analysis framework and demonstrate its utility in lymphocyte, mesoderm developmental,
22	and disease cells. We also find TFs known for stress response in multiple samples,
23	suggesting routine experimental caveats that warrant careful consideration. WhichTF yields
24	biological insight into known and novel molecular mechanisms of TF-mediated
25	transcriptional regulation in diverse contexts, including human and mouse cell types, cell
26	fate trajectories, and disease-associated tissues.

27 Introduction

28	Transcription factors (TFs) are the master regulators of development. They define,
29	refine, and can even divert cellular trajectories. TFs perform these important tasks by
30	binding to specific DNA sequences in open chromatin, where they recruit additional co-
31	factors and together modulate expression of downstream genes. TFs regulate biological
32	processes in healthy adult tissues, and mutations to both TF genes and their genomic binding
33	sites have been linked with human disease ^{1,2} .
34	The advent of next generation sequencing has paved the way for chromatin
35	immunoprecipitation followed by sequencing (ChIP-seq)-based methods for the discovery
36	of genome-wide loci where a given TF binds DNA in a given cell population ³ . Tools
37	developed for the analysis of ChIP-seq data, such as GREAT ⁴ (Gene Regulatory Enrichment
38	of Annotations Tool), have discovered and leveraged a compelling phenomenon: when a TF
39	is functionally important for the progression of a certain process, such that its perturbation
40	leads to the disruption of this process, the binding sites for this TF are often highly enriched
41	in the gene regulatory domains of the "downstream" target genes that drive this process ⁴ .
42	TFs work in different combinations to enact a vast repertoire of cellular fates and
43	responses ⁵ . Between 1,500-2,000 TFs are thought to be encoded in the human genome ¹ .
44	Performing ChIP-seq for more than a handful of TFs in any cellular context is an expensive
45	laborious procedure, while the assaying of hundreds of TFs even in the same cell state is
46	impractical except in a handful of settings, by the most lavishly funded consortia.
47	To obtain a more comprehensive view of transcriptional regulation in action,
48	experimental focus has turned from the assaying of individual TFs to the assaying of all
49	open chromatin in a given cellular context. These DNase-seq, ATAC-seq, or single-cell

ATAC-seq accessibility profiles offer a proxy for all cis-regulatory elements active in a
 given cellular state⁶⁻⁸.

52 While assaying all TFs is infeasible, many hundreds of TFs have been studied in one 53 or more cellular contexts, or via complementary methods (such as protein binding 54 microarrays or high-throughput SELEX), to obtain the DNA binding preference of the TF¹. 55 These hundreds of TF binding motifs can then be used to predict transcription factor binding 56 sites (TFBSs) for all characterized TFs in various context-specific sets of accessible 57 chromatin. 58 Very often, biological processes of interest are conserved at the genome sequence 59 level across closely related species, such as primates or mammals. As such, computational 60 tools like PRISM⁹ (Predicting Regulatory Information for Single Motifs) can be used to 61 obtain a rarefied subset of binding site predictions that are both observed to be positioned in 62 open chromatin and conserved orthologously in additional species. Because these sites

evolve under purifying selection, they are more likely to be individually important in theprobed context⁹.

65 Here, we innovate on the foundation of two tools our group previously developed: 66 PRISM⁹ for the prediction of evolutionarily conserved binding sites for hundreds of human 67 and mouse TFs, and GREAT⁴ for the detection of functions enriched in gene regulatory 68 regions. We use insights from both to develop WhichTF, a tool that applies a novel 69 statistical test to identify the most dominant TFs within a set of user-specified open 70 chromatin regions. In this work, dominant TFs refer to TFs whose conserved binding sites 71 are enriched within functionally-coherent regions of the input open chromatin regions. We 72 show that our molecular definition of dominance successfully predicts biologically

73 important factors in the context of different cell types, differentiation pathways, and even

74 disease associated cellular sets.

75 Results

76 WhichTF Approach Overview

77 In order to predict dominant TFs, WhichTF relies on both functional genome 78 annotations from GREAT and pre-curated, conservation-based predictions of TFBSs from 79 PRISM. As such, we use GREAT in conjunction with the mouse genome informatics (MGI) 80 phenotype ontology to annotate all genes in the human GRCh38 (hg38) and mouse 81 GRCm38 (mm10) genomes with a canonical transcription start site (TSS), a putative gene 82 regulatory domain, and any MGI phenotypes known to be affected by mutations to the 83 associated gene. This procedure yields more than 700,000 gene-phenotype relationships for each genome (Fig. 1a, step 1)^{4,10–12}. We also use PRISM to predict mammalian conserved 84 85 TFBSs using 672 manually curated PWMs from 569 TFs across the entire genome⁹. The 86 updated PRISM predictions resulted in 268 million and 161 million putative TFBSs for the 87 human and mouse genomes, respectively (Fig. 1a, step 2).

To confirm the utility of restricting ourselves to regulatory domains of highly enriched ontology terms, we evaluated the relative enrichment in the number of TFBSs within the input open chromatin region as a baseline method (**Online Methods**). We found the baseline results are often overloaded with TFs associated with general housekeeping processes (**Supplementary Table S1**). We therefore turned to focus on the top 100 enriched terms (**Online Methods**).

94	For a given query (Fig. 1a, step 3), WhichTF uses functional annotations to enhance
95	its prediction of dominant transcription factors. This is accomplished by computing TF
96	enrichments in only a restricted, particularly relevant, subset of the user's input. Specifically,
97	WhichTF uses GREAT to identify enriched ontology terms within the user's input query.
98	Each term is associated with a region of the genome corresponding to all of the regulatory
99	domains of genes annotated with that term. WhichTF selects the top 100 ontology terms.
100	For each term and every TF, WhichTF counts the number of binding sites falling in the
101	intersection of the user-specified accessible regions and the region of the genome associated
102	to the term of interest (Fig. 1a, step 4), and computes enrichment statistics, represented as a
103	TF-by-term enrichment matrix (Fig. 1b). Aggregating over the functional terms, WhichTF
104	computes a novel score and significance used for ranking TFs (Fig. 1c, Online Methods).
105	The top-ranked TFs are hypothesized to be functionally relevant TFs in a cell exhibiting the
106	indicated accessibility profile.

107 WhichTF identifies functionally important TFs across diverse cell types

108 To test the ability of WhichTF to identify functionally important TFs across different 109 cell types, we applied WhichTF to DNase-seq profiles and found that the predicted 110 dominant TFs are often confirmed to be functionally relevant by perturbation studies (Fig. 111 **2a**). In B- and T-cells, for example, we identified TFs in the NF- κ B pathway, which are key 112 factors in lymphocyte development and adaptive immunity¹³. In embryonic heart tissue, we 113 found GATA-4, -5, and, -6 – known regulators of cardiac development and growth that, 114 when perturbed, have been implicated in human congenital heart disease¹⁴. In embryonic 115 hindbrain tissue, we found SOX2, a critical regulator of neural progenitor pluripotency and 116 differentiation in embryogenesis and later development, including adult hippocampal

117	neurogenesis ^{15–17}	. WhichTF yielded	similar biologically	y meaningful	results from the
-----	-------------------------------	-------------------	----------------------	--------------	------------------

- 118 corresponding cell types for mouse DNase-seq datasets (Supplementary Table S2),
- suggesting that WhichTF can highlight both the identity and evolutionarily conserved
- 120 binding sites of key TFs from open chromatin in diverse contexts across species.

121 WhichTF robustly quantifies biologically meaningful similarities and differences in

122 **TF-mediated transcriptional programs**

123 Precise knowledge of cell state and identity is crucial for understanding normal 124 development and disease. To assess whether WhichTF can quantitatively and robustly 125 capture biologically meaningful similarities and differences in TF-mediated transcriptional 126 programs, we applied a t-distributed stochastic neighbor embedding (t-SNE) analysis to 127 WhichTF score vectors computed for 90 samples across 7 cell types¹⁸. We found brain, lung, and hematopoietic cells are mapped to distinct regions (Fig. 2b). Furthermore, we saw fine-128 129 grained substructures among closely related samples. For example, we observed a clear 130 separation of GM12878, B-cells, and T-cells. Reassuringly, different samples from the same 131 biological tissue, such as left ventricle, right ventricle, and heart, showed no clear separation.

132 WhichTF identifies differentially dominant TFs for closely related cell types

B-cells and T-cells share a closely related developmental trajectory¹³. As Fig. 2a
shows, WhichTF identified NF-κB family members NFKB1, RELA, and RELB as shared
dominant TFs. WhichTF also identified lineage-specific factors, such as SPI-B for B-cells
and RUNX3 for T-cells (Fig. 2a). SPI-B is an ETS family TF known to play a key role in Bcell development and function, and environmental response^{19–21}. RUNX3, in contrast, play
T-cell-specific functional roles, such as in CD4 versus CD8 thymocyte commitment, helper

139	versus killer T-cell specification, and helper type selection ²² . These differential roles for
140	SPI-B and RUNX3 are corroborated by their cell-type-specific expression in B-cells and T-
141	cells, respectively (Fig. $3a$) ²³ .
142	Although we identified multiple TFs distinguishing B- and T-cells, the results are
143	dominated by common factors. This is reasonable, as they share most of their developmental
144	program ¹³ . To identify TFs with relative dominance from a given pair of samples, we
145	developed a differential analysis framework focusing on uniquely accessible regions only in
146	one sample (Online Methods). In B-cells, the differential analysis highlighted additional
147	ETS family members, PU.1 and SPI-C. These TFs are essential for healthy B-cell
148	differentiation and function (Fig. 3b). In T-cells, we saw an additional RUNX family
149	member, RUNX1, as well as CBF β (Fig. 3b) – both are functionally relevant in T-cells.
150	Indeed, RUNX1, RUNX3 and CBF β form a complex and are crucial for the healthy function
151	of T-lymphocytes ³² .
152	WhichTF identifies differentially dominant TFs along developmental trajectories
153	TFs regulate cell fate decisions in animal developmental programs ¹ . To gain insights
154	into the molecular mechanisms influencing cellular differentiation, we applied WhichTF to
155	ATAC-seq data from timepoints along mesoderm development to identify differentially
156	dominant TFs that distinguish cell fates at each step along the trajectory, from human
157	embryonic stem cells (ESCs) to early somite vs. cardiac mesoderm (Fig. 4) ²⁴ .
158	The first step of mesoderm development is the differentiation from ESCs to anterior
159	(APS) or mid (MPS) primitive streak (PS) cells. In both APS and MPS cells, we found
160	WNT signaling TFs, such as TCF7L2 and LEF1, as well as T-box family TFs, such as TBX-
161	2 and -3 (Fig. 4a-b). WNT signaling is involved in PS differentiation and is crucial in

162	inducing PS cell types ²⁴ . T-box family members also play key roles in PS development.
163	TBX6 is a canonical PS marker, and the specific loss of <i>Eomes</i> (a.k.a. <i>Tbr2</i>), causes ectopic
164	primitive streak formation in mice ^{24,25} . The specific T-box family member TBX3, ranked
165	third in APS cells, has been implicated in early stage of differentiation towards mesoderm
166	from ESCs in mouse and Xenopus and has been reported for its functional redundancy with
167	Tbx2 during Xenopus gastulation ²⁶ . RUNX3, our top hit for APS, shows conserved
168	expression in mouse neuromesodermal progenitor (NMP) cells and human D3-NMP-like
169	cells. Interestingly, we also found previously unreported T-box family TFs, TBX15 and
170	TBR1, of which TBX15 is linked to decreased skeletal muscle mass in mouse ¹² and known
171	for tissue-specific expression in muscle, a tissue developed from the mesoderm lineage
172	(Supplementary Figure S1).
173	In paraxial mesoderm, we found WNT signaling TFs, which promote paraxial and
174	suppress lateral mesoderm (Fig. $4c$) ²⁴ . We also find HOXC13, necessary for proper
175	development of the paraxial mesoderm into the presomatic mesoderm ²⁷ . In early somites,
176	we found MEIS2 and ZIC2, which are required in development of cranial and cardiac neural
177	crest and somite cells, respectively (Fig. 4d) ^{28,29} .
178	In lateral mesoderm, we found multiple GATA family members, of which GATA4 is
179	a downstream effector of BMP signaling in lateral mesoderm (Fig. 4e) ³⁰ . We also saw
180	<i>RUNX3</i> , which is co-expressed with <i>RUNX1</i> in lateral mesoderm ³¹ ; both are necessary for
181	hematopoiesis ^{22,32} . GLI1, a key TF in hedgehog (HH) signaling, is necessary for
182	establishing left-right asymmetry in lateral mesoderm ³³ . In cardiac mesoderm, we found
183	FOS TFs, GATA TFs, and GLI1 (Fig. 4f). Interestingly, FOSL2 regulates the rate of
184	myocardial differentiation ³⁴ , and HH signaling via GLI1 is required for secondary heart

185	field development ³⁵ . As mentioned above, GATA factors are canonical drivers of cardiac
186	development and all the GATA family members identified for mesoderm development

187 (GATA-1, -2, -4, and -6) are implicated in Human cardiovascular diseases^{14,2}.

188 WhichTF identifies potentially disease-relevant TFs

189 Transcriptional mis-regulation has a broad impact on human diseases². To assess 190 whether WhichTF can shed light on the transcriptional regulatory molecular basis of human 191 disorders, we examined systemic lupus erythematosus (SLE) as a case study. SLE is a 192 heterogeneous and chronic autoimmune disorder most prevalent in young women and 193 affecting 0.1% of the population. Its genetic and epi-genetic bases are poorly understood 194 with known genetic associations accounting for only 10-20% of the observed heritability. 195 While SLE is characterized by mis-regulated immune response in T- and B-cells, few TFs 196 have been identified to play functionally relevant roles in SLE³⁶. 197 To better understand the regulatory landscape of SLE, we identified differentially 198 dominant TFs in healthy B-cells compared to SLE-affected B-cells and vice versa by 199 applying WhichTF to ATAC-seq datasets³⁷. We found BCL6 as a differentially dominant 200 TF in healthy vs. SLE B-cells (Table 1). BCL6 is an important marker of T-helper follicular 201 cells, a T-cell subtype which has been found to be mis-regulated in SLE³⁸. Other 202 differentially dominant TFs and their corresponding genes are implicated in autoimmune 203 disorders (Table 1). A sonic hedgehog (SHH)-Gli signaling pathway member GLI1 is 204 involved in pathogenesis of rheumatoid arthritis through synovial fibroblast proliferation³⁹. 205 A common genetic variant in TCF7L2, which is known for type 2 diabetes risk allele, 206 discriminates autoimmune from non-autoimmune type 1 diabetes in young patients⁴⁰. In a

207 model system to study multiple sclerosis, ZEB1 is suggested as a regulator of experimental
 208 autoimmune encephalomyelitis⁴¹.

209 WhichTF uncovers stress response signatures

210 Context-specific measurements of open chromatin typically require purification of 211 the desired cell type through mechanical and enzymatic tissue dissociation, which can be 212 quite taxing on the cells. Indeed, it has been reported that stress response factors are often 213 highly expressed in dissociated tissues⁴². Corroborating these observations, WhichTF often 214 identifies canonical stress-associated TFs as some of the most dominant TFs in multiple 215 very different contexts. As an illustration, we present WhichTF results for additional 216 DNase-seq datasets (Table 2). For three endothelial cell types and adrenal gland cells, we 217 found many members of FOS/AP-1 and NF-kB TFs, which are both known for their roles in 218 stress response. We also found ZFP410 (also known as ZNF410), a poorly characterized 219 Zinc finger TF, among the top hits across multiple cell types, suggesting its potential role in 220 stress response. Even in the samples dominated by stress-associated TFs, we still found 221 well-known context-specific players among the top hits, such as GATA3 and WT-1 in 222 kidney cells and SOX and FOX TFs in endothelial cells^{43–45}. We also found that the boundary between stress response and cell-type specific functions can be ambiguous, or at 223 224 least context dependent. For example, we found FOS/AP-1 and NF-kB dominant in 225 keratinocytes and B-cells, respectively which, in addition to being stress-associated, are also 226 known for their context-specific functions^{13,46}.

227 Discussion

228	We present WhichTF, a novel computational method to identify and rank known or
229	novel dominant TFs in any given set of accessible chromatin regions or through pairwise
230	differential analysis of related samples. The WhichTF score is built on high confidence
231	PRISM ⁹ predictions of conserved TFBSs as well as gene regulatory domain and ontological
232	annotation models from GREAT ⁴ . Applying WhichTF to dozens of samples across diverse
233	biological contexts, such as multiple cell types, developmental programs, and disease
234	samples, we found that the functional relevance of the identified dominant TFs is often
235	supported or suggested by published literature.
236	WhichTF identifies not only cell-type specific TFs, but factors reflecting biological
237	processes shared among multiple samples. One such example in our result, corroborated by
238	previous expression profiling, suggests stress response due to cellular dissociation is a
239	shared process ⁴² . In addition to previously identified factors, we report an under-
240	characterized Zinc finger protein, ZNF410, as a TF potentially involved in cellular stress
241	response. The identification of stress associated TFs suggests WhichTF may serve as a
242	useful quality control of chromatin accessibility data.
243	As we have demonstrated above, WhichTF is broadly applicable. WhichTF takes as
244	input any form of chromatin accessibility measurement for either human or mouse, the two
245	most studied genomes. Our illustrative examples span both species and assay types, such as
246	DNase-seq and ATAC-seq. When combined with emerging single-cell accessibility
247	profiling technologies ⁸ , WhichTF will provide systematic characterization of dominant TFs
248	across a spectrum of cell-types. For example, application of WhichTF to datasets from
249	large-scale projects, such as the Human Cell Atlas project ⁴⁷ , has the potential to discover

250 dominant TFs for each cell type and binding sites of those TFs. Moreover, our differential

- analysis framework will help in understanding how closely related cell types diverge by
- 252 providing hypotheses of differentially important TFs.
- 253 The resources made available with this study, including WhichTF and the GREAT
- 254 update, provide an excellent foundation for investigating the molecular mechanisms of TF-
- 255 mediated cis-regulation. Together, these results highlight the benefit of combining
- 256 experimental characterization of chromatin accessibility, high-quality TFBS reference
- 257 datasets, and ontological genome annotation, suggesting that systematic identification of
- dominant TFs across a large number of samples will be a powerful approach to understand
- 259 molecular mechanisms of gene regulation and their influence on cell type differentiation,
- 260 development, and disease.

262 Online Methods

263 GREAT v.4.0.4 update

- 264 We performed a major update of Genomic Regions Enrichment of Annotations Tool
- $(GREAT)^4$ and released it as version 4.0.4. GREAT currently supports the human (*Homo*)
- sapiens GRCh38 and GRCh37/hg19) and mouse (Mus musculus GRCm38/mm10 and
- 267 NCBIM37/mm9) genomes. We obtained Ensembl gene sets from the following Ensembl⁴⁸

268 versions:

- Human GRCh38: Ensembl version 90
- Human GRCh37: Ensembl for GRCh37 version 90
- Mouse GRCm38: Ensembl version 90
- Mouse NCBIM37: Ensembl version 67

273 By focusing on the set of genes with at least one Gene Ontology (GO) annotation^{10,11} as

described before⁴, we defined putative gene regulatory domains for 18,777 (GRCh38),

275 18,549 (GRCh37/hg19), 21,395 (GRCm38/mm10), and 19,996 (NCBIM37/mm9) genes'

276 canonical transcription start sites.

277 We also updated the ontology reference data. GREAT currently supports the most 278 recent versions of the following ontologies at the time of analysis: Ensembl genes, Gene 279 Ontology (GO)^{10,11}, human phenotype ontology⁴⁹, and mouse genome informatics (MGI) phenotype ontology¹² (Supplementary Table S3). The new Ensembl genes ontology is a 280 281 "flat" ontology that makes every gene into a term, facilitating the testing of cis-regulatory 282 elements congregation in the regulatory domains of individual genes. For MGI phenotype 283 ontology, we mapped MGI gene identifiers to Ensembl human gene IDs using one-to-one 284 orthology mappings from Ensembl Biomart⁴⁸ version 90. In total, we compiled 2,861,656,

285	2,846,384, 2,734,172, a	and 2.675.691	gene-term relationshir	os for	GRCh38.	GRCh37.
						,

286 GRCm38, and NCBIM37 genome assemblies, respectively (Supplementary Table S3).

287 Computational TFBS prediction with PRISM

- 288 To take advantage of growing sequence data from both multiple species and
- 289 functional genomics datasets, we updated our computationally predicted PRISM conserved
- 290 transcription factor binding sites (TFBSs) for the human (Homo sapiens GRCh38 and
- 291 GRCh37) and mouse (Mus musculus GRCm38 and NCBIM37) genomes. Briefly, PRISM
- 292 predicts TFBSs based on evolutionary conservation of TF motif matches⁹. The GRCh37 and
- 293 NCBIM37 tracks are derived using liftOver⁵⁰ from that of GRCh38 and GRCm38,
- respectively.
- We used the following multiple alignment from the UCSC genome browser⁵⁰:
- Human GRCh38: Hg38 100-way conservation alignment (lastz)
- Mouse GRCm38: Mm10 60-way conservation alignment (lastz)
- 298 We removed Killer whale (Orcinus orca, orcOrc1) from the human alignment because of
- 299 chromosome name mismatch. We further subset the alignments to Eutherian species⁹,
- 300 resulting in 57 and 40 species for human and mouse, respectively. Using our manually
- 301 curated TF monomer motif library⁵¹, we applied PRISM⁹ with the default parameters and
- 302 focused on the top 10,000 predicted TFBSs for each TF in our analyses. We used GNU
- 303 parallel in our analysis⁵².

304 Baseline TF enrichment method without functional annotation

We computed the binomial p-value of each TFBS set, using the total number of
 TFBS predictions, the number intersecting the query and the fraction of the genome covered

307 by the open chromatin region. We ranked the TFs by their binomial fold (Supplementary
308 Table S1).

309 WhichTF analysis protocol

310 WhichTF combines user specified accessibility measures, such as ATAC-seq or

311 DNase-seq peaks with precomputed reference datasets to produce a ranked list of context

312 specific, dominant TFs. The reference datasets consist of GREAT regulatory domain models,

313 MGI mouse phenotype ontology-based gene annotations, and PRISM TFBS predictions.

314 Which TF first identifies the top 100 ontology terms ($\pi_1, ..., \pi_{100}$) based on the

315 GREAT enrichment test on the input query set with the default "basal plus extension"

316 association rule and a filter that terms must be associated with no fewer than two genes and

317 no more than 500 genes associated to them. For each TF in the PRISM TFBS prediction

318 library of *N* TFs, WhichTF takes an intersection of the TFBS prediction track and the user

319 submitted open regions using overlapSelect⁵⁰.

320 Each TF in the PRISM library has a different number of TFBSs and regulatory

321 domains of different total sizes associated with each term. To capture the relative

322 importance of different TFs within different contexts, WhichTF computes a few measures of

323 statistical significance for each transcription factor and term and summarizes these measures

- 324 in TF by term summary statistic matrices. Specifically, we apply hypergeometric and
- 325 binomial tests defined below:

326 **TF hypergeometric test**

- 327 Let's define the GREAT gene regulatory domain for term π_i as RegDom_i, PRISM
- 328 TFBS prediction for TF_i as TFBS_i, and user's input query as QUERY. We define n_i , k_{ii} , N_i ,
- 329 and K_{ij} as follows:
- 330 $n_i = \#\{\text{TFBS}_i \cap \text{QUERY}\}$
- 331 $k_{ij} = #\{(\text{TFBS}_i \cap \text{QUERY}) \cap \text{RegDom}_j\}$
- 332 $N = \#\{(\bigcup_k \text{TFBS}_k) \cap \text{QUERY}\}$
- 333 $K_j = \#\{((\bigcup_k \mathrm{TFBS}_k) \cap \mathrm{QUERY}) \cap \mathrm{RegDom}_j\}$
- 334 where, \cap denotes genomic intersection operation and #{ *G* } denotes a function to count the
- number of elements in genomic regions, G. With these parameters, we compute the
- hypergeometric p-value for each pair of TF_i and term π_i :

$$\sum_{k=k_{ij}}^{\min(n_i,K_j)} \frac{\binom{K_j}{k}\binom{N-K_j}{n_i-k}}{\binom{N}{n_i}}$$

2	2	7
3	3	1

338 **TF binomial test**

339 Using the intersection track, $TFBS_i \cap QUERY$, we compute the GREAT binomial p-

340 value for each pair of TF_i and term π_i :

$$\sum_{k=k_{ij}}^{n_i} \binom{n_i}{k} p_{\pi_j}^k (1-p_{\pi_j})^{n-k}$$

341

342 where, p_{π} denotes the probability of drawing a base annotated with term π from non-gap

343 genomic sequences under the uniform distribution⁴.

344 Adaptive TF significance threshold

345 To eliminate false positives, WhichTF focuses on terms where the most significant 346 TF characterized by both hypergeometric and binomial p-value match. Using the enrichment 347 statistics, WhichTF selects dominant TFs for each selected ontology term. We compute the 348 adaptive threshold for each of the hypergeometric and binomial test by finding a leap in the 349 p-values of the top 10 TFs for each term using the following procedure. Let's denote the top 350 10 hypergeometric p-values for a fixed functional term π as $p_1 \leq p_2 \leq \cdots \leq p_{10}$. We define the difference of adjacent negative log of p-values as $d_k = -\log \frac{p_k}{p_{k+1}}$. We define m, 351 the index with the largest leap in p-value as $m = \operatorname{argmax}_k d_k$. Our adaptive threshold is p_m 352 and we only keep TFs with hypergeometric p-values that satisfies $p \leq p_m$. We define the 353 354 adaptive threshold for binomial p-values in the same way. We say TF_i is significant for term 355 π_i when it passes the adaptive thresholds for both TF hypergeometric and TF binomial tests.

356 WhichTF scores

357 For each TF, Which TF computes the score by the following equation. Let $(\pi_1, ..., \pi_K)$ be the

358 set of terms selected from step 1 in the order of relevance with π_1 as the top hit. Let

359 Rank(TF_i, π_i) be the rank of the TF_i for term π_i . Let Significant(TF_i, π_i) denote a Boolean

360 variable that indicates whether TF_i passes the filters described above for term π_i (i.e.

361 Significant is 1 if the TF passes the significance filter and zero otherwise). With this

362 notation, we define the WhichTF score of TF_i as:

363 Which TF score
$$(TF_i) = \sum_j \frac{\text{Significant}(TF_i, \pi_j)}{\sqrt{j \cdot \text{Rank}(TF_i, \pi_j)}}$$
.

364 WhichTF conditional p-values

365 Which TF computes the statistical significance of a Which TF score based on a null model 366 that any ordering of TFs within each term is equally likely. Thus, the probability of a given 367 score is determined by the relative number of configurations with the score. To enumerate 368 the number of configurations with a given score in polynomial time, we devised a dynamic programing approach⁵³ which acts recursively on the number of functional terms, K. This 369 370 procedure first discretizes each contribution to the summand in the definition of the 371 Which TF score defined above. Let $\{s_{j1}, s_{j2}, ..., s_{jM_j}\}$ be the set of all the possible cumulative scores up to term π_i , that is the scores gotten by computing the above sum only up to 372 373 term π_i . Here, M_i is the number of distinct discretized scores up to term π_i . Let n_{ii} represent the number of different ways of getting each such score, s_{ji} , and let $S_j = \{(s_{j1}, n_{j1}), (s_{j2}, n_{j1}),$ 374 n_{j2} , ..., (s_{jM_i}, n_{jM_i}) be the set of all tuples of scores and number of configurations. Finally, 375 let $\{t_{j1}, t_{j2}, \dots, t_{jM_i}\}$ denote the individual summands at term π_j . 376 The p-value of each score is computed directly from S_K , the full set of cumulative 377 378 scores and number of configurations, by dividing the number of configurations with scores 379 greater than or equal to a given score by the total number of configurations. This list of tuples, S_i , can be computed recursively with the base case of $S_0 = \{(0, 1)\}$. The set of scores 380 at level j+l is given by all combinations, $s_{ji} + t_{j+1k}$, with the number of configurations 381 382 given by aggregating over all combinations of s and t that yield the same cumulative score. 383 Given that the WhichTF scores of multiple TFs are not independent, we apply the 384 procedure defined above from the top scoring TF to the TF with the lowest score and 385 compute conditional statistical significance. This means that for the computation of

- 386 statistical significance of the *i*-th ranking TF, we remove TFs whose rank is smaller than *i*
- 387 and apply the recursive procedure defined above.
- 388 Application of WhichTF in diverse functional contexts
- 389 Multiple cell types from the ENCODE/Roadmap project
- 390 From the ENCODE/Roadmap data portal, we obtained "hotspot" files derived from DNase-
- 391 seq experiments^{54,55}. All coordinates are provided in GRCh37. We present analysis spanning
- 392 95 samples from 12 cell types and tissues (Supplementary Table S4).
- 393 We systematically applied WhichTF to each sample and obtained the ranked list of
- 394 TFs as well as a vector of WhichTF scores across all TFs in the library (Figure 2a, Table 2).
- 395 We applied t-SNE, a non-linear dimension reduction method¹⁸, implemented in Python
- 396 Scikit Learn library⁵⁶ with perplexity 10 (**Figure 2b**).
- 397 Using mouse ENCODE DNase-seq datasets provided in GRCm38 from the four cell
- 398 types used for the human analysis (Figure 2a, Supplementary Table S5), we applied
- 399 WhichTF using mouse GRCm38 reference dataset (Supplementary Table S2).
- 400 Cell type-specific expression analysis
- 401 We presented cell type-specific RNA-seq data from the GEO database (GSE118165)²³. We
- 402 subseted this dataset to the unstimulated samples and plotted the expression of *SPIB* and
- 403 *RUNX3* for lymphoid cells in T and B cell lineages (Figure 3a).
- 404 WhichTF for differential analysis
- 405 To find TFs dominant in an input set A compared to another input set B, we defined 406 set A and set B regions as foreground and background, respectively. We used bedtools⁵⁷

- 407 "subtract" to keep a subset of A that does not overlap with B. We applied WhichTF single
- 408 run mode (above) on the identified differentially accessible regions (Figure 3b).

409 Mesoderm lineage dataset

- 410 Using ATAC-seq datasets (SRP073808 from NCBI GEO database) of mesoderm
- 411 development²⁴ (Supplementary Table S6), we applied WhichTF differential analysis
- 412 following the diagram of sequential differentiation (Figure 4).
- 413 Systemic lupus erythematosus dataset
- 414 Eight sets (4 SLE and 4 healthy controls [HC]) were taken from the NCBI sequence read
- 415 archive (SRA, **Supplementary Table S7**). Paired end reads were mapped using bowtie2
- 416 with the outer distance flag (-X) set to 1000 and otherwise default settings⁵⁸. Samtools was
- 417 used to generate a sorted bam file and MACS2 was used to call peaks with shift set to 37,
- 418 extension size set to 72 and broad and keep-dup flags on^{59,60}. Given that some of the
- 419 samples in this dataset are from a biobank, we conservatively defined differentially
- 420 accessible regions shown below and applied WhichTF differential analysis (Table 1):
- 421 SLE HC := SRR3158183 $\bigcup_{x \in SRR3158176-9} x$
- 422 HC SLE := $\bigcap_{x \in SRR3158176-9} x \bigcup_{x \in SRR3158180-3} x$

423 Tissue-specific gene expression of the identified TF

- 424 Using the data obtained from the GTEx Portal⁶¹ on 05/24/2019 (phs000424.v7.p2), we
- 425 investigated whether the identified TFs in have a tissue-specific expression
- 426 (Supplementary Figure S1).

427 Data availability

- 428 All datasets analyzed in this study are publicly available through the ENCODE/Roadmap
- 429 portal [https://www.encodeproject.org/], NCBI GEO database
- 430 [https://www.ncbi.nlm.nih.gov/geo/], NCBI sequence read archive [NCBI sequence read
- 431 archive], or the GTEx Portal [https://gtexportal.org] with identifiers included in
- 432 Supplementary Tables S4-S7 and in Online Methods.

433 Code availability

- 434 WhichTF program and analysis scripts are available at our Bitbucket repository:
- 435 <u>https://bitbucket.org/bejerano/whichtf</u>
- 436 GREAT version 4.0.4: <u>https://great.stanford.edu</u>

437 **References**

- 438 1. Lambert, S. A. *et al.* The Human Transcription Factors. *Cell* **172**, 650–665 (2018).
- 439 2. Lee, T. I. & Young, R. A. Transcriptional Regulation and Its Misregulation in Disease.
- 440 *Cell* **152**, 1237–1251 (2013).
- 441 3. Johnson, D. S., Mortazavi, A., Myers, R. M. & Wold, B. Genome-wide mapping of in
- 442 vivo protein-DNA interactions. *Science* **316**, 1497–1502 (2007).
- 443 4. McLean, C. Y. *et al.* GREAT improves functional interpretation of cis-regulatory
- 444 regions. *Nat. Biotechnol.* **28**, 495–501 (2010).
- 445 5. Rosenfeld, M. G. Sensors and signals: a coactivator/corepressor/epigenetic code for
- 446 integrating signal-dependent programs of transcriptional response. *Genes Dev.* **20**,
- 447 1405–1428 (2006).

- 448 6. Thurman, R. E. *et al.* The accessible chromatin landscape of the human genome.
- 449 *Nature* **489**, 75–82 (2012).
- 450 7. Buenrostro, J. D., Giresi, P. G., Zaba, L. C., Chang, H. Y. & Greenleaf, W. J. Transposition
- 451 of native chromatin for fast and sensitive epigenomic profiling of open chromatin,
- 452 DNA-binding proteins and nucleosome position. *Nat. Methods* **10**, 1213–1218
- 453 (2013).
- 454 8. Buenrostro, J. D. *et al.* Single-cell chromatin accessibility reveals principles of
- 455 regulatory variation. *Nature* **523**, 486–490 (2015).
- 456 9. Wenger, A. M. *et al.* PRISM offers a comprehensive genomic approach to
- 457 transcription factor function prediction. *Genome Res.* **23**, 889–904 (2013).
- 458 10. Ashburner, M. *et al.* Gene ontology: tool for the unification of biology. The Gene
- 459 Ontology Consortium. *Nat. Genet.* **25**, 25–29 (2000).
- 460 11. The Gene Ontology Consortium. Expansion of the Gene Ontology
- 461 knowledgebase and resources. *Nucleic Acids Res.* **45**, D331–D338 (2017).
- 462 12. Smith, C. L. & Eppig, J. T. Expanding the mammalian phenotype ontology to
- 463 support automated exchange of high throughput mouse phenotyping data generated
- 464 by large-scale mouse knockout screens. J. Biomed. Semant. 6, 11 (2015).
- 465 13. Gerondakis, S. & Siebenlist, U. Roles of the NF-κB Pathway in Lymphocyte
- 466 Development and Function. *Cold Spring Harb. Perspect. Biol.* **2**, a000182 (2010).
- 467 14. Pikkarainen, S., Tokola, H., Kerkelä, R. & Ruskoaho, H. GATA transcription
- 468 factors in the developing and adult heart. *Cardiovasc. Res.* **63**, 196–207 (2004).

469 15. Takahashi, K. & Yamanaka, S. Induction of Pluripotent Stem Cells from M	louse
---	-------

- 470 Embryonic and Adult Fibroblast Cultures by Defined Factors. *Cell* **126**, 663–676
- 471 (2006).
- 472 16. Thiel, G. Transcription Factors in the Nervous System: Development, Brain
- 473 *Function, and Diseases.* (John Wiley & Sons, 2006).
- 474 17. Hodge, R. D. & Hevner, R. F. Expression and actions of transcription factors in
- 475 adult hippocampal neurogenesis. *Dev. Neurobiol.* **71**, 680–689 (2011).
- 476 18. Maaten, L. V. D. & Hinton, G. Visualizing Data using t-SNE. J. Mach. Learn. Res. 9,
- 477 2579–2605 (2008).
- 478 19. DeKoter, R. P. *et al.* Regulation of Follicular B Cell Differentiation by the Related
- 479 E26 Transformation-Specific Transcription Factors PU.1, Spi-B, and Spi-C. J.
- 480 *Immunol.* 1001413 (2010). doi:10.4049/jimmunol.1001413
- 481 20. Sokalski, K. M. *et al.* Deletion of genes encoding PU.1 and Spi-B in B cells impairs
- 482 differentiation and induces pre-B cell acute lymphoblastic leukemia. *Blood* blood-
- 483 2011-02-335539 (2011). doi:10.1182/blood-2011-02-335539
- 484 21. Willis, S. N. *et al.* Environmental sensing by mature B cells is controlled by the
- 485 transcription factors PU.1 and SpiB. *Nat. Commun.* **8**, 1426 (2017).
- 486 22. Woolf, E. *et al.* Runx3 and Runx1 are required for CD8 T cell development
- 487 during thymopoiesis. *Proc. Natl. Acad. Sci. U. S. A.* **100**, 7731–7736 (2003).
- 488 23. Calderon, D. *et al.* Landscape of stimulation-responsive chromatin across
- 489 diverse human immune cells. *bioRxiv* 409722 (2018). doi:10.1101/409722
- 490 24. Loh, K. M. *et al.* Mapping the Pairwise Choices Leading from Pluripotency to
- 491 Human Bone, Heart, and Other Mesoderm Cell Types. *Cell* **166**, 451–467 (2016).

- 492 25. Papaioannou, V. E. The T-box gene family: emerging roles in development, stem
 493 cells and cancer. *Development* 141, 3819–3833 (2014).
- 494 26. Weidgang, C. E. *et al.* TBX3 Directs Cell-Fate Decision toward Mesendoderm.
- 495 *Stem Cell Rep.* **1**, 248–265 (2013).
- 496 27. Denans, N., Iimura, T. & Pourquié, O. Hox genes control vertebrate body
- 497 elongation by collinear Wnt repression. *eLife* (2015). doi:10.7554/eLife.04379
- 498 28. Machon, O., Masek, J., Machonova, O., Krauss, S. & Kozmik, Z. Meis2 is essential
- 499 for cranial and cardiac neural crest development. *BMC Dev. Biol.* **15**, 40 (2015).
- 500 29. Inoue, T., Ota, M., Mikoshiba, K. & Aruga, J. Zic2 and Zic3 synergistically control
- 501 neurulation and segmentation of paraxial mesoderm in mouse embryo. *Dev. Biol.*
- **306**, 669–684 (2007).
- 503 30. Rojas, A. *et al.* Gata4 expression in lateral mesoderm is downstream of BMP4
- and is activated directly by Forkhead and GATA transcription factors through a
- 505 distal enhancer element. *Development* **132**, 3405–3417 (2005).
- 506 31. Park, B.-Y. & Saint-Jeannet, J.-P. Expression analysis of Runx3 and other Runx
- family members during Xenopus development. *Gene Expr. Patterns GEP* 10, 159–166
 (2010).
- 509 32. Kalev-Zylinska, M. L. *et al.* Runx3 is required for hematopoietic development in
 510 zebrafish. *Dev. Dyn.* 228, 323–336 (2003).
- 511 33. Tsiairis, C. D. & McMahon, A. P. A Hh-dependent Pathway in Lateral Plate
- 512 Mesoderm Enables The Generation Of Left-Right Asymmetry. *Curr. Biol. CB* **19**,
- 513 1912–1917 (2009).

514	34.	Jahangiri, L. et al. The AP-1 transcription factor component Fosl2 potentiates
515	the	rate of myocardial differentiation from the zebrafish second heart field. Dev.
516	Can	nb. Engl. 143 , 113–122 (2016).
517	35.	Dyer, L. A. & Kirby, M. L. Sonic hedgehog maintains proliferation in secondary
518	hea	rt field progenitors and is required for normal arterial pole formation. Dev. Biol.
519	330) , 305–317 (2009).
520	36.	Tsokos, G. C. Systemic Lupus Erythematosus. N. Engl. J. Med. 365, 2110–2121
521	(20	11).
522	37.	Scharer, C. D. et al. ATAC-seq on biobanked specimens defines a unique
523	chr	omatin accessibility structure in naïve SLE B cells. <i>Sci. Rep.</i> 6 , 27030 (2016).
524	38.	Fujikura, D. et al. Death receptor 6 contributes to autoimmunity in lupus-prone
525	mic	e. <i>Nat. Commun.</i> 8 , 13957 (2017).
526	39.	Qin, S. et al. The Effect of SHH-Gli Signaling Pathway on the Synovial Fibroblast
527	Pro	liferation in Rheumatoid Arthritis. <i>Inflammation</i> 39 , 503–512 (2016).
528	40.	Bakhtadze, E. et al. Common variants in the TCF7L2 gene help to differentiate
529	aute	oimmune from non-autoimmune diabetes in young (15–34 years) but not in
530	mid	ldle-aged (40–59 years) diabetic patients. <i>Diabetologia</i> 51 , 2224–2232 (2008).
531	41.	Stridh, P. et al. Fine-Mapping Resolves Eae23 into Two QTLs and Implicates
532	ZEE	31 as a Candidate Gene Regulating Experimental Neuroinflammation in Rat. <i>PLOS</i>
533	ONI	E 5 , e12716 (2010).
534	42.	van den Brink, S. C. et al. Single-cell sequencing reveals dissociation-induced
535	gen	e expression in tissue subpopulations. <i>Nat. Methods</i> 14 , 935–936 (2017).

- 536 43. Van Esch, H. & Bilous, R. W. GATA3 and kidney development: why case reports
- 537 are still important. *Nephrol. Dial. Transplant.* **16**, 2130–2132 (2001).
- 538 44. Kreidberg, J. A. WT1 and kidney progenitor cells. *Organogenesis* **6**, 61–70
- 539 (2010).
- 540 45. Park, C., Kim, T. M. & Malik, A. B. Transcriptional regulation of endothelial cell
- 541 and vascular development. *Circ. Res.* **112**, 1380–1400 (2013).
- 542 46. Eckert, R. L. et al. AP1 transcription factors in epidermal differentiation and skin
- 543 cancer. J. Skin Cancer **2013**, 537028 (2013).
- 544 47. Regev, A. *et al.* The Human Cell Atlas. *eLife* **6**, e27041 (2017).
- 545 48. Zerbino, D. R. *et al.* Ensembl 2018. *Nucleic Acids Res.* **46**, D754–D761 (2018).
- 546 49. Köhler, S. *et al.* Expansion of the Human Phenotype Ontology (HPO) knowledge
- 547 base and resources. *Nucleic Acids Res.* (2018). doi:10.1093/nar/gky1105
- 548 50. Kent, W. J. et al. The human genome browser at UCSC. Genome Res. 12, 996–
- 549 1006 (2002).
- 550 51. Guturu, H., Doxey, A. C., Wenger, A. M. & Bejerano, G. Structure-aided prediction
- of mammalian transcription factor complexes in conserved non-coding elements.
- 552 Philos. Trans. R. Soc. Lond. B. Biol. Sci. **368**, 20130029 (2013).
- 553 52. Tange, O. GNU Parallel The Command-Line Power Tool. *Login USENIX Mag.* 36,
 554 42–47 (2011).
- 555 53. Cormen, T. H., Leiserson, C. E., Rivest, R. L. & Stein, C. *Introduction to Algorithms*,
 556 *3rd Edition*. (The MIT Press, 2009).
- 557 54. ENCODE Project Consortium. An integrated encyclopedia of DNA elements in
- 558 the human genome. *Nature* **489**, 57–74 (2012).

- 559 55. Roadmap Epigenomics Consortium *et al.* Integrative analysis of 111 reference
- 560 human epigenomes. *Nature* **518**, 317–330 (2015).
- 561 56. Pedregosa, F. et al. Scikit-learn: machine learning in python. J Mach Learn Res
- **12**, 2825–2830 (2011).
- 563 57. Quinlan, A. R. & Hall, I. M. BEDTools: a flexible suite of utilities for comparing
- 564 genomic features. *Bioinformatics* **26**, 841–842 (2010).
- 565 58. Langmead, B. & Salzberg, S. L. Fast gapped-read alignment with Bowtie 2. Nat.
- 566 *Methods* **9**, 357–359 (2012).
- 567 59. Li, H. *et al.* The Sequence Alignment/Map format and SAMtools. *Bioinforma. Oxf.*
- 568 *Engl.* **25**, 2078–2079 (2009).
- 569 60. Zhang, Y. *et al.* Model-based Analysis of ChIP-Seq (MACS). *Genome Biol.* 9, R137
 570 (2008).
- 571 61. Li, X. *et al.* The impact of rare variation on gene expression across tissues.
- 572 *Nature* **550**, 239–243 (2017).
- 573

574 Acknowledgements

575	We thank Stanford's Kyle M. Loh, as well as Heidi Chen, Alex M. Tseng, and other
576	members of the Bejerano Lab for useful discussions, feedback and advice. Y.T. is supported
577	by a Funai Overseas Scholarship from the Funai Foundation for Information Technology
578	and the Stanford University School of Medicine. E.S.D. was supported in part by the
579	Simons Collaboration Grant on the Non-Perturbative Bootstrap. This work was supported
580	by National Institute of Mental Health (NIMH) of the National Institutes of Health (NIH)
581	under awards U01MH105949 to G.B. The content is solely the responsibility of the authors
582	and does not necessarily represent the official views of the National Institutes of Health.

583 Author information

584 Author contributions

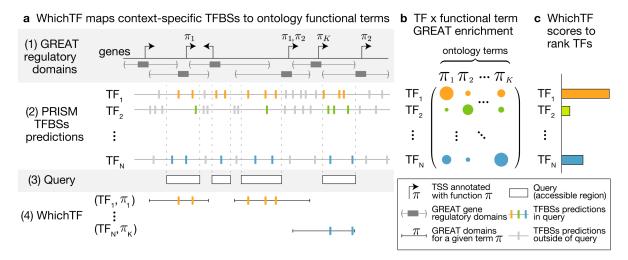
- 585 E.S.D., Y.T. and G.B. conceived and designed the study. Y.T. updated GREAT. E.S.D.
- 586 conceived of and developed the WhichTF algorithm with support from Y.T. and G.B. E.S.D.
- and Y.T. performed the computational analyses. Y.T. led the completion of the manuscript
- 588 with support from E.S.D. and oversight from G.B. Y.T. and E.S.D. contributed equally to
- the project and author list is ordered by age. The manuscript was written and approved by allauthors.

591 **Competing interests**

592 The authors declare no competing interests.

594 Figures and Tables

595 **Figure 1**



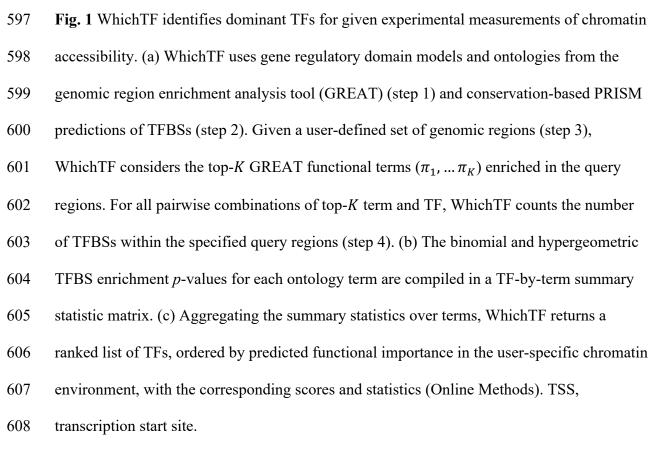
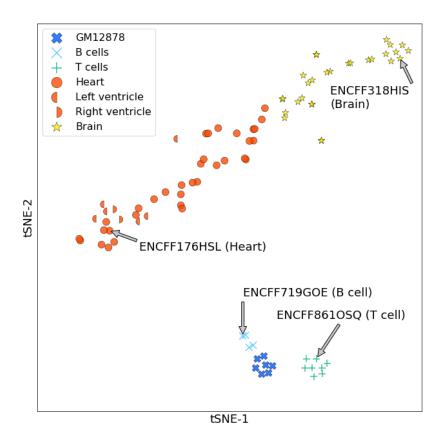


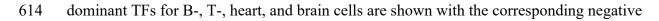
Figure 2

a

		B ce	ells (ENCFF71	9GOE)	T cells (ENCFF861OSQ)					
	TF	-log(CP)	Importance	PMID	TF	-log(CP)	Importance	PMID		
1	SPIB	76.0	Confirmed	21057087	NFKB1	96.8	Confirmed	20452952		
2	NFKB1	89.6	Confirmed	20452952	RUNX3	89.2	Confirmed	12796513		
3	RELB	62.1	Confirmed	20452952	RELB	63.5	Confirmed	20452952		
4	RELA	32.1	Confirmed	20452952	RELA	43.0	Confirmed	20452952		
5	SPIC	11.5	Confirmed	21057087	REL	15.5	Confirmed	20452952		
		Heart (ENCFF176HSL)				Brain (ENCFF318HIS)				
	TF	-log(CP)	(CP) Importance PMID 1		TF	-log(CP)	Importance	PMID		
1	GATA5	50.5	Confirmed	16987437	SOX2	69.4	Confirmed	28733588		
2	GATA4	19.5	Confirmed	16987437	OTX1	12.5	Confirmed	20354145		
3	GATA6	18.3	Confirmed	28178271	GLI1	16.8	Confirmed	14581620		
4	TEAD4	10.8	Confirmed	16987437	GLI2	7.9	Confirmed	14581620		
5	FOS	12.1	Confirmed	16934006	ISL1	6.8	Confirmed	24763339		
b										

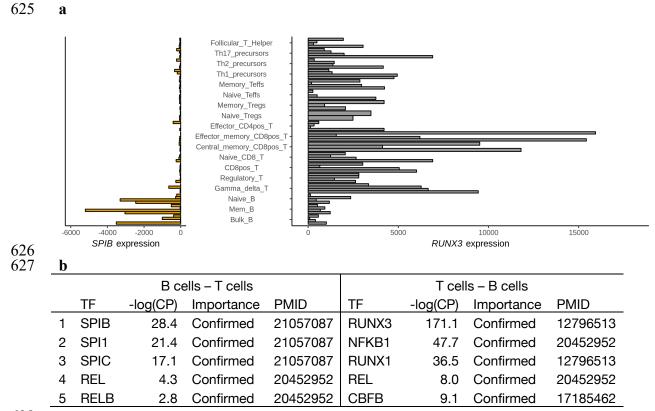


613 Fig. 2 WhichTF identifies dominant TFs in diverse cell types. (a) The top 5 identified



- 615 log conditional probability (-log CP), a statistical significance of the score of each TF,
- 616 conditioned on the TFs with higher score (Online Methods). The importance and PubMed
- 617 ID (PMID) columns indicate whether existing literature supports the role of the identified
- 618 TFs, typically through perturbation experiments. (b) For DNase-seq data tracks of 90
- 619 samples across 7 cell types, the WhichTF score vectors are projected to t-SNE plot.
- 620 Which TF quantitatively and robustly captures biological similarities and dissimilarities of
- 621 TF-mediated transcriptional programs. The samples highlighted in (a) are annotated with
- 622 arrows.
- 623

624 **Figure 3**

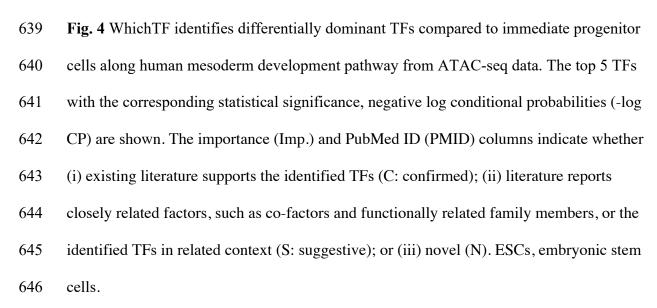


628

Fig. 3 Which TF identifies differentially dominant TFs in B and T-cell DNase-seq data. (a) 629 630 Gene expression of the top differential TF genes, SPI-B and RUNX3, are shown (horizontal 631 axis) across diverse lymphoid cell types (vertical axis) for up to four healthy donors. (b) The 632 top 5 differential TFs for B-cells relative to T-cells (B-cell – T-cell) and vice versa (T-cell – 633 B-cell) are shown with the corresponding statistical significance, negative log conditional 634 probabilities (-log CP). The importance and PubMed ID (PMID) columns indicate whether 635 existing literature supports the identified TFs.

Figure 4

					ESCs					
а	Anter	ior primitiv	e strea	k (APS)		b	Mic	d primitive :	streak ((MPS)
	TF	-log(CP)	lmp.	PMID			TF	-log(CP)	lmp.	PMID
1	RUNX3	11.7	S	29899136		1	TCF7L2	16.9	С	27419872
2	TCF7L2	10.0	С	27419872		2	TBX2	13.0	S	24319661
3	TBX3	7.4	С	24319661		3	TBR1	12.4	Ν	
4	CRX	7.5	S	17440610		4	TBX15	13.0	Ν	
5	LEF1	7.6	С	27419872		5	GATA4	6.2	S	27419872
с		Paraxial m	esoder	m		е		Lateral me	esoderi	m
	TF	-log(CP)	lmp.	PMID			TF	-log(CP)	lmp.	PMID
1	TCF7L2	7.7	С	27419872		1	RUNX3	8.6	С	20433948
2	LEF1	6.9	С	27419872		2	GLI1	10.9	С	19879143
3	HOXC13	4.8	С	25719209		3	GATA4	7.1	С	27419872
4	TCF71	4.6	С	27419872		4	GATA6	5.1	С	27419872
5	IKZF3	3.6	Ν			5	GATA2	4.7	С	27419872
d		Early so	omite			f		Cardiac m	esoder	m
	TF	-log(CP)	lmp.	PMID			TF	-log(CP)	lmp.	PMID
1	MEIS2	6.9	С	9337138		1	GLI1	10.9	С	23873040
2	ZIC2	6.6	С	17490632		2	FOS	6.7	С	11003651
3	INSM1	4.3	S	25053427		3	GATA4	7.8	С	24790981
4	TEAD4	4.1	С	29636889		4	FOSL2	6.5	С	26732840
5	FOXI1	3.9	Ν			5	GATA1	5.2	С	21464046



		HC - \$	SLE		SLE - HC					
	TF	-log(CP)	Imp.	PMID	TF	-log(CP)	Imp.	PMID		
1	BCL6	28.7	С	28045014	GLI1	19.7	S	26552406		
2	TFAP2B	19.3	Ν		ZFP143	11.0	Ν			
3	ZEB1	16.6	S	20856809	TCF7L2	6.0	S	18839133		
4	ZSCAN21	15.2	Ν		ONECUT2	5.2	S	28317889		
5	ZSCAN20	14.2	Ν		DMRTC2	3.8	Ν			

647 Table 1: WhichTF identifies disease relevant TFs

Table 1 WhichTF identifies differentially dominant TFs from ATAC-seq measurement of B-cells from systemic lupus erythematosus (SLE) patients and healthy controls (HC). The top 5 TFs based on the analysis of HC with respect to SLE (HC - SLE) and vice versa (SLE - HC) are shown with the corresponding statistical significance, negative log conditional probabilities (-log CP). The importance (Imp.) and PubMed ID (PMID) columns indicate whether literature supports the identified TFs: confirmed (C), suggestive (S), or novel (N).

	B-co	B-cell		B-cell Keratinocyte Adrenal Gland			Lymphatic Vessel Endothelium		Pulmonary Artery Endothelium		•	Dermis Vessel Endothelium				
	ENCFF7	19G0	DE	ENCFF04	47IIE		ENCFF212T	PU	ENCFF3			ENCFF596P			ENCFF908DMH	
1	SPIB	*		FOSB	*	+	ZFP410		NFKB1		+	FOSL1	H	- NFKB1		+
2	NFKB1	*	+	FOS	*	+	FOS	+	FOS		+	FOS	+	FOS		+
3	RELB	*	+	FOSL1	*	+	FOSL1	+	FOSL1		+	FOSL2	+	FOSL1		+
4	RELA	*	+	JUND	*	+	NFKB1	+	RELB		+	NFKB1	+	RELA		+
5	SPIC	*		BATF		+	JUNB	+	BATF		+	JUND	+	FOSL2		+
6	SPI1	*		FOSL2	*	+	FOSL2	+	JUND		+	RELB	+	BATF		+
7	ZFP410	ZFP410 BACH2 +		BACH1	+	FOSL2		+	BATF	+	FOSB		+			
8	RUNX3			JUNB	*	+	JUND	+	REL		+	RELA +		RELB		+
9	REL	*	+	BACH1		+	RELB	+	RELA		+	SOX10 *		JUND		+
10	STAT2	*		JUN	*	+	BACH2	+	SPIC	*		FOSB	+	SOX7	*	
11	WT1			NFE2L2			GATA3 *		FOSB		+	BACH2	+	ZFP410		
12	SNAI3			NFKB1		+	JUN +		ZFP410		BACH1	+	BACH1		+	
13	ZEB2	*		MZF1			WT1 *		SPIB	*		GATA4 *		GATA4	*	
14	ATF6			RELB		+	BATF	+	SOX30	*		JUNB *		SOX12	*	
15	E2F5	*		ZFP217			NFE2L2		SOX7	*		GATA5 *		FOXD1	*	
16	IKZF3	*		ETS2	*		GATA6 *		SOX18	*		SOX30 *		FOXJ3	*	
17	ELF5			PITX1			FOSB	+	JUNB		+	SPIB *		SOX30	*	
18	SP100			ATF6			GATA4 *		SOX12	*		SOX18 *		SOX18	*	
19		*		TFCP2L1			MITF *		BACH1		+	JUN *		FOXO6	*	
20	SNAI1		-	MYC	*		FOXP2 *		FOXO3	*		FOXO3 *		FOXO4	*	

656 Table 2: WhichTF identifies stress response factors in different samples

Table 2 WhichTF identifies TFs known for stress response. The top 20 TFs identified by
WhichTF are shown in ranked order for B-cells, keratinocytes, adrenal gland, lymphatic
vessel endothelium, pulmonary artery endothelium, and dermis vessel endothelium cells.
The TFs known to be involved in stress response signals are marked with plus (+), while
TFs in families known to be functionally important in each context are marked with asterisk
(*).

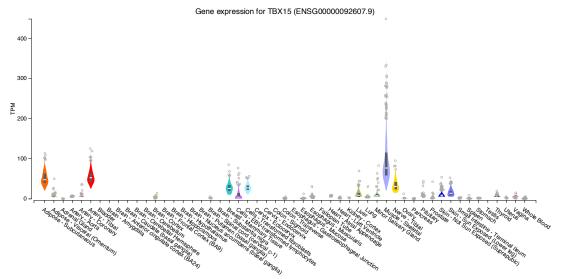
665 Supplementary materials

- 666 List of supplementary materials
- 667 Supplementary Figures
- Supplementary Figure S1: Gene expression profile of *TBX15*

669 Supplementary tables

- Supplementary Table S1: Baseline TF enrichment method
- Supplementary Table S2: Mouse ENCODE dataset analysis
- Supplementary Table S3: The update summary of GREAT ontologies
- Supplementary Table S4: Human ENCODE datasets
- Supplementary Table S5: Mouse ENCODE datasets
- Supplementary Table S6: Mesoderm development samples
- Supplementary Table S7: Sequence read archive accession IDs for systemic
- 677 lupus erythematosus dataset

679 Supplementary Figures



680

681 **Supplementary Figure S1.** Tissue-specific gene expression profile of *TBX15* in muscle.

The Human cell types are shown on x-axis and the expression (TPM) is shown on y-axis.

683 The median and 25th and 75th percentiles are shown as box plots and data points are shown

as outliers if they are above or below 1.5 times the interquartile range.

685

686 Supplementary Tables

687 **Supplementary Table S1.** Baseline TF enrichment method for the four human cell types

from ENCODE and Roadmap DNase-seq datasets are shown. The top 5 identified TFs are

shown for (a) B-cells, (b) T-cells, (c) heart cells, and (d) brain cells. ENCODE accession

690 IDs for each sample and the dominant TFs and their corresponding -log10(p-value) are

691 shown. There is less cell-type specificity in the identified results.

- 692
- 693 Supplementary Table S2. Mouse ENCODE dataset analysis. Which TF identifies dominant
- TFs for four mouse cell types from ENCODE and Roadmap DNase-seq dataset. The top 5
- 695 identified dominant TFs are shown for (a) B-cells, (b) T-cells, (c) heart cells, and (d)
- 696 hindbrain cells. The ENCODE accession IDs for each sample are shown on the top and the

697	dominant TFs and their corresponding statistical significance, conditional probabilities, are
698	shown.

699

700	Supplementary table S	3. The update	summary of GREAT	ontologies.	Ensembl gene	s is a
-----	-----------------------	----------------------	------------------	-------------	--------------	--------

flat ontology defined from the set of genes with at least one meaningful annotation in gene

- ontology (Online Methods). GO: gene ontology. HPO: human phenotype ontology. MGI:
- 703 mouse genome informatics.

704

705	Supplementary	7 Table S4.	Human	ENCODE	datasets.	The list	of ENCODE	accession	IDs
-----	---------------	-------------	-------	--------	-----------	----------	-----------	-----------	-----

visues used in our study and the corresponding cell type or tissues.

707

Supplementary Table S5. Mouse ENCODE datasets. The list of ENCODE accession IDs
used in our study and the corresponding cell type or tissues.

710

Supplementary Table S6. Mesoderm development samples. The list of sample IDs, sample
description, and the reference to the corresponding results.

713

```
714 Supplementary Table S7. Sequence read archive (SRA) accession IDs for systemic lupus
```

715 erythematosus dataset. SLE indicates disease and HC indicates healthy control.