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Abstract 
 

Technical variation across different batches of RNA-seq experiments can clearly produce 
spurious signals of differential expression and reduce our power to detect true differences. Thus, 
it is important to identify major sources of these so-called “batch effects” to eliminate them from 
study design. Based on the different chemistries of “classic” phenol extraction of RNA compared 
to common commercial RNA isolation kits, we hypothesized that specific mRNAs may be 
preferentially extracted depending upon method, which could masquerade as differential 
expression in downstream RNA-seq analyses. We tested this hypothesis and found that phenol 
extraction preferentially isolated membrane-associated mRNAs, thus resulting in spurious 
signals of differential expression. Within a self-contained experimental batch (e.g. control versus 
treatment), the method of RNA isolation had little effect on the ability to identify differentially 
expressed transcripts. However, we suggest that researchers performing meta-analyses across 
different experimental batches strongly consider the RNA isolation methods for each experiment. 
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Introduction 
 

The decreasing cost of massively parallel sequencing had led to an explosion of 
transcriptomic datasets. This large number of datasets has allowed for meta-analyses, which 
can be valuable due to their increase in statistical power. However, researchers performing 
meta-analyses on transcriptomic datasets need to be cautious in their use and be aware of so-
called “batch effects,” where technical differences between experimental batches can clearly 
produce spurious signals of differential expression and reduce our power to detect true 
differences. 

In some cases the sources of batch effects are known and can be avoided. Some well-
known batch effects include sequencing lane effects, library construction protocol, and RNA 
quality [1-3]. Other sources of batch effects clearly exist but remain unknown. While batch 
effects can sometimes be accounted for this comes with some major caveats. If the batch effect 
completely confounds the experimental design, for example with different sequencing lanes 
being used for controls and treatments, statistically accounting for the batch effect will remove 
any “real” signal [4]. Even in the case where the batch effect is not a complete confounder, 
accounting for batch can reduce our power to detect true biological signal [5]. Thus, a better 
understanding of the sources of batch effects can help us to avoid them. 

In this study, we examined the effects of RNA isolation method as a possible source of 
batch effects in RNA-seq design. It is well known that the RNA distribution within cells is not 
uniform. Newly synthesized pre-mRNAs are processed in the nucleus before being exported. 
Once exported, mRNAs are frequently trafficked to specific subcellular sites as a mechanism for 
spatially controlling protein synthesis. Indeed, perhaps the most widespread example of mRNA 
localization is that used for spatial control of protein synthesis, where mRNAs encoding 
secreted and membrane proteins are translated at the ER membrane allowing for proper protein 
localization and folding [6].   

Despite the widespread acknowledgement that mRNAs are differentially localized within 
the cell, there has been a paucity of studies examining whether “common” RNA extraction 
methods are equivalent in their abilities to extract differentially localized RNA species, and 
whether the method of RNA isolation affects our ability to detect differentially expressed 
transcripts. Sultan and colleagues compared two RNA isolation methods (Qiagen RNeasy kit 
and guanidium-phenol (TRIzol) extraction) and two library selection schemes (poly-A 
enrichment and rRNA depletion) on downstream transcript abundance estimates, and found that 
rRNA depletion was particularly sensitive to the RNA extraction method [2]. However, their 
comparisons were done using only two biological replicates, and they only examined transcript 
abundance across technical replicates and not whether the method of extraction affects the 
ability to detect differential expression in the types of sample comparisons that biologists 
frequently care about (e.g. wild-type versus mutant or treatment versus control). 

Thus, we sought to systematically examine whether three common RNA isolation 
methods led to differences in transcript abundance and/or our ability to detect differential 
expression between two experimental conditions in the form of the Saccharomyces cerevisiae 
heat shock response. The different RNA isolation methods were the classic “hot acid phenol” 
method, and the two most commonly-used types of kits [7]—a silica-based column kit (Qiagen 
RNeasy Kit) and a guanidium-phenol (TRIzol)-based kit (Zymo Research Direct-zol), hereafter 
referred to as the Phenol, RNeasy, and Direct-zol methods. Based on the combined chemistries 
of sodium dodecyl sulfate (SDS) and phenol on cellular membranes [8, 9], we hypothesized that 
the Phenol method would better solubilize membrane-associated mRNAs. To test this 
hypothesis, and whether the choice of RNA isolation method had downstream effects on our 
ability to detect differentially expression transcripts, we collected four biological replicates of the 
model yeast Saccharomyces cerevisiae before and after a 20-minute heat shock. Importantly, 
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each biological sample was split into three identical technical replicates that differed only in their 
mode of RNA isolation. This allowed us to systematically test whether the RNA isolation method 
affects relative transcript abundance between technical replicates, and whether that matters for 
differential expression analysis.  

Our analysis found a shocking number of transcripts (nearly 1/3 of the genome) that 
appeared “differentially” expressed when comparing the Phenol method to either Kit method, 
and a small number of differences when comparing the Kit methods to each other. Strikingly, 
transcripts over-represented by the Phenol method versus either Kit method were enriched for 
membrane proteins, suggesting that indeed the combination of SDS, phenol, and/or heat better 
extracts those species of mRNA. Importantly, there were virtually no differences when 
comparing differential expression for the heat shock response within samples where RNA was 
isolated via same method. Based on these results, we strongly recommend that meta-analyses 
be performed on groups of experiments with common RNA isolation methods.   
 

Results 
 

Experimental setup 
To test whether RNA extraction methods impact between-sample comparisons and the 

power to identify differentially expressed genes, we used the well-characterized yeast heat 
shock response as an environmental perturbation. We collected four biological replicates for 
comparison. For each biological replicate, three “technical replicate” samples were collected to 
understand the impact of RNA extraction method. The only difference between was that each 
technical replicate had their RNA extracted by one of three methods: classic hot acid phenol 
(Phenol method), a silica-based column kit (RNeasy Method) and a guanidium-phenol (TRIzol)-
based kit (Direct-zol Method) (Figure 1). RNA isolated via the Phenol method was subsequently 
“cleaned” with a Qiagen RNeasy Kit using the optional on-column DNase treatment, thus 
controlling for both DNase treatment and potential differential binding of different RNA species 
to the column. To minimize against batch effects other than RNA extraction method, all RNA-
seq libraries were constructed on the same day using an automated robotic platform, and all 
libraries were multiplexed and sequenced on a single lane of an Illumina HiSeq4000 instrument.  
 
Differences in relative transcript abundance between phenol-extracted RNA and 
kit-extracted RNA. 
 All of the RNA isolation methods yielded generally high quality RNA, as defined by a RIN 
of 9.0 or above, though the Phenol-extracted RNA averaged significantly higher RIN values than 
those isolated from the Direct-zol kit (9.96 vs. 9.33; p = 2 x 10-6, t-test) or the RNeasy kit (9.96 
vs. 9.79; p = 0.01, t-test). (Table S1). The percentage of total mapped reads was similar across 
samples, with slight (though significant) differences (Table S2). There were larger differences in 
the percentage of uniquely mapped reads across RNA isolation methods (Table S2). These 
differences did not correlate with RNA integrity, as the Direct-zol samples had the lowest RIN 
values and highest uniquely and total mapped reads. Overall, we feel that the both the RNA 
quality and read mapping would not raise any red flags in laboratories performing RNA-seq on 
either their own samples, or conducting a meta-analysis, though those values can be used a 
factor to be controlled for in differential expression analysis [3].  
 We were particular interested in whether differences in the RNA isolation method could 
masquerade as “differential” expression due to differences in transcript quantification. We first 
performed principal component analysis (PCA) (Figure 2). Not surprisingly, a substantial 
proportion of the variance (50.5%) was explained by treatment (unstressed versus heat shock). 
The second principal component corresponded to RNA isolation method and explained 26.9% 
of the variation. Samples with RNA isolated by the two different kit methods clustered together, 
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with the Phenol-isolated samples forming a separate cluster. It could seem counterintuitive that 
the Direct-zol and Phenol methods would be so dissimilar, considering that both methods use 
phenol. However, the Direct-zol method uses a milder detergent than SDS (sarkosyl), is 
performed at room temperatures instead of 65°C, and samples are exposed to phenol for 10 
minutes instead of 45 minutes. We speculate that these differences, when combined with 
common silica-column chemistries for each kit, result in the kits behaving similarly. 
 To visualize differences in transcript abundance across RNA isolation methods, we 
performed hierarchical clustering on the TPMs of the unstressed samples (Figure 3A). 
Hierarchical clustering of the samples largely recapitulated the patterns of PCA—again, the 
Phenol-isolated samples formed a discreet cluster distinct from the two kits. The RNeasy- and 
Direct-zol-isolated samples also had far fewer visible differences. To quantify these differences, 
we used edgeR to identify transcripts with significantly differential abundance in pairwise 
comparisons of each RNA isolation method (FDR < 0.01, see Methods). Pairwise comparisons 
of the Phenol method with each Kit method identified a large number of transcripts with 
differential abundance: 2,430 transcripts (Phenol vs. RNeasy) and 2,512 transcripts (Phenol vs. 
Direct-zol). Of those transcripts with differential abundance in both comparisons, 1,917 
overlapped, which was highly significant (P = 1 x 10-520, Fisher’s exact test) (Figure 3C). In 
contrast, only 230 transcripts had differential abundance when comparing the kits to each other, 
suggesting only slight differences.  

To better visualize these differences, we performed hierarchical clustering on all 3,127 
transcripts with significantly differential abundance (FDR < 0.01) in any pairwise comparison of 
RNA isolation method (Figure 3B). We found striking functional gene ontology (GO) 
enrichments for transcripts with higher or lower abundance in the phenol-extracted samples 
compared to both kits. Transcripts with higher abundance in phenol-extracted RNA in 
comparison to both kits were strongly enriched for transmembrane transport (P < 4 x 10-68), 
establishment of localization (P < 9 x 10-54), lipid metabolism (P < 1x 10-27), and cell wall 
organization (P < 1 x 10-18). Looking more closely at the cellular component GO enrichments, 
transcripts with higher abundance in the phenol samples were strongly enriched for those 
encoding intrinsic membrane proteins (P < 4 x 10-191), as well as proteins localized to the 
endoplasmic reticulum (P < 6 x 10-84), cell periphery (P < 3 x 10-80), and the vacuole  
(P < 3 x 10-53). In contrast, mRNAs with lower relative abundance in the phenol samples were 
enriched for nuclear in localization (P < 3 x 10-60), and included those encoding functions related 
to nucleic acid metabolism (P < 1 x 10-38), RNA metabolism (P < 6 x 10-28), chromosome 
organization (P < 4 x 10-17), and gene expression (P < 8 x 10-17).  
 
Properties of transcripts with spurious differential expression. 

That the Phenol-isolated samples have higher transcript abundance for mRNAs 
encoding membrane proteins fits with the hypothesis that the Phenol method better solubilizes 
that species of mRNA. Another possibility is that differences in transcript degradation rates are 
responsible for the spurious patterns of differential expression. Because GC content and 
transcript length correlate with in vivo mRNA degradation rates [3], we examined those 
relationships in our data. Transcripts with significantly higher or lower abundance in Phenol-
extracted samples compared to each Kit method had significantly higher GC content and gene 
length (Figure S1). We also examined the relationship between differential abundance and 
direct estimates of in vivo transcript stability (half-lives) from Neymotin and colleagues [10]. We 
did find a significant difference in the Phenol vs. Direct-zol comparison, but not for the Phenol vs. 
RNeasy comparison. To determine how much of the variation was explained by GC content, 
gene length, and transcript half-life, we performed linear regression of those parameters on the 
average fold changes for phenol-extracted samples vs. the kits. Both GC content and transcript 
length showed weak to moderate correlation (r = 0.06 – 0.32) with log2 fold changes, depending 
upon the comparison group, while estimated in vivo half-life weakly correlated with log2 fold 
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changes in either comparison (Table S3). Because differences in GC content and length are 
associated with differences in transcript degradation rates in vitro [3], we repeated the edgeR 
analysis using RIN as a factor. We expected that because the RIN values for the Direct-zol 
samples were all lower than the others, it would eliminate most of the signal for differential 
expression. This turned out to be correct—we identified 788 “differentially” expressed genes in 
the Phenol vs. Direct-zol comparison compared to 2,513 when RIN was not included as a factor. 
The surviving differentially expressed transcripts with higher expression in the Phenol-isolated 
samples relative to the Direct-zol isolated samples were still strongly enriched for those 
encoding intrinsic membrane proteins (P < 3 x 10-100). Because the RNeasy-isolated samples 
had relatively high RIN values relative to the Direct-zol-isolated samples, the vast majority were 
retained as differentially expressed when accounting for RIN in the edgeR QL model (2,362 / 
2,430). Because of the substantial overlap between genes called as differentially expressed in 
the Phenol vs. RNeasy and Phenol vs. Direct-zol comparisons, we hypothesize that the that 
differing chemistries in the extraction are responsible for the batch effect, and not RNA 
degradation (see Discussion). 
 
Differences in RNA isolation method have little effect on the ability to detect 
differential expression with a batch. 
 The striking differences in transcript abundance depending on RNA isolation could 
conceivably affect the ability to detect differential expression. To test this, we examined our 
ability to detect differential expression in cells shifted from 30°C to 37°C for 20 minutes—the 
classic yeast heat shock response. We identified ~3,800 differentially expressed transcripts for 
all three RNA isolation methods, with substantial overlap for all three (Figure 4). Hierarchical 
clustering yielded no clear pattern among differentially expressed transcripts that were missed 
in one sample set over another (Figure 4). We also detected zero transcripts that had significant 
fold change differences in their heat shock response in any pairwise comparison between RNA 
isolation methods (File S2). We hypothesize that at sufficient sequencing depth, the ability to 
detect differential expression is robust to the modest differences in transcript counts caused by 
differences in RNA isolation method.  
 

Discussion 
 

In this study, we tested whether differences in RNA isolation method affect relative 
transcript abundance between samples, and whether the RNA isolation method impacts our 
ability to detect differential expression. Our results suggest that differences in RNA isolation 
method can substantially affect relative transcript abundance, and we see thousands of 
differences in transcript abundance when comparing hot acid phenol extraction with an RNeasy 
or Direct-zol kit. It is well established that mRNAs encoding membrane and secreted proteins 
are anchored to the membrane during translation [11]. That transcripts with higher abundance in 
the Phenol-isolated samples are strongly enriched for encoding membrane proteins suggests 
that the Phenol method better solubilizes those mRNAs. Because relatively more membrane-
associated mRNAs are being extracted, there must be relatively less abundance of other 
mRNAs. Thus, we see decreased abundance of certain nuclear transcripts, which were already 
more lowly expressed, and thus likely more sensitive to appearing “repressed.”  

We disfavor the alternative hypothesis that we are capturing differences in transcript 
degradation rates for a number of reasons. First, while we do see differences in RIN values 
across the different RNA isolation methods, the differences are relatively small, and our RIN 
values are all much higher than the points where other studies identified them as confounding 
for RNA-seq analysis [3, 12]. Second, it is likely that any degradation that is occurring in our 
samples is happening in vitro during RNA isolation, and Opitz and colleagues have found that in 
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vitro RNA degradation rates are likely relatively equal across transcripts and thus have little 
effect on differential expression analysis [13]. And while RNA degradation rates in vivo are 
strongly biased and can lead to spurious functional enrichments in downstream analysis, we 
found little relationship between estimated mRNA half-lives from [10] and fold-changes in 
comparisons between kits. Only one of the Phenol vs. Kit method comparisons showed a 
significant difference in half-lives, but the correlation was still rather poor (r2 = 0.02). And while 
transcripts with higher relative abundance in the phenol-extracted samples versus the kits had 
higher GC content and gene length, which both correlate with higher in vivo degradation rates 
[3], the correlation between those parameters and fold-change differences is not strong (Table 
S3). Notably, GC content and gene length are not random, and membrane proteins tend to be 
longer and have higher GC content than average [14, 15]. Finally, if RNA degradation is 
responsible, it is somewhat hard to reconcile that we see similar patterns of “differential” 
expression when comparing the Phenol vs. Direct-zol and Phenol vs. RNeasy samples, even 
though the RNeasy samples have quite a bit higher RIN values.  
 Regardless of the cause of these differences between hot-phenol extracted samples and 
kits, it clear that this can represent a large source of batch-effect variation between samples 
whose RNA has been isolated via different methods. Within an individual lab, we are largely 
agnostic. The method of RNA isolation had little effect on the ability to identify differentially 
expressed transcripts in our heat shock test case. Thus, experiments within a single lab are 
unlikely to be affected by the choice of RNA isolation method as long as the same method is 
used throughout an experiment. For meta-analyses however, we recommend that researchers 
make every attempt to only compare experiments where the RNA isolation methods are similar. 
 

Materials and Methods 
 

Yeast Growth and Sampling Procedures 
All experiments were performed using yeast strain BY4741 (S288c background; MATa 

his3∆1 leu2∆0 met15∆0 ura3∆0), obtained from Open Biosystems. To compare RNA isolation 
methods, we collected three identical 10-ml ‘technical’ replicates for each biological replicate (4 
biological replicates in total). Cells were grown >8 generations in 100-ml synthetic complete 
medium (SC) [Sherman 2002] at 30°C with orbital shaking (270 rpm) shaking to mid-exponential 
phase (OD600 of 0.3 – 0.6), and 10-ml samples were removed representing the unstressed 
control. For heat shock treatment, one volume of 55°C medium was added to the remaining 
culture, immediately bringing the final temperature to 37°C, and the culture was incubated at 
37°C for another 20 minutes before removing 10-ml samples. Both unstressed and heat 
shocked cells were collected by centrifugation at 1,500 x g for 3 minutes, and cell pellets were 
flash frozen in liquid nitrogen and stored at -80°C until processing.   

 
RNA Isolation Methods 
 
Hot Phenol Isolation 
Cells were lysed and RNA was isolated using a standard hot phenol method as described [16], 
and a detailed protocol can be found on the protocols.io repository under DOI 
dx.doi.org/10.17504/protocols.io.inwcdfe. Briefly, 1 volume of acid saturated phenol and 1 
volume of lysis buffer (10 mM Tris-HCl pH 7.4, 10 mM EDTA, 0.5% SDS) were added to frozen 
cell pellets, vortexed, and then placed in a 65°C preheated Multi-Therm incubated vortexer 
(Benchmark Scientific) at 1500 rpm for 45 minutes. Samples were centrifuged for 10 min at 4°C 
at maximum speed in a microcentrifuge, extracted once more with phenol, once with chloroform, 
and then precipitated overnight at -20°C with 0.1 volumes of sodium acetate (pH 5.2) and 2.5 
volumes of 100% ethanol. Precipitated RNA was washed once with 70% ethanol and then 
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resuspended in TE (10 mM Tris-HCl pH 8.0, 1 mM EDTA). The phenol extracted RNA was then 
‘cleaned’ using an RNeasy Miniprep Kit with optional on-column DNase treatment according to 
the manufacturer’s instructions. 
 
RNA Isolation with Two Different Miniprep Kits 
 RNA was extracted using two different kits: the Qiagen RNeasy Mini Kit (Cat. 74104) 
and the Zymo Research Direct-zol RNA Miniprep Kit (Cat. R2050). Cell concentrations were all 
below the maximum recommendation of 5 x 107 cells from both manufacturers (ranging from 2.5 
x 107 –  4.5  x 107 cells). For both kits, we mechanically lysed cells with a Beadbeater-24 (3,500 
oscillations/minute, 45 seconds on ice between cycles). Mechanical lysis was performed in 2-ml 
screw-capped tubes containing an equal volume (600 µl) of lysis buffer (RLT for RNeasy or TRI 
reagent for Direct-zol) and acid-washed glass beads (425-600 micron, Sigma-Aldrich).  
RNA was then purified according to each manufacturer’s protocol for yeast, including the 
optional on-column DNase digestion. For all samples, RNA was quantitated using a Qubit RNA 
HS Assay kit and Qubit fluorometer according to the manufacturer’s instructions. The RNA 
integrity number (RIN) for each sample was measured using an Agilent 2200 TapeStation. RNA 
concentrations and RIN values for each sample can be found in Table S1.  
 
RNA Sequencing and Analysis 
  RNA-seq libraries were prepared from polyA-enriched RNA using the KAPA Biosystems 
mRNA HyperPrep Kit (KK8581) and KAPA Single-Indexed Adapter Set A+B (KK8700), 
according to manufacturer’s instructions. We started with 500 ng total RNA, fragmentation time 
(6 min) was optimized to generate 200-300-nt RNA fragments, and the libraries were amplified 
with 9 cycles of PCR. All libraries were constructed in a single batch through an automated 
Eppendorf epMotion 5075 liquid handling robot, and detailed a protocol can be found on 
protocols.io under DOI dx.doi.org/10.17504/protocols.io.uueewte. cDNA libraries were 
sequenced on a HiSeq4000 at the University of Chicago Genomics Facility, generating single-
end 50-bp reads.  

Reads were trimmed of low-quality reads and adapter sequence (KAPA v1 indices) 
using Trimmomatic (version 0.32) [17], with the following commands: 
ILLUMINACLIP:Kapa_indices.fa:2:30:10 LEADING:3 TRAILING:3 MAXINFO:40:0.4 
MINLEN:40 . Reads were mapped to the S288c genome (version Scer3), using STAR (version 
020201) [18]. Mapping statistics can be found in Table S2. Transcripts per million (TPM) and 
expected counts for each gene were calculated using RSEM (version 1.3.1) [19]. The RSEM 
output can be found in File S2. 

Differential expression analysis was conducted using the Bioconductor package edgeR 
(version 3.22.3) using the quasi-likelihood (QL) framework. For the QL model, sample type (i.e. 
Phenol unstressed, Phenol heat shock, RNeasy unstressed…) and biological replicate were 
used as factors. To account for differences in RIN across samples, we also performed a 
separate analysis that included sample type, replicate, and RIN as factors in the model. To 
control for differences in sequencing depth across samples, the edgeR function thincounts was 
used to randomly subsample counts across all samples to be equal to the sample with the 
lowest number of total counts (8,678,188). Only genes with at least 1 count per million (CPM) in 
at least one condition were included in analyses All RNA-seq data are available through the 
National Institutes of Health Gene Expression Omnibus (GEO) database under accession no. 
GSE135430, and the edgeR outputs can be found in File S2.  
 Principle component analysis (PCA) was performed using ClustVis [20] on ln-
transformed TPM values for all transcripts included in the differential expression analysis, using 
unit variance scaling and singular value decomposition. Hierarchical clustering was performed 
with Cluster 3.0 (http://bonsai.hgc.jp/~mdehoon/software/cluster/software.htm) using uncentered 
Pearson correlation and centroid linkage as the metric [21]. RNA-seq samples were weighted 
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using a cutoff value of 0.4 and an exponent value of 1. Functional enrichments of gene ontology 
(GO) categories were performed using GO-TermFinder (https://go.princeton.edu/cgi-
bin/GOTermFinder)[22], with Bonferroni-corrected P-values < 0.01 taken as significant. 
Complete lists of enriched categories can be found in File S3. 
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Figures 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1. Schematic of the experimental design. Yeast cells were grown to mid-exponential 
phase at 30°C, unstressed control samples were collected, and then cells were shifted to a 
37°C heat shock with samples collected after 20 minutes. For both unstressed and stressed 
cells, we collected three identical samples (technical replicates), and RNA was isolated using 
either hot acid phenol extraction, a Qiagen RNeasy Kit, or a Zymo Research Direct-zol RNA Kit. 
Libraries were constructed in a single batch using a liquid handling robot, and then were pooled 
and sequenced on a single Illumina HiSeq4000 lane. 
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Figure 2. Principal component analysis (PCA) strongly implicates RNA isolation method 
as a batch effect. PCA on TPMs for each sample (see methods) shows clear separation on 
both treatment (PC1) and RNA isolation method (PC2). Kit samples were more similar to each 
other than they were to the phenol sample.   
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Figure 3. Phenol preferentially extracts mRNAs that encode for membrane proteins. (A) 
Hierarchical clustering of unstressed samples (P = phenol, R = RNeasy, D = Direct-zol). 
Clustering on relative transcript abundance (TPMs) reveals differences depending upon RNA 
isolation method, while clustering on sample identity shows that the phenol-isolated samples 
separate from both kits. Red indicates higher than average transcript abundance within a 
sample, and blue indicates lower than average transcript abundance. (B) Hierarchical clustering 
of 3,127 transcripts with significantly differential abundance (FDR < 0.01) in any pairwise 
comparisons between each RNA isolation method. Brown indicates higher expression than the 
comparison group (e.g. Phenol in the P v. R column) and violet indicates lower expression than 
the comparison group (e.g. RNeasy in the P v. R column). Enriched Gene Ontology (GO) 
categories (Bonferroni-corrected P < 0.01) are shown on the right. Complete GO enrichments 
for each cluster can be found in File S2. (C) Overlap between transcripts with significantly 
differential abundance (FDR < 0.01) in the Phenol v. RNeasy and Phenol v. Direct-zol 
comparisons. 
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Figure 4. The method of RNA extraction has little effect on differential expression 
analysis. Hierarchical clustering of median-centered log2-fold TPM changes for 4,232 
transcripts that were differentially expressed in response to heat (FDR < 0.01) in at least one set 
of samples (P = phenol, R = RNeasy, D = Direct-zol). The left portion of the heat map displays 
gene expression changes during heat shock across the four biological replicates, with red 
indicated genes induced by heat shock, and blue indicating genes repressed by heat shock. 
The right portion shows differences in abundance in pairwise comparisons between each RNA 
isolation method, with brown indicating higher expression than the comparison group, and violet 
indicating lower expression than the comparison group. The Venn Diagram indicates overlap 
between differentially expressed genes in the Phenol, RNeasy, and Direct-zol isolated samples. 
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Figure S1. Properties of transcripts with differential abundance depending upon RNA 
isolation method. Boxplots depicting the GC content (left), transcript length (middle), and in 
vivo half-life (obtained from [10]) for all genes with significantly higher abundance relative to 
their comparison group (FDR < 0.01), and all genes that passed filtering thresholds for 
differential expression analysis. For the Phenol vs. RNeasy comparisons, mean differences 
were significant by Mann Whitney U test for GC content (P < 1 x 10-15) and length (P < 1 x 10-15). 
For the Phenol vs. Direct-zol comparisons, mean differences were significant by Mann Whitney 
U test for GC content (P < 1 x 10-15), length (P < 1 x 10-15), and half-life (P < 1 x 10-15). 
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Table S1. RNA concentrations and integrity (RIN) scores. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sample ID Concentration 
(ng / µl) RIN 

Phenol unstressed Rep1 1,100 9.9 
Phenol unstressed Rep2 1,080 9.9 
Phenol unstressed Rep3 960 9.9 
Phenol unstressed Rep4 720 10 
Phenol heat shock Rep1 610 10 
Phenol heat shock Rep2 710 10 
Phenol heat shock Rep3 770 10 
Phenol heat shock Rep4 610 10 
RNeasy unstressed Rep1 580 9.8 
RNeasy unstressed Rep2 470 10 
RNeasy unstressed Rep3 530 9.9 
RNeasy unstressed Rep4 460 9.7 
RNeasy heat shock Rep1 400 9.7 
RNeasy heat shock Rep2 460 9.6 
RNeasy heat shock Rep3 430 9.8 
RNeasy heat shock Rep4 360 9.8 
Direct-zol unstressed Rep1 590 9.4 
Direct-zol unstressed Rep2 470 9.4 
Direct-zol unstressed Rep3 620 9.5 
Direct-zol unstressed Rep4 330 9.3 
Direct-zol heat shock Rep1 260 9.0 
Direct-zol heat shock Rep2 260 9.4 
Direct-zol heat shock Rep3 560 9.3 
Direct-zol heat shock Rep4 320 9.4 
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Table S2. Summary of mapping statistics.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1 Only reads surviving trimming were used as the input for STAR mapping. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Sample ID Input Reads1 % Uniquely 
Mapped % Mapped 

Phenol unstressed Rep1 13,270,392 83.58 96.21 
Phenol unstressed Rep2 12,695,531 83.88 95.76 
Phenol unstressed Rep3 12,856,634 85.13 96.32 
Phenol unstressed Rep4 15,327,828 84.20 95.97 
Phenol heat shock Rep1 10,900,974 86.5 96.57 
Phenol heat shock Rep2 13,452,555 86.47 96.83 
Phenol heat shock Rep3 14,946,326 87.32 96.82 
Phenol heat shock Rep4 19,514,083 87.19 96.89 
RNeasy unstressed Rep1 16,773,488 78.47 95.77 
RNeasy unstressed Rep2 18,735,607 81.06 95.89 
RNeasy unstressed Rep3 13,006,805 81.41 95.57 
RNeasy unstressed Rep4 20,186,658 80.53 95.38 
RNeasy heat shock Rep1 12,162,093 81.63 95.76 
RNeasy heat shock Rep2 13,405,344 82.18 96.3 
RNeasy heat shock Rep3 16,331,674 83.91 95.62 
RNeasy heat shock Rep4 22,683,053 80.05 95.87 
Direct-zol unstressed Rep1 16,815,144 86.38 96.91 
Direct-zol unstressed Rep2 17,016,270 87.04 96.95 
Direct-zol unstressed Rep3 11,598,964 85.87 96.73 
Direct-zol unstressed Rep4 14,150,816 87.43 96.83 
Direct-zol heat shock Rep1 14,678,584 88.02 96.72 
Direct-zol heat shock Rep2 16,124,462 88.79 97.27 
Direct-zol heat shock Rep3 16,753,180 87.92 96.89 
Direct-zol heat shock Rep4 21,019,701 87.75 97.14 
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Table S3. Correlation coefficient (r) for log2 fold-changes versus each factor 
 
 
 
 
 
1 Half-life estimates from Neymotin et al. [10]. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Comparison Fraction GC Transcript 
Length 

Transcript 
Half Life1 

Phenol versus RNeasy 0.32 0.06 -0.02 
Phenol versus Direct-zol 0.14 0.23 -0.14 
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