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Abstract

Protein function prediction is a challenging but important task in bioinformatics. Many
prediction methods have been developed, but are still limited by the bottleneck on training
sample quantity. Therefore, it is valuable to develop a data augmentation method that
can generate high-quality synthetic samples to further improve the accuracy of prediction
methods. In this work, we propose a novel generative adversarial networks-based method,
namely FFPred-GAN, to accurately learn the high-dimensional distributions of protein
sequence-based biophysical features and also generate high-quality synthetic protein feature
samples. The experimental results suggest that the synthetic protein feature samples are
successful in improving the prediction accuracy for all three domains of the Gene Ontology
through augmentation of the original training protein feature samples.

Keywords: Generative adversarial networks; Protein sequence-based feature samples; Data
augmentation; Protein function prediction;

Introduction

Protein function prediction is an important but challenging task in bioinformatics. The
challenge comes from the inherent high dimensionality of the input feature space and the
cryptic relationship between sequence and function. The importance is clear from the fact
that very few proteins in data banks have complete or reliable functional annotations. Up to
the year 2015, fewer than 0.1% of proteins deposited in the UniProt database had received
even just one experiment-based functional annotation, and less than 20% of proteins had
been even just electronically annotated in all three domains of gene function as defined
by the Gene Ontology [1]. Although recent community-wide e↵orts have overall pushed
forward the development of computational prediction methods, the accuracy of predicting
the vast majority of protein functions is still very low [2] [3] [4]. This is not only due to
the fact of the natural diversity of protein function, but also because of the limited number
of existing functionally annotated protein samples. This issue leads to a bottleneck in the
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performance of prediction methods, especially for machine learning-based methods [5], [6],
[7], on making accurate predictions based on such small reference or training datasets. Due
to the expense of obtaining protein function data experimentally, it is highly desirable to
develop computational methods that can make better use of existing limited data. To that
end, here we explore the possibility that high-quality synthetic samples can be created to
augment the existing annotation data and further improve the predictive accuracy of our
prediction models.

Generative Adversarial Networks (GANs) [8] [9] [10] [11] [12] [13] are a new type of
generative model, which aim to generate high-quality synthetic samples by accurately learning
the underlying distributions of target data samples. The novel aspect of GANs is that they
adopt an adversarial training paradigm, where two neural networks “fight” against each
other to learn the distribution of samples. One network (the generator) attempts to generate
synthetic data, and the other network (the discriminator) attempts to decide whether a
given sample is real or synthetic. Each network gets better and better at its task until an
equilibrium is reached, where the generator can’t make better samples, and the discriminator
can’t detect more synthetic samples. GANs have already shown outstanding performance
on di↵erent machine learning tasks in the image processing field, such as image to image
translation [14][15][16], image segmentation [17] [18] [19] and image reconstruction [20] [21]
[22]. In addition to handling image data, GANs have also performed well with other types of
data, such as gene expression data and raw gene sequence data. Wang, et. al (2018) [23]
and Dizaji, et. al (2018) [24] proposed a conditional GAN-based framework for the task of
gene expression profiles inference by modeling the conditional distribution of target genes
given the corresponding landmark genes’ profiles. Ghahramani, et al. (2018) [25] also
proposed a WGAN-GP-based method to capture the diversity of cell types based on the
large and sparse scRNA-seq data. More recently, Gupta & Zou (2019) [26] and Wang, et.
al (2019) [27] successfully proposed GAN-based methods to generate synthetic genes and
promoters, respectively.

The data augmentation task is also an area where GANs show a great potential to
achieve good performance. Most of the existing work on GAN-based data augmentation
methods also focus on the image processing tasks, such as image classification [28] [29] [30].
For example, Frid-Adar, et. al (2018) [28] adopted the well-known DCGAN [9] method to
generate synthetic liver lesion images, which successfully improved the accuracy of liver lesion
classification. Most recently, Marouf, et. al (2018) [31] adopted GANs to generate synthetic
scRNA-seq profiles, which were used for downstream cell type classification tasks. In this
work, we propose a new GAN-based data augmentation approach – FFPred-GAN, which
is the first work up to the present that successfully employs GANs to cope with protein
sequence-based data distributions to tackle the protein function prediction problem. More
specifically, the novelties are three-fold. To begin with, FFPred-GAN successfully learns
the distribution of protein amino acid sequence-based biophysical features and generates
high-quality synthetic protein feature samples. Moreover, those high-quality synthetic protein
feature samples successfully augment the original training samples and obtain significantly
higher accuracy in predicting all three domains of GO terms. Furthermore, FFPred-GAN
also shows good computational time e�ciency, which is valuable when dealing with the large
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Figure 1. The flow-chart of synthetic protein feature samples generation by FFPred-GAN
Figure 1: The flowchart of FFPred-GAN.

amount of sequence data in present data banks. These properties also encourage further
extension of FFPred-GAN in exploiting other types of protein-related features.

Results

Overview of FFPred-GAN

In general, the FFPred-GAN framework consists of three steps to generate high-quality
synthetic training protein feature samples, as shown in Figure 1. To begin with, FFPred-GAN
adopts the widely-used FFPred [32] feature extractor to derive protein biophysical information
based on the raw amino acid sequences. For each input protein sequence, 258 dimensional
features are generated to describe 13 groups of protein biophysical information, such as
secondary structure, amino acid composition and presence of motifs. Then FFPred-GAN
adopts the Wasserstein Generative Adversarial Network with Gradient Penalty (WGAN-GP)
approach [11] to learn the actual high-dimensional distributions of these training proteins’
features. The generator of WGAN-GP is used to output the synthetic training protein feature
samples during di↵erent training stages of FFPred-GAN. On the last step, FFPred-GAN
uses the Classifier Two-Sample Tests (CTST) [33] to select the optimal synthetic training
protein feature samples, which are used to augment the original training samples. During
the down-stream machine learning classifier training stage, the optimal synthetic samples are
expected to derive better classifiers, leading to higher predictive accuracy.

FFPred-GAN successfully generates high-quality synthetic protein biophysical feature samples

In general, FFPred-GAN successfully learns the distributions of the training protein biophys-
ical feature samples and generates high-quality synthetic ones. We train two FFPred-GAN
models for each GO term by using two di↵erent sets of protein samples with di↵erent class
labels. The first FFPred-GAN model is trained by using the protein samples that are
annotated with that GO term (hereafter we denote those proteins as the so-called positive
samples). The other FFPred-GAN model is trained by using the protein samples that are
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not annotated by that GO term (hereafter we denote those proteins as the so-called negative
samples). Therefore, in total, we train 602 FFPred-GAN models for all 301 GO terms in the
FFPred-fly library.

As mentioned in the last section, we adopt the 1-nearest neighbour classification algorithm
and the Leave One Out Cross-Validation (LOOCV) to conduct the classifier-two-sample tests,
which is used for evaluating the quality of synthetic protein feature samples. The closer the
value of LOOCV accuracy is to 0.500, the higher the quality of synthetic samples. As shown
in Figures 2.A – 2.C, the star and circle symbols respectively denote the LOOCV accuracies
obtained for synthetic positive and negative protein feature samples generated by individual
GO term-based FFPred-GANs. The x -axis denotes the indexes of GO terms, while the y-axis
denotes the LOOCV accuracy that ranges from 0.000 to 1.000. In general, the synthetic
positive protein feature samples generated by FFPred-GAN for nearly half of BP, MF and
CC terms obtained a LOOCV accuracy of 0.500. The average LOOCV accuracies for the
BP, MF and CC domains of GO terms are 0.573, 0.584 and 0.590, respectively. Figures 2.D -
2.H display the t-SNE transformed 2D visualisation of real and synthetic positive protein
feature samples that are generated during di↵erent training stages of FFPred-GAN for the
BP term GO:0000375. In detail, at the begin of FFPred-GAN training (i.e. after the 1st

epoch), the real positive protein feature samples (green dots) are distributed distantly from
the synthetic ones (red dots), leading to a LOOCV accuracy of 1.000, suggesting obvious
di↵erences between the real and synthetic sets of protein feature samples. After 1,000 epochs
of further training, FFPred-GAN shows that it has started capturing the distribution of the
real protein feature samples and generating synthetic ones that are starting to be similar to
the real ones, due to the fact that the distributions of the red and green dots have overlapping
areas around the diagonal with a better LOOCV accuracy of 0.737. After even further
training of FFPred-GAN, on the 10,001st epoch, the overlapping areas of two sets of protein
samples become broader, leading to the LOOCV accuracy of 0.645, which also indicates
significantly improved training quality of FFPred-GAN. The training quality of FFPred-GAN
continues to improve with more epochs of training, with the LOOCV accuracy reaching
0.515 after another 10,000 epochs. Finally, after 29,601 epochs’ training, FFPred-GAN has
been successfully trained due to the desired LOOCV accuracy of 0.500. Also, as shown in
Figure 2.H, both sets of protein feature samples project to almost the exact same areas.
This pattern is consistent for training FFPred-GAN for the positive protein feature samples
for the MF and CC domains of GO terms. As shown in Figures S1.A – S1.E and S1.F –
S1.J respectively, the quality of GO:0000981 and GO:0000785’s synthetic positive protein
feature samples gradually becomes better with the increasing number of training epochs.
The green and red dots for the synthetic positive protein feature samples of GO:0000981 are
distributed similarly after 44,201 epochs training. Analogously, the distributions of synthetic
positive protein feature samples for GO:0000785 also becomes non-significantly di↵erent to
the corresponding real one after 31,801 epochs training, since the LOOCV accuracy reaches
to 0.500.
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Figure 2: The Leave One Out Cross-Validation (LOOCV) accuracy of CTST obtained by the real and
synthetic protein samples for GO terms from Biological Process (BP) (A), Molecular Function (MF) (B) and
Cellular Component (CC) (C) domains; The t-SNE transformed 2D visualisation of real (green dots) and
synthetic protein feature samples (red dots) obtained during di↵erent training epochs of FFPred-GAN by
using positive and negative protein feature samples for BP terms GO:0000375 (D-H), GO:0007163 (I-M).
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Due to the much higher diversity of negative feature samples, in that there are few ways of
representing a positive but many ways of representing a negative case, accuracy for negative
cases is lower, as might be expected. The LOOCV accuracies obtained by the synthetic
negative protein feature samples range between 0.600 to 0.800 for all three domains of GO
terms. The average LOOCV accuracies are 0.700, 0.698 and 0.720, respectively for BP, MF
and CC domains. Analogously to the cases when training the synthetic positive protein
feature samples, at the beginning of the FFPred-GAN training stage (i.e. after the 1st epoch),
both the real and synthetic negative samples for term GO:0007163 are obviously di↵erent,
since both sets are distributed in di↵erent areas in Figure 2.I. After 1,001 epochs training,
the distributions for both sets start to overlap, but the LOOCV accuracy of 0.930 is still
far from optimal. After the 10,001st epoch, the overlapping areas of both sets’ distributions
become broader, with an improved LOOCV accuracy of 0.724. The training quality of
FFPred-GAN continues to be improved even after 50,001 epochs of training, and finally the
optimal negative synthetic protein feature samples are obtained after 97,601 epochs training,
with an optimal LOOCV accuracy of 0.634. As shown in Figure 2.M, both green and red
dots distribute in a similar area. This pattern is consistent when training FFPred-GAN for
other two domains of GO terms, such as GO:0046872 and GO:0016020. As shown in Figure
S1.O and S1.T, the real and synthetic negative protein feature samples for those two terms
distribute in similar patterns after 52,201 and 49,001 epochs training, leading to the optimal
LOOCV accuracies of 0.648 and 0.661, respectively.

The synthetic protein feature samples generated by FFPred-GAN successfully improve the

predictive accuracy of Drosophila function annotation using FFPred-fly

We evaluate the predictive power from using synthetic protein feature samples on the task
of protein function prediction applied to Drosophila. We integrated the synthetic and real
protein feature samples as the augmented training protein feature samples in 8 di↵erent ways,
as shown on the first column of Table 1, where the rest of columns display the average MCC
and AUROC values obtained by 3 di↵erent classification algorithms over individual domains
of GO terms. In general, when using the Support Vector Machine (SVM) classification
algorithm, 2 out of 8 di↵erent combinations of synthetic and real protein feature samples (i.e.
Syn. Pos. + Real Pos. + Real Neg. and Syn. Pos. + Syn. Neg. + Real Pos. + Real Neg.)
obtain higher accuracy on predicting all three domains of GO terms. The former obtains
the overall highest accuracy on predicting the biological process (i.e. the average MCC of
0.345 and the average AUROC of 0.741) and molecular function (i.e. the average MCC of
0.664 and the average AUROC of 0.905) domains of protein function. It also obtains the
same highest average AUROC value of 0.853 with the benchmark method for predicting the
cellular component domain of protein function. Analogously, the latter obtains the overall
highest average MCC value of 0.512 for predicting the cellular component domain of protein
function, while it also obtains the same overall highest average AUROC value of 0.853 with
the benchmark method.
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Table 1: Summary of average MCC and AUROC values obtained by di↵erent combinations of training
protein feature samples on 30% held-out testing samples by using di↵erent classification algorithms

Instance Group
Support Vector Machine k-Nearest Neighbours Random Forests

BP MF CC BP MF CC BP MF CC

MCC AUROC MCC AUROC MCC AUROC MCC AUROC MCC AUROC MCC AUROC MCC AUROC MCC AUROC MCC AUROC

Syn. Pos. + Real Neg. 0.182 0.687 0.468 0.868 0.317 0.806 0.276 0.614 0.555 0.746 0.397 0.671 0.001 0.541 0.000 0.586 0.005 0.590

Syn. Neg. + Real Pos. 0.179 0.700 0.394 0.871 0.338 0.820 0.273 0.637 0.544 0.779 0.443 0.720 0.022 0.608 0.086 0.744 0.050 0.715

Syn. Pos. + Syn. Neg. 0.232 0.691 0.485 0.857 0.402 0.808 0.251 0.603 0.507 0.725 0.397 0.667 0.130 0.633 0.360 0.779 0.284 0.719

Syn. Pos. + Real Pos. + Real Neg. 0.345⇤ 0.741⇤ 0.664⇤ 0.905⇤ 0.510 0.853⇤ 0.311 0.673 0.577 0.810 0.463 0.763 0.293 0.718 0.630 0.902 0.471 0.834

Syn. Neg. + Real Pos. + Real Neg. 0.302 0.726 0.653 0.901 0.465 0.850 0.307 0.643 0.588 0.788 0.464 0.724 0.316 0.731 0.627 0.901 0.475 0.833

Syn. Pos. + Syn. Neg. + Real Pos. 0.189 0.716 0.409 0.882 0.352 0.843 0.272 0.645 0.541 0.786 0.441 0.727 0.042 0.615 0.151 0.786 0.103 0.723

Syn. Pos. + Syn. Neg. + Real Neg. 0.187 0.690 0.491 0.871 0.328 0.807 0.264 0.598 0.529 0.727 0.387 0.653 0.008 0.560 0.018 0.658 0.044 0.631

Syn. Pos. + Syn. Neg. + Real Pos. + Real Neg. 0.344 0.735 0.662 0.903 0.512⇤ 0.853⇤ 0.310 0.651 0.590 0.798 0.466 0.726 0.323 0.740 0.619 0.902 0.471 0.852

Real Pos. + Real Neg. (Benchmark) 0.320 0.735 0.654 0.902 0.483 0.853
⇤

0.301 0.698 0.575 0.850 0.465 0.775 0.333 0.734 0.631 0.905
⇤ 0.482 0.847

We further conduct pairwise comparisons between the best-performing combinations of
protein feature samples and the benchmark protein feature samples, i.e. Syn. Pos. + Real
Pos. + Real Neg. v.s. Real Pos. + Real Neg. for the biological process and molecular
function domains, and Syn. Pos. + Syn. Neg. + Real Pos. + Real Neg. v.s. Real
Pos. + Real Neg. for the cellular component domain of protein function. As shown in the
scatter-plots in Figure 3, the majority of green dots drop above the diagonal, indicating
higher MCC and AUROC values compared with the ones obtained by the benchmark training
protein feature samples. In detail, using a combination of Syn. Pos. + Real Pos. + Real
Neg., 106 out of 196 and 103 out of 196 biological process terms show improved results
measured by MCC and AUROC values, respectively. This combination also gives higher
MCC and AUROC values for 37 out of 68 (MCC) and 34 out of 68 (AUROC) molecular
function terms. Analogously, the combination of Syn. Pos. + Syn. Neg. + Real Pos. + Real
Neg. obtains higher MCC values for predicting 25 out of 37 cellular component terms. The
pairwise Wilcoxon signed-rank tests further confirm that the augmented training protein
feature samples obtain significantly higher MCC values for predicting all three domains
of protein function (i.e. p-value of 5.86⇥10�3 for BP terms, p-value of 3.91⇥10�2 for MF
terms, and p-value of 5.29⇥10�3 for CC terms). The AUROC values for predicting biological
process domain of protein function are also significantly improved by the augmented training
protein feature samples, due to the p-value of 3.12⇥10�2.
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Figure 3: The scatter-plots about the MCC and AUROC values obtained by the optimal combination of real
and synthetic protein samples for predicting three domains of GO terms by using the SVM classification
algorithm.
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The improved predictive accuracy is also observed on the augmented training protein
feature samples using the k -nearest neighbours classification algorithm. Three types of
combinations, i.e. Syn. Pos. + Real Pos. + Real Neg., Syn. Neg. + Real Pos. + Real
Neg., and Syn. Pos. + Syn. Neg. + Real Pos. + Real Neg., obtain higher average MCC
values than the benchmark training protein feature samples for predicting BP and MF terms,
while the augmented protein feature samples consisting of Syn. Pos. + Syn. Neg. + Real
Pos. + Real Neg. also obtain higher average MCC value for predicting CC terms. However,
none of the augmented training protein feature samples obtains higher average AUROC
value than the benchmark one. A similar pattern is also observed when using the random
forests classification algorithm. The benchmark training protein feature samples obtain
higher average MCC values than all other augmented training protein feature samples for
predicting all three domains of protein function. But the augmented training protein feature
samples consisting of Syn. Pos. + Syn. Neg. + Real Pos. + Real Neg. still obtain higher
average AUROC values for predicting BP and CC terms..

Discussion

The optimal synthetic positive protein feature samples derive better SVM decision boundaries

by augmenting the original training samples

The synthetic positive protein feature samples successfully improve the accuracy of predicting
all three domains GO terms using a Support Vector Machine (SVM) classification algorithm.
This fact suggests that the augmented training protein feature samples successfully derive
better SVM decision boundaries. We further analyse the changes on the SVM decision
boundaries with an example case of predicting the term GO:0034613 by using the original
training protein feature samples and the synthetic positive protein feature samples augmented
training samples respectively. The former leads to an MCC value of 0.073, whereas the
latter leads to an MCC value of 0.436. We visualise the 2D distributions of both protein-sets
by using their first two principle components, which are also used for training the SVM
classifiers for visualising the corresponding 2D decision boundaries. As shown in Figures 4.A
and 4.B, the blue dots denote the negative protein samples, while the red dots denote the
positive protein samples. The white areas in the background denote the decision boundaries
separating the blue and red areas where the negative and positive protein samples distributed.
It is clear that the decision boundaries shown in both figures are di↵erent. The ones in
Figure 4.A suggest that the SVM trained by the original protein samples successfully learned
the boundaries that separate the protein samples with di↵erent labels in the centre of the
figure. However, as shown in Figure 4.C, the boundaries learned by the original training
protein-sets fail to separate the majority of negative and positive testing protein samples
distributing on the right corner of the figure, where the majority of dots are in red. On the
contrary, the SVM trained by the augmented training protein feature samples learned those
decision boundaries that successfully separate the protein samples distributed on the right
corner of the figure. As shown in Figure 4.D, when applying those decision boundaries on
the testing protein feature samples, most of the red and blue dots on the right corner are
successfully distinguished, leading to the increased MCC values.
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Figure 4: The 2D visualisations of the learned SVM decision boundaries by the original training protein
feature samples (A) and the synthetic positive protein feature samples augmented training samples (B) for
the term GO:0034613, and the distributions of corresponding testing protein feature samples with those two
types of decision boundaries (C-D).
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FFPred-GAN can generate high-quality synthetic feature samples at reasonable computational

cost

We further discuss the computational time cost (i.e. the actual running time obtained by
using CPU-based PyTorch with a standard Linux computing cluster) and the training sample
sizes (i.e. the number of training protein feature samples) for running FFPred-GAN to
generate the optimal synthetic protein feature samples for individual GO terms. Figures 5.A
and 5.B display the boxplots about the distributions of computational time and training
samples size, respectively, while the complete information is reported in Table S1. In general,
the computational time for generating optimal synthetic positive protein samples for the
majority GO terms from all three individual domains (shown by the blue, golden and green
boxes) is less than that of generating the optimal negative protein samples, as shown by the
yellow, grey and orange boxes. The corresponding median values are 20,038.6 seconds (⇡ 5.6
hours), 24,187.2 seconds (⇡ 6.7 hours) and 20,973.8 seconds (⇡ 5.8 hours) for generating
the optimal positive synthetic protein samples respectively for BP, MF and CC domains of
GO terms, while the median values for generating the optimal negative protein samples are
28,624.6 seconds (⇡ 8.0 hours), 29,401.6 seconds (⇡ 8.2 hours) and 113,777.8 seconds (⇡
31.6 hours) respectively for those three domains of GO terms. This fact is relevant with a
pattern that the training samples sizes of positive proteins for the majority of GO terms are
smaller than the negative ones, as shown in Figure 5.B, where the blue, golden and green
boxes are located in lower positions than the yellow, grey and orange boxes. Analogously, the
corresponding median values of sample sizes for those positive protein samples are 226.0, 234.0
and 238.0, respectively for BP, MF and CC domains of GO terms, while the median values
of samples sizes for those negative protein samples are 873.0, 875.0 and 1680.0, respectively.

We then further calculate the Pearson correlation coe�cient between the computational
time and the training samples sizes, as shown by the scatter-plots in Figures 5.C – 5.H,
where the x -axis denotes the values of sample size and the y-axis denotes the computational
time. The correlation coe�cient values r for positive protein samples are 0.521, 0.379 and
0.900 respectively for BP, MF and CC domains of GO terms, while the negative protein
samples have the correlation coe�cient values of 0.321, 0.349 and 0.140 respectively. Both
the positive and negative protein samples from all three domains of GO terms all show
positive correlation between the computational time and training samples size. This fact
indicates that the larger samples size leads to longer training time of FFPred-GAN in order
to obtain the optimal synthetic protein samples.

In this work, we have presented a novel generative adversarial networks-based method
that successfully generates high-quality synthetic feature samples, which significantly improve
the accuracy on predicting all three domains of GO terms through augmenting the original
training data. Based on this same framework, there is significant scope to employ new
GANs-based architectures, but more importantly, the same basic approach can be applied to
other types of features used in function prediction, e.g. proteomics or gene expression data,
which are often di�cult or expensive to produce in large quantities. Finally, perhaps the
most useful benefit of using GANs to augment data is that they can o↵er a powerful means
to balance training sets in the usual situation of having many examples of proteins with one
GO term label and very few of others. We hope to explore these applications in the future.
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Figure 5: (A) The boxplot about the distributions of computational time on obtaining the optimal synthetic
protein samples for di↵erent GO terms; (B) The boxplot about the distributions of sample sizes for di↵erent
GO terms; (C-H) The scatter-plots of correlation coe�cient values between the computational time and
sample sizes for positive and negative protein samples of di↵erent domains of GO terms.
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Method details

Generating synthetic protein feature samples with Wasserstein generative adversarial networks

with gradient penalty

Wasserstein generative adversarial networks with gradient penalty [11] are a type of Generative
Adversarial Networks (GANs) [8], which are well-known to be highly capable of learning high-
dimensional distributions from data samples. In general, conventional GANs are composed
of two neural networks, i.e. the generator G and the discriminator (a.k.a. critic) D. The
former takes the random Gaussian noise (a.k.a. the latent variables z ⇠ N (0, 1)) as the
inputs to generate outputs that are considered as the synthetic samples. The latter takes the
synthetic or real samples as the inputs to distinguish whether they are synthetic or not. In
order to train the whole GANs, those two networks play a minimax two-player game, i.e.
the generator aims to generate the synthetic samples as good as possible in order to fool the
discriminator, whereas the discriminator aims to distinguish the real and synthetic samples
as well as possible, as shown by Equation 1 (the minimax objective). Ideally, the GANs are
successfully trained when those networks reach the Nash equilibrium, i.e. the generator is
trained to optimally encode the actual distribution of target samples, while the discriminator
is trained to optimally distinguish the real and synthetic samples. Usually, the weights of the
generator are updated after several epochs of discriminator training. In essence, this process
is equivalent to minimising the Jensen–Shannon (JS) or Kullback–Leibler (KL) divergences
between the target distribution and the one encoded by the generator, given an optimal
discriminator

Wasserstein GAN (WGAN) [10] is a well-known extension of conventional GANs. It
adopts the earth-mover (Wasserstein) distance to replace the JS or KL divergences to avoid
the vanishing gradient problem due to their natural limitation on handling non-overlapping
distributions. In addition, WGAN adopts the weight clipping mechanism to enforce the
1-Lipchitz constraint for the critic w.r.t. the corresponding inputs. More recently, another
extension of GANs was proposed, namely WGAN with Gradient Penalty (WGAN-GP) that
further improves the training stability of WGAN by adopting the penalty mechanism on the
norm of gradient of the critic. The objective of WGAN-GP is shown in Equation 2, where
the left two terms denote the loss of critic, and the right term denotes the term of gradient
penalty (i.e. ensure the L2 norm penalty being around 1.00).

min
G

max
D

E
x⇠Pr

[log(D(x))] + E
x̃⇠Pg

[log(1 � D(x̃))] (1)

L = E
x̃⇠Pg

[D(x̃)] � E
x⇠Pr

[D(x)] + � E
x̂⇠Px̂

[(||rx̂D(x̂)||2 � 1)2] (2)

In this work, we use the generator of well-trained WGAN-GP models to generate synthetic
samples. Each WGAN-GP model consists of a three hidden-layer generator and a three
hidden-layer critic. The generator takes 258 dimensions of random Gaussian noise inputs
and outputs 258 dimensions of synthetic samples. The ReLU activation function is adopted
for all three hidden-layers (of 512 units each) followed by the output layer which adopts the
tanh activation function. The critic network takes 258 dimensions of inputs (i.e. the real and
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synthetic protein feature samples), and uses the LeakyReLU activation function for all layers
including three hidden-layers (of 86 units each). The Adam optimiser is used for training
both generator and critic networks, with a learning rate of 1.00⇥10�4. The total number of
epochs for training the WGAN-GP is 100,000, and the weights of the generator networks are
updated after every 5 epochs of the critic training. The generated synthetic protein feature
samples are saved after finishing every 200 epochs of WGAN-GP training for the purpose of
down-stream quality assessment by using the classifier two-sample tests approach [33].

Selecting optimal synthetic training protein feature samples by the classifier two-sample tests

FFPred-GAN evaluates and selects the optimal synthetic protein feature samples by using the
Classifier Two-Sample Tests (CTST) [33] approach. The optimal synthetic protein feature
samples are considered as those following the same distribution of the real (training) protein
feature samples but being not identical to the real (training) ones. The CTST approach
is an extension of conventional single variable-based statistical significance test methods
(e.g. the Wilcoxon signed-rank test) to high-dimensional cases. More specifically, given
two equal-sized sets of samples respectively following two distributions P and Q, the CTST
consider to accept or reject a null hypothesis of P being not equal to Q. If the null hypothesis
is rejected, the classification accuracy on predicting the binary labels of held-out samples will
be near the chance-level (i.e. 50.0%). Therefore, in terms of a metric evaluating the quality of
generated synthetic samples, a classification accuracy of 100.0% means the synthetic samples
are of poor quality, due to the fact that the synthetic samples are significantly di↵erent to
the real ones. Analogously, a classification accuracy of 0.0% also suggests poor quality of
the synthetic samples, due to the fact that the real and synthetic samples appear identical,
suggesting that the model is merely regenerating the training samples and has failed to
generate diverse new synthetic samples.

In this work, we conduct the CTST by using the 1-nearest neighbour classification
algorithm due to its simplicity on hyper-parameter tuning. The real and generated synthetic
protein feature samples are merged as a union set of protein feature samples with being
assigned the binary labels respectively, e.g. the label 1 for the real samples and the label
0 for the synthetic samples. The Leave One Out Cross-Validation (LOOCV) is used to
obtain the classification accuracy of the CTST by using di↵erent synthetic protein feature
samples during per 200 epochs of FFPred-GAN training. Finally, the synthetic protein
feature samples that obtain the best LOOCV accuracy (i.e. closest to 50.0%) are selected as
the optimal synthetic feature samples.

Evaluating the predictive power of synthetic protein feature samples generated by FFPred-GAN

for augmenting the original training samples

In this work, we use the same protein sets that were discussed in [5], i.e. 10,519 Drosophila

proteins with 301 GO terms. The protein-set for each GO term was further split into the
training and testing protein sets with a proportion of 7:3. The total 258 dimensions of
protein sequence-derived biophysical features (in fact a mixture of distributions of di↵erent
feature groups ranging from 11 to 50 dimensions) are used to describe the proteins, including
information about the protein secondary structure, intrinsic disorder regions, signal peptides,
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etc. The full information about those feature groups is included in Table S2. The predictive
power of the synthetic protein feature samples is evaluated by three di↵erent classification
algorithms, i.e. support vector machine, k -nearest neighbours and random forests. A 5-fold
cross validation-based grid-search is used for conducting the hyper-parameter optimisation
for di↵erent classification algorithms. The detailed information about the hyper-parameter
searching space is included in Table S3. The classification algorithms and grid-search
procedure are implemented by using Scikit-learn [34]. The well-known Matthews Correlation
Coe�cient (MCC) and Area Under Receiver Operating Characteristic Curve (AUROC) are
used to evaluate the predictive performance of FFPred-GAN. As shown in Equation 3, the
MCC value is calculated by considering the true positive (TP), true negative (TN), false
positive (FP) and false negative (FN) rates. Its ranges from -1 to 1, while a value of 0 means
a random prediction and a value of 1 denotes perfect predictive accuracy. The AUROC value
is another well-known metric on evaluating the accuracy of binary classification task. It is
calculated by considering the true positive and false positive rates obtained by using di↵erent
decision thresholds. The AUROC value ranges from 0 to 1, while a value of 0.5 indicates a
random prediction and a value of 1.00 denotes perfect predictive accuracy.

MCC =
TP ⇥ TN � FP ⇥ FNp

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(3)

Data and software availability

All data can be downloaded via http://bioinfadmin.cs.ucl.ac.uk/downloads/FFPredGAN
The source-code can be downloaded via https://github.com/psipred/FFPredGAN
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different training epochs of FFPred-GAN by using positive protein feature samples for molecular function term 

GO:0000981 and cellular component term GO: 0000785; and by using the negative protein feature samples for 

molecular function term GO: 0046872 and cellular component term GO:0016020. (Figure S1). 

 

Summary of computational cost, training sample size and their correlation coefficient values. (Table S1). 

 

Summary of protein amino acid sequence-derived biophysical feature groups information (Table S2). 

 

Summary of hyper-parameters of different classification algorithms for conducting the 5-fold cross validation-

based grid-search by using the Scikit-learn. (Table S3). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

 

Figure S1. The t-SNE transformed 2D visualisation of real and optimal synthetic protein feature samples 

obtained during different training epochs of FFPred-GAN by using positive protein feature samples for 

molecular function term GO:0000981 (A-E) and cellular component term GO: 0000785 (F-J); and by using 

the negative protein feature samples for molecular function term GO: 0046872 (K-O) and cellular component 

term GO:0016020 (P-T). 

 

 

 

 

 

 

 

 

A B C D E

F G H I J

GO:0000981	(+)
Epoch=1
LOOCV=1.000

GO:0000981	(+)
Epoch=1001

LOOCV=0.713

GO:0000981	(+)
Epoch=10001
LOOCV=0.646

GO:0000981	(+)
Epoch=30001
LOOCV=0.602

GO:0000981	(+)
Epoch=44201
LOOCV=0.500

GO:0046872	(-)
Epoch=1

LOOCV=1.000

GO:0046872	(-)
Epoch=1001
LOOCV=0.899

GO:0046872	(-)
Epoch=10001
LOOCV=0.708

GO:0046872	(-)
Epoch=30001
LOOCV=0.674

GO:0046872	(-)
Epoch=52201
LOOCV=0.648

K L M N O

GO:0000785	(+)
Epoch=1
LOOCV=1.000

GO:0000785	(+)
Epoch=1001
LOOCV=0.778

GO:0000785	(+)
Epoch=10001
LOOCV=0.585

GO:0000785	(+)
Epoch=20001
LOOCV=0.561

GO:0000785	(+)
Epoch=31801
LOOCV=0.500

P Q R S T

GO:0016020	(-)
Epoch=1

LOOCV=1.000

GO:0016020	(-)
Epoch=1001
LOOCV=0.942

GO:0016020	(-)
Epoch=10001
LOOCV=0.754

GO:0016020	(-)
Epoch=30001
LOOCV=0.696

GO:0016020	(-)
Epoch=49001
LOOCV=0.661



 

 

 

 

 

 

Table S1. Summary of computational cost, training sample size and their correlation coefficient values 

Training 
Samples 

Computational time cost Training sample size 

Correlation 
Coefficient 

Minimum 1st Quartile Median 3rd Quartile Maximum 
Minimum 1st Quartile Median 3rd Quartile Maximum 

Second Hour Second Hour Second Hour Second Hour Second Hour 

Positive-BP 2073.0 0.6 8079.4 2.2 20038.6 5.6 34556.1 9.6 139210.2 38.7 105.0 143.8 226.0 392.5 1939.0 0.521 

Positive-MF 3105.7 0.9 10887.2 3.0 24187.2 6.7 37066.0 10.3 153056.2 42.5 109.0 139.5 234.0 444.0 2901.0 0.379 

Positive-CC 3520.0 1.0 12390.5 3.4 20973.8 5.8 43664.0 12.1 186317.1 51.8 106.0 140.0 238.0 584.0 3200.0 0.900 

Negative-BP 2991.8 0.8 17456.5 4.8 28624.6 8.0 51873.3 14.4 166180.2 46.2 436.0 795.0 873.0 915.0 960.0 0.321 

Negative-MF 3615.1 1.0 18286.3 5.1 29401.6 8.2 50182.8 13.9 121113.6 33.6 525.0 805.0 875.0 916.3 974.0 0.349 

Negative-CC 36847.1 10.2 75593.5 21.0 113777.8 31.6 132606.9 36.8 171204.0 47.6 579.0 1548.0 1680.0 1891.0 2020.0 0.140 

 

 



 

Table S2. Summary of protein sequence-derived biophysical feature groups information. 

Feature names Dimensions 

Secondary structure 49 

Transmembrane segments 15 

Amino acid composition 20 

Intrinsically disordered regions 18 

Signal peptides 8 

Subcellular localization 12 

Sequence features 17 

PEST regions 12 

Low complexity regions 12 

Coiled coils 12 

N-linked glycosylation sites 11 

O-GalNAc-glycosylation sites 22 

Phosphorylation sites 50 

 



 

 

 

Table S3. Summary of hyper-parameters of different classification algorithms for conducting the 5-fold 

cross validation-based grid-search by using the Scikit-learn. 

Classification algorithms Hyper-parameters 

Support Vector Machine 

Kernel = linear C: [1, 10, 0.1, 100, 0.01, 1000, 0.001, 1e4, 1e-4] 

Kernel = rbf 
C: [1, 10, 0.1, 100, 0.01, 1000, 0.001, 1e4, 1e-4] 

!: [1, 0.5, 3, 0.2, 10, 0.1, 0.03, 0.01, 0.001, 1e-4] 

k-Nearest Neighbours 
n_neighbors: [1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29] 

weights: ['uniform', 'distance'] 

Random Forests 

n_estimators: [10, 20, 30, 40, 50] 

max_depth: [1, 2, 3, None] 

max_features: [1, "auto", "log2", None], 

criterion: ["gini", "entropy"] 

 

 

 

 


