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Abstract 12 

We present WhichTF, a novel computational method to identify dominant 13 

transcription factors (TFs) from chromatin accessibility measurements. To rank TFs, 14 

WhichTF integrates high-confidence genome-wide computational prediction of TF binding 15 

sites based on evolutionary sequence conservation, putative gene-regulatory models, and 16 

ontology-based gene annotations. Applying WhichTF, we find that the identified dominant 17 

TFs have been implicated as functionally important in well-studied cell types, such as NF-18 

κB family members in lymphocytes and GATA factors in cardiac tissue. To distinguish the 19 

transcriptional regulatory landscape in closely related samples, we devise a differential 20 

analysis framework and demonstrate its utility in lymphocyte, mesoderm developmental, 21 

and disease cells. We also find TFs known for stress response in multiple samples, 22 

suggesting routine experimental caveats that warrant careful consideration. WhichTF yields 23 

biological insight into known and novel molecular mechanisms of TF-mediated 24 

transcriptional regulation in diverse contexts, including human and mouse cell types, cell 25 

fate trajectories, and disease-associated tissues. 26 
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Introduction 27 

Transcription factors (TFs) are the master regulators of development. They define, 28 

refine, and can even divert cellular trajectories. TFs perform these important tasks by 29 

binding to specific DNA sequences in open chromatin, where they recruit additional co-30 

factors and together modulate expression of downstream genes. TFs regulate biological 31 

processes in healthy adult tissues, and mutations to both TF genes and their genomic binding 32 

sites have been linked with human disease1,2. 33 

The advent of next generation sequencing has paved the way for chromatin 34 

immunoprecipitation followed by sequencing (ChIP-seq)-based methods for the discovery 35 

of genome-wide loci where a given TF binds DNA in a given cell population3. Tools 36 

developed for the analysis of ChIP-seq data, such as GREAT4 (Gene Regulatory Enrichment 37 

of Annotations Tool), have discovered and leveraged a compelling phenomenon: when a TF 38 

is functionally important for the progression of a certain process, such that its perturbation 39 

leads to the disruption of this process, the binding sites for this TF are often highly enriched 40 

in the gene regulatory domains of the “downstream” target genes that drive this process4. 41 

TFs work in different combinations to enact a vast repertoire of cellular fates and 42 

responses5. Between 1,500-2,000 TFs are thought to be encoded in the human genome1. 43 

Performing ChIP-seq for more than a handful of TFs in any cellular context is an expensive 44 

laborious procedure, while the assaying of hundreds of TFs even in the same cell state is 45 

impractical except in a handful of settings, by the most lavishly funded consortia. 46 

To obtain a more comprehensive view of transcriptional regulation in action, 47 

experimental focus has turned from the assaying of individual TFs to the assaying of all 48 

open chromatin in a given cellular context. These DNase-seq, ATAC-seq, or single-cell 49 
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ATAC-seq accessibility profiles offer a proxy for all cis-regulatory elements active in a 50 

given cellular state6–8. 51 

While assaying all TFs is infeasible, many hundreds of TFs have been studied in one 52 

or more cellular contexts, or via complementary methods (such as protein binding 53 

microarrays or high-throughput SELEX), to obtain the DNA binding preference of the TF1. 54 

These hundreds of TF binding motifs can then be used to predict transcription factor binding 55 

sites (TFBSs) for all characterized TFs in various context-specific sets of accessible 56 

chromatin. 57 

Very often, biological processes of interest are conserved at the genome sequence 58 

level across closely related species, such as primates or mammals. As such, computational 59 

tools like PRISM9 (Predicting Regulatory Information for Single Motifs) can be used to 60 

obtain a rarefied subset of binding site predictions that are both observed to be positioned in 61 

open chromatin and conserved orthologously in additional species. Because these sites 62 

evolve under purifying selection, they are more likely to be individually important in the 63 

probed context9.  64 

Here, we innovate on the foundation of two tools our group previously developed: 65 

PRISM9 for the prediction of evolutionarily conserved binding sites for hundreds of human 66 

and mouse TFs, and GREAT4 for the detection of functions enriched in gene regulatory 67 

regions. We use insights from both to develop WhichTF, a tool that applies a novel 68 

statistical test to identify the most dominant TFs within a set of user-specified open 69 

chromatin regions. In this work, dominant TFs refer to TFs whose conserved binding sites 70 

are enriched within functionally-coherent regions of the input open chromatin regions. We 71 

show that our molecular definition of dominance successfully predicts biologically 72 
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important factors in the context of different cell types, differentiation pathways, and even 73 

disease associated cellular sets. 74 

Results 75 

WhichTF Approach Overview 76 

In order to predict dominant TFs, WhichTF relies on both functional genome 77 

annotations from GREAT and pre-curated, conservation-based predictions of TFBSs from 78 

PRISM. As such, we use GREAT in conjunction with the mouse genome informatics (MGI) 79 

phenotype ontology to annotate all genes in the human GRCh38 (hg38) and mouse 80 

GRCm38 (mm10) genomes with a canonical transcription start site (TSS), a putative gene 81 

regulatory domain, and any MGI phenotypes known to be affected by mutations to the 82 

associated gene. This procedure yields more than 700,000 gene-phenotype relationships for 83 

each genome (Fig. 1a, step 1)4,10–12. We also use PRISM to predict mammalian conserved 84 

TFBSs using 672 manually curated PWMs from 569 TFs across the entire genome9. The 85 

updated PRISM predictions resulted in 268 million and 161 million putative TFBSs for the 86 

human and mouse genomes, respectively (Fig. 1a, step 2). 87 

To confirm the utility of restricting ourselves to regulatory domains of highly 88 

enriched ontology terms, we evaluated the relative enrichment in the number of TFBSs 89 

within the input open chromatin region as a baseline method (Online Methods). We found 90 

the baseline results are often overloaded with TFs associated with general housekeeping 91 

processes (Supplementary Table S1). We therefore turned to focus on the top 100 enriched 92 

terms (Online Methods). 93 
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For a given query (Fig. 1a, step 3), WhichTF uses functional annotations to enhance 94 

its prediction of dominant transcription factors. This is accomplished by computing TF 95 

enrichments in only a restricted, particularly relevant, subset of the user’s input. Specifically, 96 

WhichTF uses GREAT to identify enriched ontology terms within the user’s input query. 97 

Each term is associated with a region of the genome corresponding to all of the regulatory 98 

domains of genes annotated with that term. WhichTF selects the top 100 ontology terms. 99 

For each term and every TF, WhichTF counts the number of binding sites falling in the 100 

intersection of the user-specified accessible regions and the region of the genome associated 101 

to the term of interest (Fig. 1a, step 4), and computes enrichment statistics, represented as a 102 

TF-by-term enrichment matrix (Fig. 1b). Aggregating over the functional terms, WhichTF 103 

computes a novel score and significance used for ranking TFs (Fig. 1c, Online Methods). 104 

The top-ranked TFs are hypothesized to be functionally relevant TFs in a cell exhibiting the 105 

indicated accessibility profile. 106 

WhichTF identifies functionally important TFs across diverse cell types 107 

To test the ability of WhichTF to identify functionally important TFs across different 108 

cell types, we applied WhichTF to DNase-seq profiles and found that the predicted 109 

dominant TFs are often confirmed to be functionally relevant by perturbation studies (Fig. 110 

2a). In B- and T-cells, for example, we identified TFs in the NF-κB pathway, which are key 111 

factors in lymphocyte development and adaptive immunity13. In embryonic heart tissue, we 112 

found GATA-4, -5, and, -6 – known regulators of cardiac development and growth that, 113 

when perturbed, have been implicated in human congenital heart disease14. In embryonic 114 

hindbrain tissue, we found SOX2, a critical regulator of neural progenitor pluripotency and 115 

differentiation in embryogenesis and later development, including adult hippocampal 116 
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neurogenesis15–17. WhichTF yielded similar biologically meaningful results from the 117 

corresponding cell types for mouse DNase-seq datasets (Supplementary Table S2), 118 

suggesting that WhichTF can highlight both the identity and evolutionarily conserved 119 

binding sites of key TFs from open chromatin in diverse contexts across species.  120 

WhichTF robustly quantifies biologically meaningful similarities and differences in 121 

TF-mediated transcriptional programs  122 

 Precise knowledge of cell state and identity is crucial for understanding normal 123 

development and disease. To assess whether WhichTF can quantitatively and robustly 124 

capture biologically meaningful similarities and differences in TF-mediated transcriptional 125 

programs, we applied a t-distributed stochastic neighbor embedding (t-SNE) analysis to 126 

WhichTF score vectors computed for 90 samples across 7 cell types18. We found brain, lung, 127 

and hematopoietic cells are mapped to distinct regions (Fig. 2b). Furthermore, we saw fine-128 

grained substructures among closely related samples. For example, we observed a clear 129 

separation of GM12878, B-cells, and T-cells. Reassuringly, different samples from the same 130 

biological tissue, such as left ventricle, right ventricle, and heart, showed no clear separation. 131 

WhichTF identifies differentially dominant TFs for closely related cell types 132 

B-cells and T-cells share a closely related developmental trajectory13. As Fig. 2a 133 

shows, WhichTF identified NF-κB family members NFKB1, RELA, and RELB as shared 134 

dominant TFs. WhichTF also identified lineage-specific factors, such as SPI-B for B-cells 135 

and RUNX3 for T-cells (Fig. 2a). SPI-B is an ETS family TF known to play a key role in B-136 

cell development and function, and environmental response19–21. RUNX3, in contrast, play 137 

T-cell-specific functional roles, such as in CD4 versus CD8 thymocyte commitment, helper 138 
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versus killer T-cell specification, and helper type selection22. These differential roles for 139 

SPI-B and RUNX3 are corroborated by their cell-type-specific expression in B-cells and T-140 

cells, respectively (Fig. 3a)23. 141 

Although we identified multiple TFs distinguishing B- and T-cells, the results are 142 

dominated by common factors. This is reasonable, as they share most of their developmental 143 

program13. To identify TFs with relative dominance from a given pair of samples, we 144 

developed a differential analysis framework focusing on uniquely accessible regions only in 145 

one sample (Online Methods). In B-cells, the differential analysis highlighted additional 146 

ETS family members, PU.1 and SPI-C. These TFs are essential for healthy B-cell 147 

differentiation and function (Fig. 3b). In T-cells, we saw an additional RUNX family 148 

member, RUNX1, as well as CBFβ (Fig. 3b) – both are functionally relevant in T-cells. 149 

Indeed, RUNX1, RUNX3 and CBFβ form a complex and are crucial for the healthy function 150 

of T-lymphocytes32. 151 

WhichTF identifies differentially dominant TFs along developmental trajectories  152 

 TFs regulate cell fate decisions in animal developmental programs1. To gain insights 153 

into the molecular mechanisms influencing cellular differentiation, we applied WhichTF to 154 

ATAC-seq data from timepoints along mesoderm development to identify differentially 155 

dominant TFs that distinguish cell fates at each step along the trajectory, from human 156 

embryonic stem cells (ESCs) to early somite vs. cardiac mesoderm (Fig. 4)24.  157 

The first step of mesoderm development is the differentiation from ESCs to anterior 158 

(APS) or mid (MPS) primitive streak (PS) cells. In both APS and MPS cells, we found 159 

WNT signaling TFs, such as TCF7L2 and LEF1, as well as T-box family TFs, such as TBX-160 

2 and -3 (Fig. 4a-b). WNT signaling is involved in PS differentiation and is crucial in 161 
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inducing PS cell types24. T-box family members also play key roles in PS development. 162 

TBX6 is a canonical PS marker, and the specific loss of Eomes (a.k.a. Tbr2), causes ectopic 163 

primitive streak formation in mice24,25. The specific T-box family member TBX3, ranked 164 

third in APS cells, has been implicated in early stage of differentiation towards mesoderm 165 

from ESCs in mouse and Xenopus and has been reported for its functional redundancy with 166 

Tbx2 during Xenopus gastulation26. RUNX3, our top hit for APS, shows conserved 167 

expression in mouse neuromesodermal progenitor (NMP) cells and human D3-NMP-like 168 

cells. Interestingly, we also found previously unreported T-box family TFs, TBX15 and 169 

TBR1, of which TBX15 is linked to decreased skeletal muscle mass in mouse12 and known 170 

for tissue-specific expression in muscle, a tissue developed from the mesoderm lineage 171 

(Supplementary Figure S1). 172 

In paraxial mesoderm, we found WNT signaling TFs, which promote paraxial and 173 

suppress lateral mesoderm (Fig. 4c)24. We also find HOXC13, necessary for proper 174 

development of the paraxial mesoderm into the presomatic mesoderm27. In early somites, 175 

we found MEIS2 and ZIC2, which are required in development of cranial and cardiac neural 176 

crest and somite cells, respectively (Fig. 4d)28,29. 177 

In lateral mesoderm, we found multiple GATA family members, of which GATA4 is 178 

a downstream effector of BMP signaling in lateral mesoderm (Fig. 4e)30. We also saw 179 

RUNX3, which is co-expressed with RUNX1 in lateral mesoderm31; both are necessary for 180 

hematopoiesis22,32. GLI1, a key TF in hedgehog (HH) signaling, is necessary for 181 

establishing left-right asymmetry in lateral mesoderm33. In cardiac mesoderm, we found 182 

FOS TFs, GATA TFs, and GLI1 (Fig. 4f). Interestingly, FOSL2 regulates the rate of 183 

myocardial differentiation34, and HH signaling via GLI1 is required for secondary heart 184 
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field development35. As mentioned above, GATA factors are canonical drivers of cardiac 185 

development and all the GATA family members identified for mesoderm development 186 

(GATA-1, -2, -4, and -6) are implicated in Human cardiovascular diseases14,2. 187 

WhichTF identifies potentially disease-relevant TFs 188 

Transcriptional mis-regulation has a broad impact on human diseases2. To assess 189 

whether WhichTF can shed light on the transcriptional regulatory molecular basis of human 190 

disorders, we examined systemic lupus erythematosus (SLE) as a case study. SLE is a 191 

heterogeneous and chronic autoimmune disorder most prevalent in young women and 192 

affecting 0.1% of the population. Its genetic and epi-genetic bases are poorly understood 193 

with known genetic associations accounting for only 10-20% of the observed heritability. 194 

While SLE is characterized by mis-regulated immune response in T- and B-cells, few TFs 195 

have been identified to play functionally relevant roles in SLE36. 196 

To better understand the regulatory landscape of SLE, we identified differentially 197 

dominant TFs in healthy B-cells compared to SLE-affected B-cells and vice versa by 198 

applying WhichTF to ATAC-seq datasets37. We found BCL6 as a differentially dominant 199 

TF in healthy vs. SLE B-cells (Table 1). BCL6 is an important marker of T-helper follicular 200 

cells, a T-cell subtype which has been found to be mis-regulated in SLE38. Other 201 

differentially dominant TFs and their corresponding genes are implicated in autoimmune 202 

disorders (Table 1). A sonic hedgehog (SHH)-Gli signaling pathway member GLI1 is 203 

involved in pathogenesis of rheumatoid arthritis through synovial fibroblast proliferation39. 204 

A common genetic variant in TCF7L2, which is known for type 2 diabetes risk allele, 205 

discriminates autoimmune from non-autoimmune type 1 diabetes in young patients40. In a 206 
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model system to study multiple sclerosis, ZEB1 is suggested as a regulator of experimental 207 

autoimmune encephalomyelitis41.  208 

WhichTF uncovers stress response signatures 209 

 Context-specific measurements of open chromatin typically require purification of 210 

the desired cell type through mechanical and enzymatic tissue dissociation, which can be 211 

quite taxing on the cells. Indeed, it has been reported that stress response factors are often 212 

highly expressed in dissociated tissues42. Corroborating these observations, WhichTF often 213 

identifies canonical stress-associated TFs as some of the most dominant TFs in multiple 214 

very different contexts. As an illustration, we present WhichTF results for additional 215 

DNase-seq datasets (Table 2). For three endothelial cell types and adrenal gland cells, we 216 

found many members of FOS/AP-1 and NF-κB TFs, which are both known for their roles in 217 

stress response. We also found ZFP410 (also known as ZNF410), a poorly characterized 218 

Zinc finger TF, among the top hits across multiple cell types, suggesting its potential role in 219 

stress response. Even in the samples dominated by stress-associated TFs, we still found 220 

well-known context-specific players among the top hits, such as GATA3 and WT-1 in 221 

kidney cells and SOX and FOX TFs in endothelial cells43–45. We also found that the 222 

boundary between stress response and cell-type specific functions can be ambiguous, or at 223 

least context dependent. For example, we found FOS/AP-1 and NF-κB dominant in 224 

keratinocytes and B-cells, respectively which, in addition to being stress-associated, are also 225 

known for their context-specific functions13,46. 226 
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Discussion 227 

We present WhichTF, a novel computational method to identify and rank known or 228 

novel dominant TFs in any given set of accessible chromatin regions or through pairwise 229 

differential analysis of related samples. The WhichTF score is built on high confidence 230 

PRISM9 predictions of conserved TFBSs as well as gene regulatory domain and ontological 231 

annotation models from GREAT4. Applying WhichTF to dozens of samples across diverse 232 

biological contexts, such as multiple cell types, developmental programs, and disease 233 

samples, we found that the functional relevance of the identified dominant TFs is often 234 

supported or suggested by published literature. 235 

WhichTF identifies not only cell-type specific TFs, but factors reflecting biological 236 

processes shared among multiple samples. One such example in our result, corroborated by 237 

previous expression profiling, suggests stress response due to cellular dissociation is a 238 

shared process42. In addition to previously identified factors, we report an under-239 

characterized Zinc finger protein, ZNF410, as a TF potentially involved in cellular stress 240 

response. The identification of stress associated TFs suggests WhichTF may serve as a 241 

useful quality control of chromatin accessibility data. 242 

As we have demonstrated above, WhichTF is broadly applicable. WhichTF takes as 243 

input any form of chromatin accessibility measurement for either human or mouse, the two 244 

most studied genomes. Our illustrative examples span both species and assay types, such as 245 

DNase-seq and ATAC-seq. When combined with emerging single-cell accessibility 246 

profiling technologies8, WhichTF will provide systematic characterization of dominant TFs 247 

across a spectrum of cell-types. For example, application of WhichTF to datasets from 248 

large-scale projects, such as the Human Cell Atlas project47, has the potential to discover 249 
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dominant TFs for each cell type and binding sites of those TFs. Moreover, our differential 250 

analysis framework will help in understanding how closely related cell types diverge by 251 

providing hypotheses of differentially important TFs. 252 

The resources made available with this study, including WhichTF and the GREAT 253 

update, provide an excellent foundation for investigating the molecular mechanisms of TF-254 

mediated cis-regulation. Together, these results highlight the benefit of combining 255 

experimental characterization of chromatin accessibility, high-quality TFBS reference 256 

datasets, and ontological genome annotation, suggesting that systematic identification of 257 

dominant TFs across a large number of samples will be a powerful approach to understand 258 

molecular mechanisms of gene regulation and their influence on cell type differentiation, 259 

development, and disease. 260 

  261 
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Online Methods 262 

GREAT v.4.0.4 update 263 

We performed a major update of Genomic Regions Enrichment of Annotations Tool 264 

(GREAT)4 and released it as version 4.0.4. GREAT currently supports the human (Homo 265 

sapiens GRCh38 and GRCh37/hg19) and mouse (Mus musculus GRCm38/mm10 and 266 

NCBIM37/mm9) genomes. We obtained Ensembl gene sets from the following Ensembl48 267 

versions: 268 

• Human	GRCh38:	Ensembl	version	90	269 

• Human	GRCh37:	Ensembl	for	GRCh37	version	90	270 

• Mouse	GRCm38:	Ensembl	version	90	271 

• Mouse	NCBIM37:	Ensembl	version	67	272 

By focusing on the set of genes with at least one Gene Ontology (GO) annotation10,11 as 273 

described before4, we defined putative gene regulatory domains for 18,777 (GRCh38), 274 

18,549 (GRCh37/hg19), 21,395 (GRCm38/mm10), and 19,996 (NCBIM37/mm9) genes’ 275 

canonical transcription start sites. 276 

We also updated the ontology reference data. GREAT currently supports the most 277 

recent versions of the following ontologies at the time of analysis: Ensembl genes, Gene 278 

Ontology (GO)10,11, human phenotype ontology49, and mouse genome informatics (MGI) 279 

phenotype ontology12 (Supplementary Table S3). The new Ensembl genes ontology is a 280 

“flat” ontology that makes every gene into a term, facilitating the testing of cis-regulatory 281 

elements congregation in the regulatory domains of individual genes. For MGI phenotype 282 

ontology, we mapped MGI gene identifiers to Ensembl human gene IDs using one-to-one 283 

orthology mappings from Ensembl Biomart48 version 90. In total, we compiled 2,861,656, 284 
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2,846,384, 2,734,172, and 2,675,691 gene-term relationships for GRCh38, GRCh37, 285 

GRCm38, and NCBIM37 genome assemblies, respectively (Supplementary Table S3).  286 

Computational TFBS prediction with PRISM  287 

To take advantage of growing sequence data from both multiple species and 288 

functional genomics datasets, we updated our computationally predicted PRISM conserved 289 

transcription factor binding sites (TFBSs) for the human (Homo sapiens GRCh38 and 290 

GRCh37) and mouse (Mus musculus GRCm38 and NCBIM37) genomes. Briefly, PRISM 291 

predicts TFBSs based on evolutionary conservation of TF motif matches9. The GRCh37 and 292 

NCBIM37 tracks are derived using liftOver50 from that of GRCh38 and GRCm38, 293 

respectively. 294 

We used the following multiple alignment from the UCSC genome browser50: 295 

• Human	GRCh38:	Hg38	100-way	conservation	alignment	(lastz)	296 

• Mouse	GRCm38:	Mm10	60-way	conservation	alignment	(lastz)	297 

We removed Killer whale (Orcinus orca, orcOrc1) from the human alignment because of 298 

chromosome name mismatch. We further subset the alignments to Eutherian species9, 299 

resulting in 57 and 40 species for human and mouse, respectively. Using our manually 300 

curated TF monomer motif library51, we applied PRISM9 with the default parameters and 301 

focused on the top 10,000 predicted TFBSs for each TF in our analyses. We used GNU 302 

parallel in our analysis52. 303 

Baseline TF enrichment method without functional annotation 304 

We computed the binomial p-value of each TFBS set, using the total number of 305 

TFBS predictions, the number intersecting the query and the fraction of the genome covered 306 
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by the open chromatin region. We ranked the TFs by their binomial fold (Supplementary 307 

Table S1).  308 

WhichTF analysis protocol 309 

WhichTF combines user specified accessibility measures, such as ATAC-seq or 310 

DNase-seq peaks with precomputed reference datasets to produce a ranked list of context 311 

specific, dominant TFs. The reference datasets consist of GREAT regulatory domain models, 312 

MGI mouse phenotype ontology-based gene annotations, and PRISM TFBS predictions. 313 

WhichTF first identifies the top 100 ontology terms (𝜋", … , 𝜋"%%) based on the 314 

GREAT enrichment test on the input query set with the default “basal plus extension” 315 

association rule and a filter that terms must be associated with no fewer than two genes and 316 

no more than 500 genes associated to them. For each TF in the PRISM TFBS prediction 317 

library of 𝑁 TFs, WhichTF takes an intersection of the TFBS prediction track and the user 318 

submitted open regions using overlapSelect50. 319 

Each TF in the PRISM library has a different number of TFBSs and regulatory 320 

domains of different total sizes associated with each term. To capture the relative 321 

importance of different TFs within different contexts, WhichTF computes a few measures of 322 

statistical significance for each transcription factor and term and summarizes these measures 323 

in TF by term summary statistic matrices. Specifically, we apply hypergeometric and 324 

binomial tests defined below: 325 
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TF hypergeometric test 326 

Let’s define the GREAT gene regulatory domain for term 𝜋' as RegDom', PRISM 327 

TFBS prediction for TF0 as TFBS0 , and user’s input query as QUERY. We define 𝑛0, 𝑘0', 𝑁0, 328 

and 𝐾0' as follows: 329 

● 𝑛0 = #{TFBS0 	∩ QUERY} 330 

● 𝑘0' = #@(TFBS0 	∩ QUERY) ∩ RegDom'C 331 

● 𝑁 = #@D⋃F TFBSFG 	∩ 	QUERYC 332 

● 𝐾' = #@(D⋃F TFBSFG 	∩ 	QUERY) 	∩ 	RegDom'C 333 

where, ∩ denotes genomic intersection operation and #{	𝐺	} denotes a function to count the 334 

number of elements in genomic regions, 𝐺. With these parameters, we compute the 335 

hypergeometric p-value for each pair of TF0 and term 𝜋':  336 

 337 

TF binomial test 338 

Using the intersection track, 𝑇𝐹𝐵𝑆0 	∩ 𝑄𝑈𝐸𝑅𝑌, we compute the GREAT binomial p-339 

value for each pair of TF0 and term 𝜋': 340 

 341 

where, 𝑝S denotes the probability of drawing a base annotated with term 𝜋 from non-gap 342 

genomic sequences under the uniform distribution4. 343 
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Adaptive TF significance threshold 344 

To eliminate false positives, WhichTF focuses on terms where the most significant 345 

TF characterized by both hypergeometric and binomial p-value match. Using the enrichment 346 

statistics, WhichTF selects dominant TFs for each selected ontology term. We compute the 347 

adaptive threshold for each of the hypergeometric and binomial test by finding a leap in the 348 

p-values of the top 10 TFs for each term using the following procedure. Let’s denote the top 349 

10 hypergeometric p-values for a fixed functional term 𝜋 as 𝑝" 		≤ 𝑝U ≤ ⋯ ≤ 𝑝"%. We 350 

define the difference of adjacent negative log of p-values as 𝑑F = 	− log 	
Z[
Z[\]

	. We define 𝑚, 351 

the index with the largest leap in p-value as 𝑚 = argmaxF	𝑑F. Our adaptive threshold is 𝑝b 352 

and we only keep TFs with hypergeometric p-values that satisfies 𝑝 ≤ 𝑝b. We define the 353 

adaptive threshold for binomial p-values in the same way. We say TF0 is significant for term 354 

𝜋' when it passes the adaptive thresholds for both TF hypergeometric and TF binomial tests. 355 

WhichTF scores 356 

For each TF, WhichTF computes the score by the following equation. Let (𝜋", … , 𝜋c) be the 357 

set of terms selected from step 1 in the order of relevance with 𝜋" as the top hit. Let 358 

Rank(TFi, 𝜋') be the rank of the TFi for term 𝜋'. Let SignificantDTFi, 𝜋'G denote a Boolean 359 

variable that indicates whether TFi  passes the filters described above for term 𝜋' (i.e. 360 

Significant is 1 if the TF passes the significance filter and zero otherwise). With this 361 

notation, we define the WhichTF score of TFi as: 362 

WhichTF	score	(TF0) = 	∑
SignificantDTFi,SnG

o'⋅Rank(TFi,Sn)	' . 363 
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WhichTF conditional p-values 364 

WhichTF computes the statistical significance of a WhichTF score based on a null model 365 

that any ordering of TFs within each term is equally likely. Thus, the probability of a given 366 

score is determined by the relative number of configurations with the score. To enumerate 367 

the number of configurations with a given score in polynomial time, we devised a dynamic 368 

programing approach53 which acts recursively on the number of functional terms, 𝐾. This 369 

procedure first discretizes each contribution to the summand in the definition of the 370 

WhichTF score defined above. Let {𝑠'", 𝑠'U, … , 𝑠'rn} be the set of all the possible cumulative 371 

scores up to term 𝜋', that is the scores gotten by computing the above sum only up to 372 

term	𝜋'. Here, 𝑀' is the number of distinct discretized scores up to term 𝜋'.. Let 𝑛'0 represent 373 

the number of different ways of getting each such score, 𝑠'0, and let 𝑆' = 	 uD𝑠'", 𝑛'"G, D𝑠'U,374 

𝑛'UG, … , (𝑠'rn, 𝑛'rn)v be the set of all tuples of scores and number of configurations. Finally, 375 

let {𝑡'", 𝑡'U, … , 𝑡'rn} denote the individual summands at term 	𝜋'.  376 

The p-value of each score is computed directly from 𝑆c, the full set of cumulative 377 

scores and number of configurations, by dividing the number of configurations with scores 378 

greater than or equal to a given score by the total number of configurations. This list of 379 

tuples, 𝑆',	can be computed recursively with the base case of 𝑆% = {(0, 1)}. The set of scores 380 

at level j+1 is given by all combinations, 𝑠'0 + 𝑡'{"F, with the number of configurations 381 

given by aggregating over all combinations of s and t that yield the same cumulative score.  382 

Given that the WhichTF scores of multiple TFs are not independent, we apply the 383 

procedure defined above from the top scoring TF to the TF with the lowest score and 384 

compute conditional statistical significance. This means that for the computation of 385 
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statistical significance of the 𝑖-th ranking TF, we remove TFs whose rank is smaller than 𝑖 386 

and apply the recursive procedure defined above. 387 

Application of WhichTF in diverse functional contexts 388 

Multiple cell types from the ENCODE/Roadmap project 389 

From the ENCODE/Roadmap data portal, we obtained “hotspot” files derived from DNase-390 

seq experiments54,55. All coordinates are provided in GRCh37. We present analysis spanning 391 

95 samples from 12 cell types and tissues (Supplementary Table S4). 392 

We systematically applied WhichTF to each sample and obtained the ranked list of 393 

TFs as well as a vector of WhichTF scores across all TFs in the library (Figure 2a, Table 2). 394 

We applied t-SNE, a non-linear dimension reduction method18, implemented in Python 395 

Scikit Learn library56 with perplexity 10 (Figure 2b). 396 

Using mouse ENCODE DNase-seq datasets provided in GRCm38 from the four cell 397 

types used for the human analysis (Figure 2a, Supplementary Table S5), we applied 398 

WhichTF using mouse GRCm38 reference dataset (Supplementary Table S2). 399 

Cell type-specific expression analysis 400 

We presented cell type-specific RNA-seq data from the GEO database (GSE118165)23. We 401 

subseted this dataset to the unstimulated samples and plotted the expression of SPIB and 402 

RUNX3 for lymphoid cells in T and B cell lineages (Figure 3a).  403 

WhichTF for differential analysis 404 

To find TFs dominant in an input set A compared to another input set B, we defined 405 

set A and set B regions as foreground and background, respectively. We used bedtools57 406 
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“subtract” to keep a subset of A that does not overlap with B. We applied WhichTF single 407 

run mode (above) on the identified differentially accessible regions (Figure 3b). 408 

Mesoderm lineage dataset 409 

Using ATAC-seq datasets (SRP073808 from NCBI GEO database) of mesoderm 410 

development24 (Supplementary Table S6), we applied WhichTF differential analysis 411 

following the diagram of sequential differentiation (Figure 4).  412 

Systemic lupus erythematosus dataset 413 

Eight sets (4 SLE and 4 healthy controls [HC]) were taken from the NCBI sequence read 414 

archive (SRA, Supplementary Table S7). Paired end reads were mapped using bowtie2 415 

with the outer distance flag (-X) set to 1000 and otherwise default settings58. Samtools was 416 

used to generate a sorted bam file and MACS2 was used to call peaks with shift set to 37, 417 

extension size set to 72 and broad and keep-dup flags on59,60. Given that some of the 418 

samples in this dataset are from a biobank, we conservatively defined differentially 419 

accessible regions shown below and applied WhichTF differential analysis (Table 1): 420 

• SLE	–	HC	:=	SRR3158183 −	⋃ 𝑥�	∈	SRR3158176-9 	421 

• HC	–	SLE	:=	⋂ 𝑥�	∈	SRR3158176-9 −	⋃ 𝑥�	∈	SRR3158180-3 	422 

Tissue-specific gene expression of the identified TF 423 

Using the data obtained from the GTEx Portal61 on 05/24/2019 (phs000424.v7.p2), we 424 

investigated whether the identified TFs in have a tissue-specific expression 425 

(Supplementary Figure S1). 426 
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Data availability 427 

All datasets analyzed in this study are publicly available through the ENCODE/Roadmap 428 

portal [https://www.encodeproject.org/], NCBI GEO database 429 

[https://www.ncbi.nlm.nih.gov/geo/], NCBI sequence read archive [NCBI sequence read 430 

archive], or the GTEx Portal [https://gtexportal.org] with identifiers included in 431 

Supplementary Tables S4-S7 and in Online Methods. 432 

Code availability 433 

WhichTF program and analysis scripts are available at our Bitbucket repository: 434 

https://bitbucket.org/bejerano/whichtf 435 

GREAT version 4.0.4: https://great.stanford.edu 436 
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Figures and Tables 594 

Figure 1 595 

 596 

Fig. 1 WhichTF identifies dominant TFs for given experimental measurements of chromatin 597 

accessibility. (a) WhichTF uses gene regulatory domain models and ontologies from the 598 

genomic region enrichment analysis tool (GREAT) (step 1) and conservation-based PRISM 599 

predictions of TFBSs (step 2). Given a user-defined set of genomic regions (step 3), 600 

WhichTF considers the top-𝐾 GREAT functional terms (𝜋", …𝜋c) enriched in the query 601 

regions. For all pairwise combinations of top-𝐾 term and TF, WhichTF counts the number 602 

of TFBSs within the specified query regions (step 4). (b) The binomial and hypergeometric 603 

TFBS enrichment p-values for each ontology term are compiled in a TF-by-term summary 604 

statistic matrix. (c) Aggregating the summary statistics over terms, WhichTF returns a 605 

ranked list of TFs, ordered by predicted functional importance in the user-specific chromatin 606 

environment, with the corresponding scores and statistics (Online Methods). TSS, 607 

transcription start site.  608 
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Figure 2 609 

a 610 
   B cells (ENCFF719GOE)  T cells (ENCFF861OSQ) 
  TF -log(CP) Importance PMID TF -log(CP) Importance PMID 
1 SPIB 76.0 Confirmed 21057087 NFKB1 96.8 Confirmed 20452952 
2 NFKB1 89.6 Confirmed 20452952 RUNX3 89.2 Confirmed 12796513 
3 RELB 62.1 Confirmed 20452952 RELB 63.5 Confirmed 20452952 
4 RELA 32.1 Confirmed 20452952 RELA 43.0 Confirmed 20452952 
5 SPIC 11.5 Confirmed 21057087 REL  15.5 Confirmed 20452952 
   Heart (ENCFF176HSL)  Brain (ENCFF318HIS) 
  TF -log(CP) Importance PMID TF -log(CP) Importance PMID 
1 GATA5 50.5 Confirmed 16987437 SOX2 69.4 Confirmed 28733588 
2 GATA4 19.5 Confirmed 16987437 OTX1 12.5 Confirmed 20354145 
3 GATA6 18.3 Confirmed 28178271 GLI1 16.8 Confirmed 14581620 
4 TEAD4 10.8 Confirmed 16987437 GLI2 7.9 Confirmed 14581620 
5 FOS 12.1 Confirmed 16934006 ISL1 6.8 Confirmed 24763339 
b 611 

 612 

Fig. 2 WhichTF identifies dominant TFs in diverse cell types. (a) The top 5 identified 613 

dominant TFs for B-, T-, heart, and brain cells are shown with the corresponding negative 614 

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 20, 2019. ; https://doi.org/10.1101/730200doi: bioRxiv preprint 

https://doi.org/10.1101/730200
http://creativecommons.org/licenses/by-nc/4.0/


	 31	

log conditional probability (-log CP), a statistical significance of the score of each TF, 615 

conditioned on the TFs with higher score (Online Methods). The importance and PubMed 616 

ID (PMID) columns indicate whether existing literature supports the role of the identified 617 

TFs, typically through perturbation experiments. (b) For DNase-seq data tracks of 90 618 

samples across 7 cell types, the WhichTF score vectors are projected to t-SNE plot. 619 

WhichTF quantitatively and robustly captures biological similarities and dissimilarities of 620 

TF-mediated transcriptional programs. The samples highlighted in (a) are annotated with 621 

arrows. 622 

  623 
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Figure 3 624 

a 625 

 626 
b 627 
  B cells – T cells T cells – B cells 
  TF -log(CP) Importance PMID TF -log(CP) Importance PMID 
1 SPIB 28.4 Confirmed 21057087 RUNX3 171.1 Confirmed 12796513 
2 SPI1 21.4 Confirmed 21057087 NFKB1 47.7 Confirmed 20452952 
3 SPIC 17.1 Confirmed 21057087 RUNX1 36.5 Confirmed 12796513 
4 REL 4.3 Confirmed 20452952 REL 8.0 Confirmed 20452952 
5 RELB 2.8 Confirmed 20452952 CBFB  9.1 Confirmed 17185462 
 628 

Fig. 3 WhichTF identifies differentially dominant TFs in B and T-cell DNase-seq data. (a) 629 

Gene expression of the top differential TF genes, SPI-B and RUNX3, are shown (horizontal 630 

axis) across diverse lymphoid cell types (vertical axis) for up to four healthy donors. (b) The 631 

top 5 differential TFs for B-cells relative to T-cells (B-cell – T-cell) and vice versa (T-cell – 632 

B-cell) are shown with the corresponding statistical significance, negative log conditional 633 

probabilities (-log CP). The importance and PubMed ID (PMID) columns indicate whether 634 

existing literature supports the identified TFs. 635 

  636 
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Figure 4  637 
     ESCs      
        
a Anterior primitive streak (APS)  b Mid primitive streak (MPS) 
  TF -log(CP) Imp. PMID    TF -log(CP) Imp. PMID 
1 RUNX3 11.7 S 29899136  1 TCF7L2 16.9 C 27419872 
2 TCF7L2 10.0 C 27419872  2 TBX2 13.0 S 24319661 
3 TBX3 7.4 C 24319661  3 TBR1 12.4 N   
4 CRX 7.5 S 17440610  4 TBX15 13.0 N   
5 LEF1 7.6 C 27419872  5 GATA4 6.2 S 27419872 

             
c Paraxial mesoderm  e Lateral mesoderm 
  TF -log(CP) Imp. PMID    TF -log(CP) Imp. PMID 
1 TCF7L2 7.7 C 27419872  1 RUNX3 8.6 C 20433948 
2 LEF1 6.9 C 27419872  2 GLI1 10.9 C 19879143 
3 HOXC13 4.8 C 25719209  3 GATA4 7.1 C 27419872 
4 TCF71 4.6 C 27419872  4 GATA6 5.1 C 27419872 
5 IKZF3 3.6 N    5 GATA2 4.7 C 27419872 

             
d Early somite  f Cardiac mesoderm 
  TF -log(CP) Imp. PMID    TF -log(CP) Imp. PMID 
1 MEIS2 6.9 C 9337138  1 GLI1 10.9 C 23873040 
2 ZIC2 6.6 C 17490632  2 FOS 6.7 C 11003651 
3 INSM1 4.3 S 25053427  3 GATA4 7.8 C 24790981 
4 TEAD4 4.1 C 29636889  4 FOSL2 6.5 C 26732840 
5 FOXI1 3.9 N    5 GATA1 5.2 C 21464046 
 638 

Fig. 4 WhichTF identifies differentially dominant TFs compared to immediate progenitor 639 

cells along human mesoderm development pathway from ATAC-seq data. The top 5 TFs 640 

with the corresponding statistical significance, negative log conditional probabilities (-log 641 

CP) are shown. The importance (Imp.) and PubMed ID (PMID) columns indicate whether 642 

(i) existing literature supports the identified TFs (C: confirmed); (ii) literature reports 643 

closely related factors, such as co-factors and functionally related family members, or the 644 

identified TFs in related context (S: suggestive); or (iii) novel (N). ESCs, embryonic stem 645 

cells.  646 
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Table 1: WhichTF identifies disease relevant TFs 647 

  HC - SLE SLE - HC 
  TF -log(CP) Imp. PMID TF -log(CP) Imp. PMID 
1 BCL6 28.7 C 28045014 GLI1 19.7 S 26552406 
2 TFAP2B 19.3 N   ZFP143 11.0 N  
3 ZEB1 16.6 S 20856809 TCF7L2 6.0 S 18839133 
4 ZSCAN21 15.2 N   ONECUT2 5.2 S 28317889 
5 ZSCAN20 14.2 N   DMRTC2 3.8 N   
 648 

Table 1 WhichTF identifies differentially dominant TFs from ATAC-seq measurement of 649 

B-cells from systemic lupus erythematosus (SLE) patients and healthy controls ( HC). The 650 

top 5 TFs based on the analysis of HC with respect to SLE (HC - SLE) and vice versa (SLE 651 

- HC) are shown with the corresponding statistical significance, negative log conditional 652 

probabilities (-log CP). The importance (Imp.) and PubMed ID (PMID) columns indicate 653 

whether literature supports the identified TFs: confirmed (C), suggestive (S), or novel (N).  654 

  655 
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Table 2: WhichTF identifies stress response factors in different samples 656 

 B-cell Keratinocyte Adrenal Gland Lymphatic Vessel 
Endothelium 

Pulmonary Artery 
Endothelium 

Dermis Vessel 
Endothelium 

 ENCFF719GOE ENCFF047IIB ENCFF212TPU ENCFF354CZP ENCFF596PRJ ENCFF908DMH 
1 SPIB *  FOSB * + ZFP410   NFKB1  + FOSL1  + NFKB1  + 
2 NFKB1 * + FOS * + FOS  + FOS  + FOS  + FOS  + 
3 RELB * + FOSL1 * + FOSL1  + FOSL1  + FOSL2  + FOSL1  + 
4 RELA * + JUND * + NFKB1  + RELB  + NFKB1  + RELA  + 
5 SPIC *  BATF  + JUNB  + BATF  + JUND  + FOSL2  + 
6 SPI1 *  FOSL2 * + FOSL2  + JUND  + RELB  + BATF  + 
7 ZFP410   BACH2  + BACH1  + FOSL2  + BATF  + FOSB  + 
8 RUNX3   JUNB * + JUND  + REL  + RELA  + RELB  + 
9 REL * + BACH1  + RELB  + RELA  + SOX10 *  JUND  + 

10 STAT2 *  JUN * + BACH2  + SPIC *  FOSB  + SOX7 *  
11 WT1   NFE2L2   GATA3 *  FOSB  + BACH2  + ZFP410   
12 SNAI3   NFKB1  + JUN  + ZFP410   BACH1  + BACH1  + 
13 ZEB2 *  MZF1   WT1 *  SPIB *  GATA4 *  GATA4 *  
14 ATF6   RELB  + BATF  + SOX30 *  JUNB *  SOX12 *  
15 E2F5 *  ZFP217   NFE2L2   SOX7 *  GATA5 *  FOXD1 *  
16 IKZF3 *  ETS2 *  GATA6 *  SOX18 *  SOX30 *  FOXJ3 *  
17 ELF5   PITX1   FOSB  + JUNB  + SPIB *  SOX30 *  
18 SP100   ATF6   GATA4 *  SOX12 *  SOX18 *  SOX18 *  
19 IRF9 *  TFCP2L1   MITF *  BACH1  + JUN *  FOXO6 *  
20 SNAI1   MYC *  FOXP2 *  FOXO3 *  FOXO3 *  FOXO4 *  
 657 

Table 2 WhichTF identifies TFs known for stress response. The top 20 TFs identified by 658 

WhichTF are shown in ranked order for B-cells, keratinocytes, adrenal gland, lymphatic 659 

vessel endothelium, pulmonary artery endothelium, and dermis vessel endothelium cells. 660 

The TFs known to be involved in stress response signals are marked with plus (+), while 661 

TFs in families known to be functionally important in each context are marked with asterisk 662 

(*).  663 

  664 
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Supplementary Figures 679 

 680 
Supplementary Figure S1. Tissue-specific gene expression profile of TBX15 in muscle. 681 
The Human cell types are shown on x-axis and the expression (TPM) is shown on y-axis. 682 
The median and 25th and 75th percentiles are shown as box plots and data points are shown 683 
as outliers if they are above or below 1.5 times the interquartile range. 684 
 685 

Supplementary Tables 686 

Supplementary Table S1. Baseline TF enrichment method for the four human cell types 687 

from ENCODE and Roadmap DNase-seq datasets are shown. The top 5 identified TFs are 688 

shown for (a) B-cells, (b) T-cells, (c) heart cells, and (d) brain cells. ENCODE accession 689 

IDs for each sample and the dominant TFs and their corresponding -log10(p-value) are 690 

shown. There is less cell-type specificity in the identified results. 691 

 692 

Supplementary Table S2. Mouse ENCODE dataset analysis. WhichTF identifies dominant 693 

TFs for four mouse cell types from ENCODE and Roadmap DNase-seq dataset. The top 5 694 

identified dominant TFs are shown for (a) B-cells, (b) T-cells, (c) heart cells, and (d) 695 

hindbrain cells. The ENCODE accession IDs for each sample are shown on the top and the 696 
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dominant TFs and their corresponding statistical significance, conditional probabilities, are 697 

shown. 698 

 699 

Supplementary table S3. The update summary of GREAT ontologies. Ensembl genes is a 700 

flat ontology defined from the set of genes with at least one meaningful annotation in gene 701 

ontology (Online Methods). GO: gene ontology. HPO: human phenotype ontology. MGI: 702 

mouse genome informatics. 703 

 704 

Supplementary Table S4. Human ENCODE datasets. The list of ENCODE accession IDs 705 

used in our study and the corresponding cell type or tissues. 706 

 707 

Supplementary Table S5. Mouse ENCODE datasets. The list of ENCODE accession IDs 708 

used in our study and the corresponding cell type or tissues. 709 

 710 

Supplementary Table S6. Mesoderm development samples. The list of sample IDs, sample 711 

description, and the reference to the corresponding results. 712 

 713 

Supplementary Table S7. Sequence read archive (SRA) accession IDs for systemic lupus 714 

erythematosus dataset. SLE indicates disease and HC indicates healthy control. 715 

 716 
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