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Abstract 1 

Although body mass index is positively associated with bone mineral density, suggesting obesity 2 

is protective against fracture, elderly obese individuals experience greater fracture risk at certain 3 

sites than non-obese peers, suggesting bone structural or material changes contribute to fragility. 4 

Diet-induced obesity rodent studies have reported detrimental changes to bone microstructure and 5 

some apparent-level material properties, but tissue-level material changes are not well understood. 6 

Because adipose tissue is highly vascularized, and bone remodeling depends critically on 7 

functional vascular supply, concurrent effects on osteovascular perfusion and structure may 8 

provide insight about obesity-related bone fragility. This study aimed to determine the effects of 9 

obesity on both tissue-level bone properties and osteovascular properties that could negatively 10 

impact bone strength. Five-week-old male C57Bl/6J mice were fed either high fat diet (HFD) or 11 

control fat diet (CFD) for 17 weeks and received daily treadmill exercise or remained sedentary 12 

for eight weeks at ages 14-22 weeks. HFD negatively affected femur bending strength, with 18% 13 

lower yield load than CFD. Although HFD negatively altered cancellous microstructure in the 14 

distal femur, with 32% lower bone volume fraction than CFD, it did not affect cortical bone 15 

geometry in the femoral metaphysis or diaphysis. HFD caused increased carbonate substitution 16 

but had no effect on other composition metrics or apparent- or tissue-level material properties in 17 

the femoral diaphysis. Exercise did not affect bone strength or microstructure but increased 18 

endosteal mineralizing surface in the tibial diaphysis, mineral crystallinity and mineral-to-matrix 19 

ratio in the femur, and blood supply to the proximal tibial metaphysis. HFD did not affect blood 20 

supply in the tibia or 2D osteovascular structure in the distal femoral metaphysis, indicating that 21 

HFD negatively affects cancellous bone without affecting osteovasculature. This study reveals that 22 
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HFD negatively affected cancellous microstructure without affecting osteovascular structure, and 23 

whole-bone strength without altering cortical geometry or material properties.  24 

 25 

Keywords:  26 

obesity, high fat diet, bone strength, material properties, exercise  27 
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1 Introduction 28 

Over half of adults worldwide are overweight or obese.(1)  Higher bone mineral density (BMD), a 29 

primary determinant of bone strength(2) that is associated with decreased fracture incidence in 30 

elderly men and women,(3,4) is associated with increasing body mass index (BMI) in both obese 31 

and non-obese individuals.(4–7) However, increasing BMI in obese women is not as strongly 32 

correlated with increasing BMD and estimated material strength compared to non-obese 33 

women.(7,8) A meta-analysis reported that, despite having higher BMD, elderly obese individuals 34 

experience higher fracture incidence at particular sites compared to non-obese individuals – obese 35 

postmenopausal women have a higher risk of fracture in the spine, humerus, and leg bones but a 36 

lower risk of fracture in the hip and wrist, while older obese men have a higher risk of non-spinal 37 

fractures but a lower risk of fracture in the spine.(5) Since bone strength depends not only on BMD 38 

but also structural and material properties,(9,10) the differential fracture risk with obesity likely 39 

results from adverse changes to bone structure and/or material properties, although these effects 40 

are understudied in humans. In non-obese elderly women, mid-tibial cortical thickness and cortical 41 

area, measured with high-resolution peripheral quantitative computed tomography (HR-pQCT), 42 

were positively correlated with BMI.(11) Despite these beneficial changes to geometry, cortical 43 

bone material strength index (BMSi) in the tibia, measured with reference point indentation, had 44 

a weak negative correlation with both BMI and subcutaneous fat in the tibia.(11) Examining bone 45 

structure and material properties beyond HR-pQCT and BMSi is difficult in humans, but they have 46 

been examined in animal models of obesity. Previous diet-induced obesity studies in young, mostly 47 

male, mice reported detrimental changes to trabecular microstructure in the femur,(12–17) cancellous 48 

bone formation rate,(17) serum concentrations of osteocalcin, tartrate resistant acid phosphatase,(14) 49 

and carboxyl-terminal collagen crosslinks,(12) and cortical apparent material properties (bending 50 
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apparent modulus and ultimate stress) and fracture toughness,(18,19) but no change to femoral areal 51 

BMD,(18,19) cortical volumetric BMD (vBMD),(16) or cancellous tissue mineral density (TMD)(14–52 

16) for high fat diet (HFD) compared to control fat diet (CFD). Therefore, HFD-induced obesity 53 

induces some structural and apparent-level material changes without changes to bone density, 54 

further supporting the notion of tissue-level effects that need to be further examined.  55 

 56 

Vascular properties may contribute to the detrimental changes in cancellous bone structure with 57 

obesity. Adipose and bone tissues are highly vascularized and require adequate blood flow for 58 

formation and homeostasis.(20–23) In rodent studies, HFD increases the amount of adipose in the 59 

medullary cavity of long bones,(13,24–27) and adipose produces angiogenic cytokines that induce 60 

rapid vascularization.(20,28) Although increased bone vascularization is associated with increased 61 

bone formation rate in cancellous bone in normal-weight rats,(29) HFD is associated with 62 

detrimental changes to cancellous bone structure.(12–17) In addition to the amount of blood vessels, 63 

the structure of vasculature within bone is also important for remodeling; compared to non-64 

remodeling bone surfaces, active sites of bone remodeling have increased number of capillaries 65 

within 50 µm of the bone surfaces.(30,31) Exercise reduces the accumulation of adipose within the 66 

long bones of mice fed HFD(24,25) and stimulates osteovascular crosstalk pathways, such as VEGF 67 

and bone morphogenetic protein 2 (BMP2), that promote bone formation.(32,33) However, the 68 

effects of HFD and exercise on the osteovasculature is understudied. In this study, we examined 69 

changes in both bone and osteovascular tissues using a mouse model of diet-induced obesity, both 70 

with and without moderate treadmill activity. We hypothesized that obesity decreases the integrity 71 

of bone microstructure and material properties, while exercise induces new vascular and bone 72 

growth. 73 
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2 Materials and Methods 74 

2.1 Study Design 75 

The protocol for this work was approved by the Institutional Animal Care and Use Committee at 76 

North Carolina State University. Sixteen 5-week-old male C57Bl/6J mice (The Jackson 77 

Laboratory, Bar Harbor, ME) were fed a high fat diet (D12492 60% kcal fat, Research Diets, Inc., 78 

New Brunswick, NJ) (n=8, “HFD” group) or a matched control fat diet (D12450B 10% kcal fat, 79 

Research Diets, Inc) (n=8, “CFD” group) for 17 weeks (Figure 1). Mice were housed with their 80 

groups (4-5 per cage) under controlled 12-hour diurnal photoperiod and fed their respective diets 81 

ad libitum. After 9 weeks of diet (Week 9, 14 weeks of age), after the obesity phenotype was 82 

established, mice were further divided into two activity groups, either daily treadmill exercise (n=4 83 

from each diet group, “CFD-Exercise” and “HFD-Exercise”) or stationary treadmill groups (n=4 84 

from each diet group, “CFD-Sedentary” and “HFD-Sedentary”).  85 

 86 

Exercise mice were acclimated to a mouse treadmill (Exer 3/6, Columbus Instruments, Columbus, 87 

OH) over three days of increasing speeds (day 1: 6 m/min for 10 min, day 2: 9 m/min for 10 min, 88 

day 3: 12 m/min for 10 min). After acclimation, exercise groups ran on the treadmill 5 days per 89 

week for 8 weeks (8 m/min for 37 min at a 5-degree incline). Mice in the HFD group were unable 90 

to run for 30 min at 10 m/min, so the protocol was adjusted to 8 m/min for a longer time to provide 91 

the same running distance (300 m). Sedentary groups were placed on an immobile replica treadmill 92 

for the same duration as the exercise groups. Exercise and diet were continued for 8 weeks until 93 

the end of the study (Week 17, 22 weeks of age).  94 

 95 
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For dynamic histomorphometry, alizarin complexone (C0875, Sigma-Aldrich, St. Louis, MO) and 96 

calcein (A3882, Sigma-Aldrich) were injected intraperitoneally (30 mg/kg) at 10 and 3 days prior 97 

to sacrifice, respectively. At the conclusion of the study, and immediately before sacrifice, in vivo 98 

measurements of tibial perfusion were made under anesthesia (described below). Mice were 99 

euthanized by CO2 asphyxiation followed by cervical dislocation. For serum assays, blood was 100 

immediately collected through cardiac puncture and left at room temperature for 30 min to clot, 101 

after which the serum was separated by centrifugation (2,000 x g for 10 min) and stored at -80°C. 102 

The left and right femora and tibiae were dissected. The left femur and both tibiae were fixed in 103 

10% neutral buffered formalin at 4°C for 36 hours, then stored in 70% ethanol at 4°C. The unfixed 104 

right femur was wrapped in 1X phosphate buffered saline (PBS)-soaked gauze and fresh frozen at 105 

-20°C. 106 

 107 

2.2 Obesity Phenotype 108 

Body mass and serum glucose were measured weekly in all groups following the initiation of 109 

treadmill exercise in Week 9. Serum glucose concentration was measured from the tail vein after 110 

6 hours of fasting (AlphaTrak 2 Blood Glucose Monitoring System, Abbott Laboratories, Abbott 111 

Park, IL). Glucose tolerance tests (GTT) were performed following 6 hours of fasting at Week 13 112 

and Week 17 to assess ability to clear a bolus injection of glucose from the blood, which is a test 113 

for the development of diabetes. For the test, a 0.3 g/mL (30%) glucose solution was injected 114 

intraperitoneally at 1 g of glucose per kg of body mass. Serum glucose concentration was measured 115 

immediately prior to the injection of glucose and 15, 30, 60, 90, and 120 min after the injection. 116 

Glucose concentrations over the maximum threshold of the glucometer were recorded as 750 117 
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mg/dL (upper range concentration of the AlphaTrak 2). The areas under the curve for the GTT 118 

results were calculated using the trapezoid rule. 119 

 120 

2.3 Bone Perfusion (Tibia) 121 

In vivo tibial perfusion was measured at the endpoint of the study in the right proximal tibial 122 

metaphysis with laser Doppler flowmetry (LDF). LDF can quantify vascular perfusion – a 123 

functional measure of bone blood flow comprised of amount of vasculature, velocity and direction 124 

of blood flow, and vascular permeability – in murine tibiae.(34,35) Perfusion readings were taken 125 

just prior to sacrifice using an LDF monitor with 785-nm light source and selectable 3 kHz lowpass 126 

filter (moorVMS-LDF, Moor Instruments Ltd., Axminster, UK) paired with a needle probe (VP4, 127 

0.8 mm outer diameter, 0.25 mm fiber separation), as follows. After 6 hours of fasting, mice were 128 

anesthetized with 2% isoflurane in pure oxygen. Mice were placed supine, and the shaved right 129 

hindlimb was taped to a heated surgical platform. A 2-5 mm long was made over the anteromedial 130 

side of the proximal tibial metaphysis, the periosteum was gently scraped away from the 131 

metaphysis, and the LDF probe was held flush to the bone with a micromanipulator (MM3-ALL, 132 

World Precision Instruments, Sarasota, FL) for a 30-second recording. The probe was removed 133 

and replaced two more times, and the weighted mean of the three recordings was used for analysis. 134 

Measurements are expressed in perfusion units (PU), arbitrary units that are standard for LDF. 135 

 136 

2.4 Cancellous and Cortical Bone Structure (Femur) 137 

Cancellous bone microstructure and cortical bone geometry were assessed in the left femur by 138 

scanning in 70% ethanol with micro-computed tomography (micro-CT, µCT80, SCANCO 139 

Medical AG, Brüttisellen, Switzerland) using a 10-µm voxel size, 45 kV peak X-ray tube potential, 140 
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177 µA X-ray intensity, and 800-ms integration time. Volumes of interest (VOI) were analyzed 141 

using the scanner’s software (SCANCO v.6.6) for standard cortical and cancellous bone 142 

metrics.(36) The distal metaphyseal VOI was defined as 10% of the total femur length positioned 143 

proximal to the distal growth plate. The cancellous and cortical bone were contoured and analyzed 144 

separately in the metaphysis. The diaphyseal VOI was defined as 15% of the total femur length, 145 

centered between the distal growth plate and the middle of the third trochanter. The mid-diaphyseal 146 

VOI (used for estimating apparent-level material properties with three-point bending data) was 147 

defined as a 2.5-mm section with the same center as the diaphyseal VOI.  148 

 149 

2.5 Cortical Bone Remodeling (Tibia) 150 

Dynamic indices of cortical bone remodeling were examined in the right tibial diaphysis using 151 

dynamic histomorphometry. The right tibia was embedded in methylmethacrylate, then sectioned 152 

transversely in 200-µm thick sections just distal to the tibiofibular junction under constant water 153 

irrigation using a low-speed precision saw (IsoMet Low Speed Precision Cutter, Buehler, Lake 154 

Bluff, IL). Sections were glued to glass slides with cyanoacrylate glue and sanded to 10-30 µm 155 

thickness with increasing grit sandpaper.(37) Two sections from each bone were imaged at 40X on 156 

a Zeiss LSM 880 laser scanning microscope with Airyscan (Carl Zeiss Microscopy, Thornwood, 157 

NY). Standard dynamic histomorphometry parameters – mineralizing surface per bone surface 158 

(MS/BS), mineral apposition rate (MAR), and bone formation rate (BFR/BS) – were measured on 159 

two sections per mouse using ImageJ (version 1.51v) and Photoshop (version CC 2018m, Adobe 160 

Systems Inc., San Jose, CA),(38,39) and the mean values were used for analysis. 161 

 162 

2.6 Whole Bone and Apparent-Level Mechanical Properties (Femur) 163 
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The right femur underwent three-point bending to failure to measure whole bone mechanical 164 

properties and estimated apparent-level material properties. Immediately prior to testing, the femur 165 

was brought to room temperature and placed in a 37°C bath of 1X PBS for 60 sec. The bone was 166 

centered over a 6.5-mm lower span (40% average femur length) with the anterior side facing up 167 

so that the anterior diaphysis was loaded in compression. Three-point bending was performed to 168 

failure using an actuator speed of 0.025 mm/sec (EnduraTec ELF 3220, Bose Corp., Minnetonka, 169 

MN). Force (500-g capacity load cell, Sensotec Model 31/6775-06, Honeywell Sensotec, 170 

Columbus, OH) and displacement were recorded at 100 Hz. After failure, the femur was 171 

immediately wrapped in PBS-soaked gauze and returned to -20°C. Yield load (Fyield), maximum 172 

(ultimate) load (Fultimate), stiffness, post-yield deformation (PYD), and work-to-fracture were 173 

calculated from load-displacement curves with MATLAB® (R2017, The MathWorks, Inc., Natick, 174 

MA).(40) Yield was calculated as the point where a line with a 5% decrease in stiffness intersected 175 

the force-displacement curve.(40) PYD was calculated as the difference between the deformation at 176 

yield and the deformation at failure. The stress-strain curve was estimated using the cross-sectional 177 

moment of inertia about the bending axis calculated from the mid-diaphyseal VOI in the micro-178 

CT scans of the left femur (described above).(41) Yield stress (σyield), maximum (ultimate) stress 179 

(σultimate), and Young’s modulus (E) were calculated from these estimated stress-strain curves with 180 

MATLAB®.  181 

 182 

2.7 Tissue-Level Mechanical Properties (Femur) 183 

Cortical bone material properties were examined with nanoindentation in the right femoral 184 

diaphysis. Following three-point bending, the right femur was already divided in half at the failure 185 

point (position of the top loading point); a 1-2 mm transverse section was cut just distal to the 186 
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distal half and affixed to a glass slide with the fractured end facing up. The remainder of the distal 187 

half of the right femur was reserved for immunofluorescence (described below). The section was 188 

smoothed with increasing grit sandpaper (120 followed by 600 grit) and then polished with 3 µm 189 

diamond slurry (90-3DL3, Allied High Tech Products Inc, Rancho Dominguez, CA) until 190 

smooth.(42) Before nanoindentation, Raman spectroscopy was performed on the proximal surface 191 

of the polished cortical section (described below). Then nanoindentation was performed on the 192 

same samples using a Hysitron TriboIndenter TI 980 with a diamond Berkovich tip (Bruker, 193 

Billerica, MA). The instrument was calibrated by performing indentations in air and a fused quartz 194 

standard. Each bone was indented in the anterior and posterior regions of the mid-cortex in a 4x4 195 

grid of points equally spaced 15 µm apart. A trapezoidal loading function with 60 sec loading to 196 

3000 µN, 30 sec holding at peak load, and 6 sec unloading was performed at each point.(42,43) The 197 

fused quartz standard was tested before and after each mid-cortex grid to validate calibration and 198 

remove organic material from the tip. Force-displacement curves exhibiting nonlinearity during 199 

loading were removed from analysis. Hardness (H) and reduced modulus (Er) were calculated from 200 

the force-displacement curve during unloading and were averaged across each region grid, giving 201 

a mean for each anterior and posterior region.(44)  202 

 203 

2.8 Cortical Bone Composition (Femur) 204 

Cortical bone tissue composition was measured with Raman spectroscopy (XploRA PLUS 205 

confocal Raman microscope, HORIBA Scientific, Piscataway, NJ). Raman spectra were collected 206 

with a 785-nm laser at 50X magnification at the endosteal edge, mid-cortex, and periosteal edge 207 

in the posterior, lateral, anterior, and medial quadrants of the section (Figure 2A). Mid-cortex 208 

quadrant scans were comprised of a 2 x 5 grid of point collections spaced 5 µm apart, while 209 
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endosteal and periosteal quadrant scans were comprised of a line of 6 points spaced 2 µm apart, 210 

aligned parallel to and positioned 5-10 µm in from the bone surface. Each point was a 30-second 211 

accumulation in the 800-1800 cm-1 range. The spectrometer software (LabSpec 6, v.6.5.1.24) 212 

automatically performed baseline correction, while the remaining analysis was performed in 213 

MATLAB®. 214 

 215 

Spectra were normalized relative to the phosphate v1 maximum intensity (930-980 cm-1), and the 216 

maximum normalized intensities were determined in the regions corresponding to the summation 217 

of proline (830-863 cm-1) and hydroxyproline (864-899 cm-1), phosphate v1 (930-980 cm-1), 218 

carbonate v1 (1055-1090 cm-1), amide III (1220-1300 cm-1), and amide I (1616-1720 cm-1) (Figure 219 

2B).(45,46) Several standard metrics were calculated, as follows.(45) Mineral-to-matrix ratios were 220 

calculated as the ratio of the phosphate v1 normalized intensity relative to amide I, amide III, or 221 

summed proline and hydroxyproline normalized intensity. The carbonate-to-matrix ratio was 222 

calculated as the ratio of the carbonate v1 to amide I normalized intensities. Carbonate substitution 223 

was calculated as the normalized intensity of carbonate v1. Mineral maturity (crystallinity) was 224 

calculated as the inverse of the full-width at half maximum (FWHM) of a single-order Gaussian 225 

curve fit to the phosphate v1 band. Each of these Raman metrics were averaged across each 226 

measurement grid within quadrants, giving a mean for each region (endosteal edge, mid-cortex, or 227 

periosteal edge) at each quadrant (posterior, lateral, anterior, and medial). 228 

 229 

2.9 Osteovascular Structure (Femur) 230 

Vascular structure and proximity to bone surfaces were examined in the distal femoral metaphysis 231 

using thick-section immunofluorescence to quantify the amount of blood vessels, labeled by 232 

endomucin (EMCN), and bone surfaces, labeled by collagen type I (COL-1).(47) The remaining 233 
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distal portion of the right femur samples were fixed overnight in 10% neutral buffered formalin at 234 

4°C, decalcified in 0.5M ethylenediaminetetraacetic acid at 4°C for 24 hours, and then embedded 235 

in cryoprotectant embedding media comprised of 8% gelatin (G1890, Sigma-Aldrich), 2% 236 

polyvinylpyrrolidone (P5288, Sigma-Aldrich), and 20% sucrose (S7903, Sigma-Aldrich) in 1X 237 

PBS. Samples were sectioned longitudinally in 100-µm thick sections on a cryotome at -23°C (HN 238 

525NX, Thermo Fisher Scientific, Waltham, MA). Sections were stained overnight at 4°C using 239 

unconjugated primary antibodies at 1:100 dilution for endomucin (rat anti-mouse sc-65495, Santa 240 

Cruz Biotechnology, Santa Cruz, CA) and at 1:200 dilution for collagen type I (rabbit anti-mouse, 241 

AB765P, MilliporeSigma, Burlington, MA). Secondary antibodies at 1:200 dilution were added 242 

for 90 min at room temperature (goat anti-rat with AlexaFluor 647 ab150159, Abcam, Cambridge, 243 

UK; goat anti-rabbit with AlexaFluor 488 A11006, Invitrogen, Carlsbad, CA). DAPI at 2 µg/mL 244 

was added for 10 min at room temperature to counterstain nuclei. All sections were imaged at 20X 245 

on a Zeiss LSM 880 laser scanning microscope with Airyscan. Regions with positive COL-1 and 246 

EMCN labeling were traced by hand in ImageJ (version 1.51v) in a region of interest (ROI) that 247 

was 10% of the femur length and positioned just proximal to the distal growth plate (same as the 248 

micro-CT metaphyseal VOI). Vascular structure was analyzed by calculating EMCN+ area per 249 

total area, COL-1+ area per total area, and the distance between EMCN+ and COL-1+ surfaces in 250 

MATLAB®. Several samples were destroyed or lost during sectioning, so only a subset of samples 251 

were analyzed (n = 1 CFD-Sedentary, n = 3 CFD-Exercise, n = 2 HFD-Sedentary, n = 1 HFD-252 

Exercise). 253 

 254 

2.10 Osteovascular Crosstalk (Serum)  255 
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To examine osteovascular crosstalk between endothelial cells and osteoblasts, serum 256 

concentrations of bone morphogenetic protein 2 (BMP2) and vascular endothelial growth factor A 257 

(VEGF-A) were measured using serum collected and stored at the endpoint of the study. Serum 258 

concentrations were measured with enzyme-linked immunosorbent assays (ELISA) per the 259 

manufacturers’ instructions, using mouse-specific kits for BMP2 (ab119582, Abcam) and VEGF-260 

A (KMG0111, Thermo Fisher Scientific). All samples were analyzed in duplicate using a plate 261 

reader (Synergy H1M, BioTek Instruments, Inc., Winooski, VT). 262 

 263 

2.11 Statistical Analyses 264 

All statistical models were analyzed in SAS (SAS University Edition v. 9.4, SAS Institute Inc., 265 

Cary, NC) or R (R v. 3.5.1, R Foundation for Statistical Computing, Vienna, Austria) to determine 266 

the following: 1) effects of HFD and exercise on body mass and fasting serum glucose 267 

concentration at each week after treadmill exercise was started; 2) effects of HFD and exercise on 268 

metrics of glucose tolerance, bone perfusion, cancellous and cortical bone microstructure, cortical 269 

bone remodeling, whole bone mechanical properties, apparent-level material properties, 270 

osteovascular structure, and osteovascular crosstalk; 3) effects of HFD and exercise on cortical 271 

bone material properties measured with nanoindentation and composition measured with Raman 272 

spectroscopy. All data are presented as the group mean ± standard deviation unless otherwise 273 

stated. Results from nanoindentation and Raman spectroscopy are presented as mean across the 274 

scanned regions.  275 

 276 

For analysis #1, mouse mass and serum glucose were compared between diet and activity groups 277 

across weekly timepoints using a repeated measures factorial model with interaction between all 278 
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terms (SAS ‘MIXED’ procedure). Diet (CFD or HFD) and activity (sedentary or exercise) were 279 

modeled as fixed factors, while week was modeled as a repeated measure within each mouse. The 280 

residual variance was modeled assuming compound symmetry covariance, chosen as the 281 

covariance structure that provided the best fit to the data. Predicted least-squares means with 282 

Tukey-Kramer adjustment for multiple comparisons were used to analyze effect differences 283 

between diet and activity groups, with interaction, at each timepoint (i.e., CFD-Sedentary vs. HFD-284 

Sedentary at Week 9). 285 

 286 

For analysis #2, outcome parameters were compared between diet and activity, with interaction, 287 

using two-way analysis of variance (R ‘aov’ function). Tukey’s post-hoc tests were used to 288 

compare group means. Vascular structure parameters were analyzed with a similar model, but the 289 

interaction between diet and activity was not modeled due to missing data and thus insufficient 290 

power to analyze the full model. Three-point bending parameters were further analyzed with two 291 

analysis of covariance (ANCOVA) models, one with mass as the continuous covariate and one 292 

with femur length as the continuous covariate.(40,48) 293 

 294 

For analysis #3, the same repeated measures factorial model used in analysis #1 was used (SAS 295 

‘MIXED’ procedure), but parameters were compared between diet and activity groups across scan 296 

region (anterior and posterior for nanoindentation; posterior, lateral, anterior, and medial for 297 

Raman spectroscopy). The residual variance was modeled assuming compound symmetry 298 

covariance. Predicted least-squares means with Tukey-Kramer adjustment for multiple 299 

comparisons were used to analyze pairwise differences between diet and activity groups, with 300 

interaction (i.e., HFD-Sedentary vs. HFD-Exercise). 301 
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3 Results 302 

3.1 Obesity Phenotype 303 

Weekly measures of mouse mass, serum glucose, and monthly glucose tolerance tests confirmed 304 

that the high fat diet produced an obese phenotype in this study. The HFD group had consistently 305 

greater body mass at all timepoints compared to the CFD group (p = 0.0016, Figure 3A). At the 306 

end of the study, after 17 weeks of diet, the HFD group (43.0 ± 5.2 g) weighed 33% more than the 307 

CFD group (32.4 ± 1.7 g, p < 0.0001). Overall, the HFD group had increased fasting glucose 308 

concentrations relative to the CFD group (p = 0.0054), but not at every timepoint (Figure 3B). At 309 

the end of the study, fasting glucose concentration was 27% higher in the HFD group (246 ± 28 310 

mg/dL) than in the CFD group (193 ± 36 mg/dL, p = 0.014). Exercise did not affect body mass (p 311 

= 0.76) or fasting serum glucose concentration (p = 0.57). 312 

 313 

The HFD group had a lower glucose tolerance, metabolizing a bolus of glucose more slowly 314 

(represented by larger area under the curve) than did the CFD group at Week 13 (HFD: 33.2 ± 9.0 315 

p = 0.017 vs. CFD: 26.2 ± 2.2) and Week 17 (HFD: 39.0 ± 9.0, p = 0.0004 vs. CFD: 26.5 ± 7.4) 316 

(Figure 3C). At Week 13, exercise nearly improved glucose tolerance in the HFD-Exercise group 317 

(28.2 ± 2.8) relative to the HFD-Sedentary group (38.2 ± 8.1, p = 0.066), bringing the glucose 318 

tolerance of HFD-Exercise similar to that of CFD-Sedentary (26.0 ± 5.1, p = 0.92) and CFD-319 

Exercise (26.0 ± 1.7, p = 0.96) groups. The benefit of exercise in the HFD group did not persist, 320 

however, and at Week 17, the HFD-Exercise (39.1 ± 4.5) and HFD-Sedentary (38.9 ± 6.7) groups 321 

had similar glucose tolerance (p = 1.00) elevated above that of the CFD groups (CFD-Exercise: 322 

28.0 ± 5.2; CFD-Sedentary: 25.0 ± 3.9). Several mice had glucose concentrations that were above 323 

the detectible range of the glucometer, which artificially decreased the area under the curves. 324 
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During the Week 13 GTT, one HFD-Sedentary mouse had over-range readings at three timepoints, 325 

and one CFD-Sedentary mouse had over-range readings at one timepoint. During the Week 17 326 

GTT, one HFD-Sedentary and one HFD-Exercise mouse had over-range readings at two 327 

timepoints each, and one CFD-Exercise had an over-range reading at one timepoint. 328 

 329 

3.2 Bone Perfusion (Tibia) 330 

At the end of the study, in vivo perfusion in the proximal tibial metaphysis was 29% greater in 331 

exercise groups (12.2 ± 3.0 PU) compared to sedentary groups (9.5 ± 1.6 PU, p = 0.044, Figure 4). 332 

Tibial perfusion was similar between HFD (11.7 ± 2.6 PU) and CFD groups (10.1 ± 2.7 PU, p = 333 

0.23).  334 

 335 

3.3 Cancellous and Cortical Bone Structure (Femur) 336 

High fat diet had detrimental effects on trabecular microstructure in the distal femoral metaphysis. 337 

Compared to CFD, the HFD group had 32% lower bone volume fraction (BV/TV, HFD: 11.2 ± 338 

3.5% vs. CFD: 16.4 ± 3.2%, p = 0.0089, Figure 5A); 20% lower trabecular number (Tb.N, HFD: 339 

3.73 ± 0.23 mm-1 vs. CFD: 4.64 ± 0.54 mm-1, p = 0.0010, Figure 5B); and 26% greater trabecular 340 

separation (Tb.Sp, HFD: 262.4 ± 18.4 µm vs. CFD: 208.5 ± 21.0 µm, p=0.0001, Figure 5C); but 341 

similar trabecular thickness (Tb.Th, HFD: 51.3 ± 6.6 µm vs. CFD: 50.1 ± 3.6 µm, p = 0.68, Figure 342 

5D). In addition, the connectivity density (Conn.D) of the trabecular network was 50% lower in 343 

the HFD group compared to the CFD group (p = 0.00053, Table 1), but the degree of anisotropy 344 

(DA) was not significantly different between HFD and CFD groups (p = 0.11, Table 1). HFD 345 

group had a 30% lower trabecular vBMD than CFD group (p = 0.0082) but similar TMD (p = 346 

0.98). Exercise did not significantly affect any of the metrics for trabecular bone microstructure.  347 
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 348 

While cancellous bone microstructure was substantially altered by HFD in the distal femoral 349 

metaphysis, cortical bone geometry remained similar between HFD and CFD in the distal 350 

metaphysis and diaphysis. In the femur, neither HFD nor exercise had a significant effect on 351 

cortical vBMD, cortical area (Ct.Ar), total area (Tt.Ar), cortical area fraction (Ct.Ar/Tt.Ar), or 352 

cortical thickness (Ct.Th) in either the cortical bone around the metaphyseal VOI or in the 353 

diaphyseal VOI (Table 1). Similarly, in the mid-diaphyseal VOI, neither HFD nor exercise affected 354 

medial-lateral moment of inertia (IML, p = 0.25 and p = 0.38, respectively) or anterior-posterior 355 

moment of inertia (IAP, p = 0.11 and p = 0.28, respectively). Overall femur length was also similar 356 

across both diet (p = 0.17) and exercise (p = 0.52) groups (Table 1). 357 

 358 

3.4 Cortical Bone Remodeling (Tibia) 359 

Dynamic indices of cortical bone remodeling from dynamic histomorphometry were similar in the 360 

HFD and CFD groups at both the endosteal and periosteal surfaces, with no significant differences 361 

in MS/BS, MAR, or BFR/BS (Table 2). Exercise, however, did significantly affect the extent of 362 

active remodeling bone surface, with 62% greater endosteal MS/BS compared to sedentary groups 363 

(p = 0.016), but exercise did not affect endosteal MAR (p = 0.74) or BFR/BS (p = 0.57). The 364 

periosteal surface had little labeling, and neither HFD nor exercise had a significant effect on 365 

periosteal remodeling (Table 2).  366 

 367 

3.5 Whole Bone, Apparent, and Tissue Mechanical Properties (Femur) 368 

HFD negatively affected whole bone mechanical properties in the femur measured by three-point 369 

bending (Figure 6, Table 3). Compared to the CFD group, the HFD group had 18% lower yield 370 
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load ( p = 0.039) and nearly lower ultimate load (14% lower, p = 0.058) and stiffness (18% lower, 371 

p = 0.055). After accounting for body mass (ANCOVA), none of the mechanical properties 372 

differed between HFD and CFD groups, except whole bone stiffness tended to be lower in HFD 373 

compared to CFD even after body mass adjustments (p = 0.085, Table 3). Femoral length was 374 

similar across diet and exercise groups (Table 1), but when whole bone mechanical properties were 375 

adjusted for femur length (ANCOVA), none of the mechanical properties differed between HFD 376 

and CFD groups, except yield load was nearly lower in HFD compared to CFD (p = 0.082, Table 377 

3). Similarly, none of the estimated apparent-level material properties – yield stress, ultimate 378 

stress, and Young’s modulus – were significantly affected by HFD or exercise (Table 3). Cortical 379 

tissue material properties assessed with nanoindentation were also not significantly affected by 380 

HFD or exercise (Table 3). Both hardness and reduced modulus values were consistent across 381 

regions (p = 0.66 and p = 0.42, respectively). 382 

 383 

3.6 Cortical Bone Composition (Femur) 384 

HFD had only a small effect on tissue composition as assessed by Raman spectroscopy (Figure 7), 385 

nearly reducing carbonate substitution by 2% in the mid-cortex (p = 0.080) and by 3% along the 386 

periosteal edge (p = 0.083, Figure 7F). Exercise had more pronounced effects on cortical bone 387 

composition. Mineral maturity was nearly higher (2% greater phosphate crystallinity) for exercise 388 

groups compared to sedentary groups near the periosteal edge (p = 0.068, Figure 7A). Exercise did 389 

not affect mineral crystallinity in the mid-cortex (p = 0.81) or near the endosteal edge (p = 0.20). 390 

Mineral-to-matrix band intensity ratios near the endosteal edge were higher for exercise groups 391 

relative to sedentary groups for the phosphate/(proline+hydroxyproline) ratio (27% higher, p = 392 

0.013, Figure 7B), phosphate/amide I ratio (18% higher, p = 0.030, Figure 7C), and 393 
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phosphate/amide III ratio (25% higher, p = 0.023, Figure 7D). Similarly, the carbonate-to-matrix 394 

ratio (carbonate/amide I) near the endosteal edge was also increased for exercise compared to 395 

sedentary (13% higher, p = 0.023, Figure 7E). Carbonate substitution was not affected by exercise 396 

in any region (Figure 7F).  397 

 398 

3.7 Osteovascular Structure (Femur) 399 

Osteovascular structure in the distal femoral metaphysis, as assessed by immunofluorescence, was 400 

not significantly affected by HFD or exercise (Table 4). Vessel area fraction (endomucin-positive 401 

blood vessels per total area) within the bone was similar HFD and CFD (p = 0.78) and between 402 

exercise and sedentary (p = 0.51) groups. Similarly, the average vessel-to-bone distance between 403 

endomucin-positive blood vessels and collagen type I-positive bone surfaces did not differ 404 

between HFD and CFD (p = 0.44) or between exercise and sedentary (p = 0.15). Bone surface area 405 

fraction (col-1-positive bone area per total area) was 32% lower in the HFD group compared to 406 

the CFD group (p = 0.034, Table 4), consistent with the reduced BV/TV noted above. Exercise did 407 

not affect col-1-positive bone surface area fraction (p = 0.51), also consistent with BV/TV results.  408 

 409 

3.8 Osteovascular Crosstalk (Serum) 410 

Crosstalk between endothelial cells and osteoblasts, as assessed by serum ELISA, was not affected 411 

by HFD or exercise (Table 5). At the end of the study, serum concentrations were similar between 412 

HFD and CFD groups (p = 0.27 for BMP2 and p = 0.89 for VEGF-A) and also between exercise 413 

and sedentary groups (p = 0.36 for BMP2 and p = 0.43 for VEGF-A). 414 

 415 

 416 
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4 Discussion 417 

High fat diet-induced obesity reduced whole bone bending strength in the femur, without altering 418 

cortical bone mineral density, geometry, or apparent- or tissue-level material properties relative to 419 

control fat diet. Because bone strength depends on these parameters,(9,10) we expected one of them 420 

to be altered by HFD to explain the underlying cause for the relative strength deficits in that group. 421 

The reductions in bending properties with HFD were no longer significant after adjusting for body 422 

size, by including either body mass (yield and ultimate load) or femur length (ultimate load and 423 

stiffness) as a covariate. Although femur length was not significantly different between HFD and 424 

CFD groups, variations in body size seems to account for diet-related strength differences, as was 425 

also reported in a recent study where the magnitude of the effects of HFD on cortical area and 426 

bending strength were reduced after accounting for body mass.(48) HFD had deleterious effects on 427 

cancellous bone microstructure in the distal femur, with reduced bone volume due to loss of 428 

trabeculae, which reduces bone strength to a much greater extent compared to trabecular 429 

thinning.(49) Therefore, bone strength at primarily cancellous bone sites, like vertebrae, may also 430 

be reduced with HFD, as was demonstrated in the mouse L3 vertebra after HFD(15) and the rat L6 431 

vertebra after high sucrose diet induced-obesity.(50) HFD did not alter osteovasculature in 432 

cancellous sites, with no differences in bone perfusion (proximal tibia) or vascular area and 433 

proximity to bone surfaces (distal femur) relative to CFD. This work reveals that HFD negatively 434 

affects cancellous bone microstructure without affecting vessel area, and cortical bone strength 435 

without affecting cortical geometry or material properties, and only slight changes to tissue 436 

composition. 437 

 438 
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HFD created an obese, hyperglycemic phenotype that persisted with daily treadmill exercise. After 439 

9 weeks of diet, HFD groups were heavier than CFD groups, and after 13 weeks of diet, HFD 440 

groups had significantly lower glucose tolerance and weekly fasting serum glucose concentrations 441 

that were over 200 mg/dL, indicative of pre-diabetes.(51) Although exercise had transient benefits 442 

to glucose tolerance in the HFD group, these benefits did not persist to the end of the study at 443 

Week 17, and daily treadmill exercise did not mitigate the negative effects of HFD on cancellous 444 

bone microstructure. Exercise had no effect on femoral cortical mechanical properties at the whole 445 

bone, apparent, or tissue levels, despite slightly increasing mineral-to-matrix ratios in the 446 

diaphysis. Exercise, but not HFD, increased the extent of active remodeling bone surface in the 447 

tibial diaphysis and bone perfusion in the proximal tibia but had no effect on the relative amount 448 

of blood vessels or the distance between blood vessels and bone surfaces in the distal femur.  449 

 450 

High fat diet negatively affected cancellous, but not cortical, bone structure in the femur. Our 451 

reductions in cancellous microstructure and bone surface area in the distal femur with 60% fat diet 452 

from age 5-23 weeks are consistent with results from several other studies, which also reported 453 

cancellous bone degradation following HFD in young male C57Bl/6J mice. Compared to mice fed 454 

a control fat diet, mice fed a high fat diet (either 45% or 60% fat) from 3-6 weeks of age to 15-28 455 

weeks of age experienced 18-49% reductions in cancellous bone volume fraction(12,14,15,17,52) and 456 

10-18% reductions in trabecular number(13,15) in the distal femoral metaphysis. Conversely, a 60% 457 

HFD from 7-28 weeks of age induced a 14% increase in trabecular cross-sectional area in the distal 458 

femur relative to CFD, but the measurements were obtained using peripheral quantitative 459 

computed tomography with a large voxel size (70 x 70 x 500 µm).(53) Most studies have been 460 

performed in young, male mice, though a couple of studies found similar reductions in BV/TV in 461 
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diets started after skeletal maturity was reached. A study comparing extended HFD from 7-28 462 

weeks of age to short-term HFD from 25-28 weeks of age found a 19% decrease in cancellous 463 

BV/TV in the distal femoral metaphysis with extended HFD and a 12% decrease with short-term 464 

HFD.(12) Similarly, a study comparing 60% HFD from 5-17 weeks of age (young) to HFD from 465 

20-32 weeks of age (mature) found, compared to CFD mice of the same age, a 45% decrease in 466 

BV/TV in the distal femoral metaphysis in young mice and a 29% decrease in mature mice.(15) 467 

These studies demonstrate that diet-induced obesity in male mice commonly leads to detrimental 468 

changes in cancellous bone microstructure, as we report here, and suggest that altered modeling 469 

during skeletal growth is not solely responsible for the negative HFD effects on microstructure.  470 

 471 

The effects of HFD on cortical bone geometry in male C57Bl/6J mice are less consistent. Similar 472 

to our results, several groups report no effect on cortical bone parameters,(13,14,16,54) but the study 473 

that reported increased trabecular cross-sectional area also found a 7% increase in cortical area in 474 

the diaphysis and a 21% increase in polar moment of inertia (pMOI) relative to CFD.(53) Similarly, 475 

a 60% fat diet from 4-23 weeks of age resulted in an 11% increase in both diaphyseal Ct.Th and 476 

Ct.Ar relative to CFD,(18) while a 60% fat diet from 6-18 weeks resulted in slightly expanded 477 

diaphyseal marrow area, lower Ct.Th, and similar pMOI relative to CFD.(17) More research is 478 

required to determine specific underlying factors that may be contributing to this variability in 479 

HFD-induced effects on cortical bone structure, and whether these factors may help explain our 480 

reduced femoral strength. In particular, cortical porosity, which we could not examine at the 481 

resolution of our micro-CT scans, can impact bone strength,(55,56) and changes in cortical porosity 482 

with HFD are understudied. Two HFD studies have reported porosity measured with micro-CT 483 

using voxel sizes between 10-12 um,(13,57) but accurately measuring cortical porosity requires a 484 
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higher resolution with a voxel size of 1-2 µm, particularly for small animals.(58) To our knowledge 485 

only one study has examined porosity at this appropriate resolution, and they found that porosity 486 

measured with a 2-µm voxel size was up to 37% lower than porosity measured with a 1-µm voxel 487 

size, and that HFD reduced vascular canal porosity by 33% relative to CFD.(59)  488 

 489 

HFD decreased whole bone mechanical properties in the femur, with 18% lower yield load, 14% 490 

lower ultimate load, and 18% lower stiffness in three-point bending compared to CFD. Other 491 

groups have also reported reduced femur bending properties for young male C57B/6J mice. 492 

Studies with HFD beginning at 3-6 weeks of age and ending at 19-28 weeks of age reported a 12% 493 

reduction in maximum load,(19) 29% reduction in ultimate load, and 20% reduction in stiffness.(52) 494 

Similar results have also been reported in the L3 vertebra, with mice fed a 60% HFD from 5-17 495 

weeks of age (young) or from 20-32 weeks of age (mature) having 17-24% lower yield load, 16-496 

26% lower maximum load, and 21-27% lower stiffness during compressive loading in both age 497 

groups compared to age-matched mice fed a CFD.(15) Conversely, in a study of cantilever bending 498 

in the femoral neck, the HFD group (60% fat diet from 7-28 weeks of age) had 18% higher 499 

maximum load and 29% higher bending modulus compared to the CFD group.(53)  500 

 501 

Despite reductions in whole bone mechanical properties, we found no changes in estimated 502 

apparent-level material properties with HFD. The study with reduced maximum force and stiffness 503 

in the L3 vertebra also found no significant changes in apparent-level material properties in either 504 

young or old HFD mice compared to age-matched CFD.(15) Other groups have reported either 505 

reduced or increased apparent-level material properties for HFD vs. CFD in male C57B/6J mice. 506 

For whole femurs in three-point bending, two studies found that HFD (60% fat diet starting from 507 
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3-6 weeks-of-age to 19-28 weeks of age) caused 19-32% lower apparent elastic modulus, 15-26% 508 

lower maximum stress, and 24% lower yield stress,(18,19) while another study found 44% higher 509 

apparent elastic modulus.(52) Tissue-level material properties were also unaltered by HFD in our 510 

study. To our knowledge, no previous study has examined the effects of HFD on tissue-level 511 

material properties. Since we did not find HFD-induced changes in bone density, structure, or 512 

tissue-level properties, the reduced whole bone strength may result from a combination of small 513 

changes in several parameters that were not statistically significant in this study.  514 

 515 

Cortical tissue composition in the femur was altered by exercise, with increased mineral-to-matrix 516 

and carbonate-to-matrix ratios near the endosteal edge and increased mineral maturity near the 517 

periosteal edge. Mineralization of new bone tissue occurs slowly, so higher mineral-to-matrix and 518 

carbonate-to-matrix ratios are associated with older bone that is generally harder and stiffer.(45,60) 519 

However, a study using the same treadmill regimen initiated at 16 weeks of age found that 520 

treadmill exercise increased ultimate strain and the mineral-to-matrix ratio of phosphate v1 to 521 

summed proline and hydroxyproline without affecting tibial morphology, suggesting increased 522 

mineral-to-matrix ratios could be a mechanism by which bone adapts to exercise to maintain local 523 

functional strain.(61) Other studies have used Raman spectroscopy to analyze the increased 524 

accumulation of advanced glycation end-products (AGEs), known to cause material differences 525 

that increase fracture risk,(52,62–64) in rodent diabetic bone. Elevated glucose may lead to AGE 526 

accumulation in collagen,(62,65) which has been shown to increase resistance to plastic deformation 527 

and stiffness at the material level in bone.(64,66)  A recent study in HFD mice (60% fat from 8-30 528 

weeks of age) found no difference in mineral-to-matrix ratio, crystallinity, or carbonate 529 

substitution compared to CFD, but an increased amount of the AGE pentosidine (PEN), which was 530 
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positively correlated with higher bending modulus despite lower stiffness and ultimate load.(52) 531 

However, the Raman spectra in our study did not contain any of these AGE bands, indicating 532 

AGEs were not significantly present. 533 

 534 

This study found no effect of HFD or exercise on 2D osteovascular structure (vessel area and 535 

proximity to bone surfaces) in the distal femur, but stereological methods are not ideal for 536 

measuring complex three-dimensional structures like the branching network of blood vessels,(67) 537 

so HFD may have affected osteovascular parameters that are not quantifiable with stereology. 538 

Similar to our results, a recent study reported no HFD-related changes in the 3D vessel network in 539 

the proximal tibia using a new contrast agent with micro-CT.(68) Specifically, HFD from 8-30 540 

weeks of age did not affect the vessel volume per medullary volume or the distance between blood 541 

vessels and bone surfaces compared to CFD. However, this study also reported that HFD reduced 542 

the number of blood vessels by 3.9-fold and increased average vessel diameter by 2.7-fold, metrics 543 

that cannot be accurately quantified with stereological techniques.  544 

 545 

Perfusion is a functional measure of blood supply to tissue that incorporates not only the amount 546 

of blood vessels but also the velocity and direction of the blood flow in the vessels, as well as 547 

vessel permeability and diameter.(69) For example, if HFD increased vessel diameter but reduced 548 

vessel number compared to CFD, these changes could offset each other and result in the same 549 

perfusion measurement. Similarly, the increased perfusion observed with exercise may result from 550 

other structural changes to the vascular network besides vessel area and proximity to bone surfaces, 551 

which were similar between sedentary and exercise groups. Furthermore, bone perfusion likely 552 

experiences temporal changes in response to interventions like HFD and exercise; however, it was 553 
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only measured at the end of the study to avoid causing inflammation in the hindlimb, as 554 

recommended by the group that developed the method for assessing perfusion in mouse tibiae.(34) 555 

 556 

Diet-induced obesity has far-reaching physiological effects that can impact bone health and may 557 

be responsible for the observed envelope-specific changes to cancellous but not cortical bone 558 

structure. In this study, HFD led to the development of obesity and pre-diabetic levels of elevated 559 

serum glucose, both of which impact metabolic pathways that influence bone metabolism. 560 

Elevated glucose concentrations are associated with reduced BMD in rats and humans,(70,71) as 561 

well as in vitro proliferation and mineralization of osteoblasts.(65,72,73) Obesity in humans and HFD-562 

induced obesity mouse models are associated with increases in both leptin and glucocorticoids, 563 

which differentially affect cortical and cancellous bone envelopes.(74–77) Leptin, which signals 564 

satiety, also promotes the maintenance of bone mass; when the leptin receptor is knocked out 565 

globally in mice they become obese, even without HFD, and gain cortical bone but lose cancellous 566 

bone.(77) Mice with conditional knockout of the leptin receptor in bone marrow stromal cells, 567 

however, do not become obese without HFD. With 12 weeks of HFD, the conditional knockout 568 

prevented detrimental cancellous microstructure changes and decreased the number of 569 

mesenchymal stem cells (MSC) that differentiated into adipocytes compared to wild-type mice, 570 

suggesting obesity affects bone maintenance directly through leptin.(78) Corticosterone, a 571 

glucocorticoid in rodents, is associated with increased bone resorption, but in growing mice the 572 

effect is bone- and site-specific, tending to increase endosteal resorption while preventing 573 

periosteal remodeling and leading to an expanded marrow cavity.(76) Unlike leptin, the effect of 574 

obesity on increased serum glucocorticoids in either rodents or humans is unclear.(75,79) Lastly, 575 

increased amounts of marrow adipose tissue (MAT) may negatively affect cancellous bone 576 
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structure. We did not quantify MAT in this study, but other groups report dramatic increases in the 577 

amount of metaphyseal MAT with HFD,(13,24–27) and decreased MAT with intense exercise.(24,25) 578 

Moderate treadmill exercise did not affect bone microstructure in this study, but other studies that 579 

utilize more intense exercise regimen, such as free access to running wheel(24,25,53,80) or high 580 

intensity treadmill training,(81) found effects of exercise in HFD mice.  581 

 582 

In conclusion, our study demonstrated that high fat diet-induced obesity caused detriments to 583 

cancellous bone microstructure and whole bone bending strength in the femur that were not 584 

concomitant with changes to metaphyseal perfusion or vascularity, or to cortical geometry or tissue 585 

properties. We also showed that moderate treadmill activity did not reverse the deleterious effects 586 

of HFD, increase intraosseous vascularity, or increase mechanical properties in this model. 587 

Exercise did, however, increase intraosseous perfusion in the tibia, and stimulate changes to tissue 588 

composition in the femur, without affecting geometry. These findings should be examined further 589 

by characterizing changes to intraosseous perfusion at different timepoints during the development 590 

of HFD, and by incorporating more intense exercise routines.  591 

  592 
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Figure Legends 

Figure 1: Experimental design: Mice were fed either control fat diet (CFD) or high fat diet (HFD) 

starting at 5 weeks of age. After 9 weeks of diet, groups either were exercised (moving treadmill) 

or remained sedentary (stationary treadmill) for 8 weeks. After 17 total weeks of diet and 8 weeks 

of exercise, various endpoint vascular and bone metrics were analyzed. 

 

Figure 2: A) Bone composition was assessed by Raman spectroscopy at three positions in the 

posterior, lateral, anterior, and medial quadrants within the cortical diaphysis of right femora: mid-

cortex (2x5 point array) and endosteal and periosteal edges (1x6 linear array). B) Raman spectra 

were normalized to the phosphate v1 band intensity (b), and crystallinity was calculated as the 

inverse of the full-width at half maximum of the phosphate v1 band. Mineral-to-matrix band 

intensity ratios were calculated for phosphate v1 relative to the summation of proline and 

hydroxyproline (a), amide I (e), and amide III (d). Carbonate substitution (carbonate v1 (c)/ 

phosphate v1) and carbonate-to-matrix ratio (carbonate v1 / amide I) were also calculated.  

 

Figure 3: A) Body mass was consistently higher with HFD than CFD at every timepoint. B) 

Weekly fasting glucose concentration were higher in the HFD group at Week 11, 13, 15, 16, and 

17. C) HFD had lower glucose tolerance (higher area under curve) than CFD at Weeks 13 and 17 

of diet. Data in A-B presented as estimated least-squares mean ± 95% confidence interval. a: p < 

0.05 HFD vs. CFD (main effect), b: p < 0.10 HFD-Exercise (Ex) vs. HFD-Sedentary (Sed). 
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Figure 4: Bone perfusion in the proximal tibial metaphysis was significantly higher in exercise 

(Ex) than in sedentary (Sed) groups but not with HFD compared to CFD. c: p < 0.05 Ex vs. Sed 

(main effect). PU = perfusion unit (arbitrary). 

 

Figure 5: Relative to CFD, HFD groups exhibited significantly less robust trabecular 

architecture in the distal femur, with A) decreased bone volume fraction and B) trabecular 

number and C) increased trabecular separation, but D) no differences in trabecular thickness. a: p 

< 0.05 HFD vs. CFD (main effect). 

 

Figure 6: Representative force-displacement curves from femur three-point bending to failure. 

Relative to CFD, HFD significantly reduced yield load and nearly reduced stiffness and ultimate 

load. a: p < 0.05 HFD vs. CFD (main effect), d: p < 0.10 HFD vs. CFD (main effect). 

 

Figure 7: Relative to sedentary, exercise groups had increased A) mineral crystallinity on the 

periosteal edge. Along the endosteal edge, exercise increased B) phosphate v1 to combined 

proline and hydroxyproline ratio, C) phosphate v1 to amide I ratio, D) phosphate v1 to amide III 

ratio, and E) carbonate v1 to amide I ratio but not F) carbonate substitution. Points represent 

mean of all quadrants per femur, lines and bars represent estimated least-squares mean ± 95% 

confidence interval c: p < 0.05 Ex vs. Sed (main effect), d: p < 0.10 HFD vs CFD (main effect), 

g: p < 0.10 Ex vs. Sed (main effect). 
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Tables 

Table 1: Cancellous and Cortical Bone Structure in the Femur (mean ± SD) 

Trait Control Fat Diet High Fat Diet 
Sedentary Exercise Sedentary Exercise 

Distal metaphysis (cancellous and cortical) 
Conn.D (mm-3) 152.7 ± 52.9 144.1 ± 21.8 82.4 ±13.5a 67.0 ± 22.8a 
DA 1.39 ± 0.14 1.48 ± 0.21 1.40 ± 0.17 1.32 ± 0.09 
Trabecular vBMD 
(mg/cm3) 190.8 ± 59.5 165.6 ± 18.5 141.0 ± 33.9a 106.5 ± 21.1a 

Trabecular TMD 
(mg/cm3) 811.3 ± 12.8 802.7 ± 18.0 814.0 ± 23.9 803.2 ± 4.9 

Cortical vBMD 
(mg/cm3) 682.5 ± 31.4 670.1 ± 21.1 678.6 ± 17.3 670.5 ± 9.0 

Ct.Ar (mm2) 0.99 ± 0.11 0.94 ± 0.06 0.99 ± 0.17 0.90 ± 0.07 
Tt.Ar (mm2) 3.75 ± 0.20 3.67 ± 0.36 3.62 ± 0.43 3.57 ± 0.16 
Ct.Ar/Tt.Ar (%) 26.5 ± 2.1 25.7 ± 1.6 27.1 ± 1.5 25.1 ± 1.4 
Ct.Th (µm) 126.0 ± 9.3 122.0 ± 4.3 125.2 ± 11.4 118.6 ± 6.2 

Diaphysis (cortical) 
vBMD (mg/cm3) 841.5 ± 15.0 834.6 ± 8.3 841.0 ± 16.7 824.6 ± 14.7 
Ct.Ar (mm2) 1.12 ± 0.10 1.04 ± 0.08 1.00 ± 0.18 0.93 ± 0.05 
Tt.Ar (mm2) 2.62 ± 0.22 2.42 ± 0.35 2.33 ±0.37 2.27 ± 0.11 
Ct.Ar/Tt.Ar (%) 39.7 ± 2.3 41.5 ± 3.5 41.8 ± 0.6 40.5 ± 1.6 
Ct.Th (µm) 191.0 ± 10.5 193.0 ± 9.2 194.1 ± 20.4 186.7 ± 9.7 

Mid-diaphysis (cortical) 
IML (mm4) 0.22 ± 0.04 0.19 ± 0.05 0.18 ± 0.06 0.17 ± 0.02 
IAP (mm4) 0.55 ± 0.09 0.48 ± 0.10 0.45 ± 0.15 0.39 ± 0.03 
Femur Length (mm) 16.4 ± 0.3 16.1 ± 0.8 15.9 ± 0.3 15.9 ± 0.2 

a: p < 0.05 HFD vs. CFD (main effect) 
 

Table 2: Dynamic Indices of Cortical Bone Remodeling in the Tibial Diaphysis (mean ± SD) 

Trait Control Fat Diet High Fat Diet 
Sedentary Exercise Sedentary Exercise 

Endosteal 
MS/BS (%) 27.8 ± 3.6 43.1 ± 13.4c 27.0 ± 12.7 39.8 ± 6.8c 

MAR (µm/day) 0.59 ± 0.25 0.34 ± 0.24 0.33 ± 0.41 0.49 ± 0.36 
BFR/BS (µm3/µm2/day) 0.30 ± 0.12 0.18 ± 0.13 0.13 ± 0.16 0.23 ± 0.16 

Periosteal 
MS/BS (%) 4.3 ± 5.1 13.4 ± 15.1 4.4 ± 6.7 8.7 ± 15.2 
MAR (µm/day) 0.12 ± 0.16 0.22 ± 0.26 0.10 ± 0.13 0.20 ± 0.26 
BFR/BS (µm3/µm2/day) 0.02 ±0.02 0.09 ± 0.12 0.01 ± 0.01 0.05 ± 0.10 

c: p < 0.05 Exercise vs. Sedentary (main effect) 
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Table 3: Whole Bone, Apparent, and Tissue Mechanical Properties in the Femoral Diaphysis 

Trait Control Fat Diet High Fat Diet 
Sedentary Exercise Sedentary Exercise 

Whole bone mechanical properties (three-point bending) (mean ± standard deviation) 
Fyield (N) 16.0 ± 2.1 16.1 ± 3.7 13.8 ± 2.3a,f 12.6 ± 1.3a,f 

Fult (N) 22.3 ± 4.1 20.9 ± 2.1 19.1 ± 3.1d 18.0 ± 1.6d 

Stiffness (N/mm) 137.5 ± 21.9 132.9 ± 17.6 119.3 ± 25.9d,e 101.7 ± 26.2d,e 

PYD (mm) 0.13 ± 0.04 0.11 ± 0.05 0.11 ± 0.02 0.14 ± 0.02 
Work-to-fracture (mJ) 6.09 ± 0.98 4.43 ± 0.97 3.79 ± 1.60 5.02 ± 0.75 

Apparent material properties (three-point bending) (mean ± standard deviation) 
σyield (MPa) 93.4 ± 8.9 100.5 ± 22.4 96.5 ± 15.8 88.15 ± 5.0 
σult (MPa) 117.6 ± 6.1 121.9 ± 11.2 117.2 ± 12.7 117.3 ± 6.9 
E (GPa) 3.65 ± 0.15 4.15 ± 0.74 3.89 ± 0.73 3.58 ± 1.19 

Tissue material properties (nanoindentation) (least squares mean ± 95% confidence interval) 
H (GPa) 0.96 ± 0.21 0.85 ± 0.22 0.90 ± 0.20 0.87 ± 0.21 
Er (GPa) 25.6 ± 5.6 22.7 ± 5.9 25.2 ± 5.6 22.6 ± 5.5 
(main effects) a: p < 0.05 HFD vs. CFD raw data; d: p < 0.10 HFD vs. CFD raw data; e: p < 0.10 HFD 

vs. CFD body mass-adjusted; f: p < 0.10 HFD vs. CFD femur length-adjusted 
 

Table 4. Osteovascular Structure in the Distal Femoral Metaphysis (mean ± standard deviation) 
Metric CFD HFD Sedentary Exercise 
Vessel area fraction 
(% EMCN+) 7.9 ± 3.6 7.2 ± 1.9 5.8 ± 3.5 8.9 ± 1.6 

Bone surface area 
fraction (% COL-1+) 19.2 ± 2.4 13.1 ± 2.5a 15.8 ± 4.3 17.1 ± 4.2 

Vessel-to-bone 
distance (µm) 78.6 ± 41.8 60.5 ± 8.0 85.9 ± 41.7 59.5 ± 20.5 

a: p < 0.05 HFD vs. CFD (main effect). Area fractions expressed at % of total area. 
 

Table 5. Serum Concentrations of Bone-Vascular Crosstalk Markers (mean ± standard deviation) 

Marker Control Fat Diet High Fat Diet 
Sedentary Exercise Sedentary Exercise 

BMP2 (pg/mL) 80.7 ± 12.1 72.0 ± 7.5 73.8 ± 3.4 98.9 ± 31.0 

VEGF-A (pg/mL) 42.8 ± 13.4 52.0 ± 8.8a 55.4 ± 8.0 38.0 ± 8.5 
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Figures 

Figure 1 
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Figure 2 
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Figure 3 
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Figure 4 
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Figure 5 
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Figure 6 
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Figure 7 
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