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ABSTRACT 15 

Tuberculosis (TB) is the leading cause of death globally from an infectious disease. 16 

Understanding the dynamics of TB’s causative agent Mycobacterium tuberculosis (Mtb) in host 17 

is vital for antibiotic treatment and vaccine design. Here we use longitudinally collected clinical 18 

Mtb isolates from the sputa of 307 subjects to investigate Mtb diversity during the course of 19 

active TB disease. We excluded cases suspected of reinfection or contamination to analyze data 20 

from 200 subjects, 167 of which met microbiological criteria for delayed culture conversion, 21 

treatment failure or relapse. Using technical and biological replicate samples, we defined an 22 

allele frequency threshold attributable to in-host evolution. Of the 167 subjects with unsuccessful 23 

treatment outcome, 16% developed resistance amplification between sampling; 74% of 24 

amplification occurred among isolates that were genotypically resistant at the outset. Low 25 

abundance resistance variants in the first isolate predicts the fixation of these variants in the 26 

subsequent sample. We identify in-host variation in resistance and metabolic genes as well as in 27 

genes known to modulate host innate immunity by interacting with TLR2. We confirm these 28 

genes to be under positive selection by assessing phylogenetic convergence across a genetically 29 

diverse independent sample of 10,018 isolates.  30 
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INTRODUCTION 31 

Tuberculosis (TB) and its causative pathogen Mycobacterium tuberculosis (Mtb) remain 32 

a major public health threat1. Yet the majority of individuals exposed to Mtb clear or contain the 33 

infection, and only 5-10% of those infected develop active TB disease at some point in their 34 

lifetime2. While basic human immune mechanisms to Mtb have been identified, attempts at 35 

effective vaccine development guided by these mechanisms have repeatedly failed3. Global 36 

efforts that include scale up of directly observed therapy have also been challenged by rising 37 

estimates of multidrug resistance. Mtb is an obligate human pathogen that has co-evolved with 38 

its human host over millennia4. Infection and disease involves a complex human host-pathogen 39 

interaction that is both physically and temporally heterogeneous5. Consequently all selective 40 

forces acting on Mtb will originate within the host, and the study of temporal dynamics of this is 41 

likely to inform antibiotic treatment6 and rational vaccine design3.  42 

At long timescales, signatures of positive selection associated with antibiotic resistance 43 

have been characterized, but epitope regions appear to be under purifying selection7–10 44 

 calling into question how Mtb interacts with host adaptive immunity. Little is known about 45 

selection at short timescales, such as within single infections. Drug pressure may select for 46 

resistance-conferring mutations, thus an understanding of how the frequency of minor alleles 47 

changes longitudinally can inform optimal drug treatment6,11,12. A recent study found treatment 48 

relapse to be strongly associated with bacterial factors13; therefore there is a need to better 49 

characterize these as predictors of treatment response. Bacterial factors of interest include not 50 

only low frequency resistance variants but also variants that may induce other phenotypes, such 51 

as drug tolerance or more effective immune evasion14. To elucidate these processes, we aimed to 52 
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study how genomic diversity arises in-host in Mtb populations, employing a longitudinal 53 

sampling scheme from patients with active TB disease. 54 

Allele frequencies within bacterial populations may differ between pooled samples (Fig. 55 

1a) because they represent a difference in the genetic composition of the infecting population, 56 

commonly referred to as heterogeneity. Mtb population heterogeneity might be present within a 57 

host because (1) the host is infected with multiple strains or is re-infected by a new strain 58 

(consistent with mixed infection or re-infection) or (2) genetic diversity arises within the Mtb 59 

population during infection15–17. WGS of pooled sputum samples has been used extensively to 60 

investigate the metagenomic diversity of bacterial pathogens in humans12,18–21. However, non-61 

uniform sampling22, genetic drift and selection during in vitro expansion22, laboratory 62 

contamination23,24, sequencing error and mapping error all represent examples of experimental 63 

error that give rise to erroneous variant calls. This is especially problematic when calling variants 64 

at low23 and mixed15 allele frequencies, or sampling repeatedly from the same source22. 65 

Here, we present a framework to overcome these barriers and demonstrate the use of 66 

longitudinally collected isolates to investigate true in-host diversity with implications for Mtb 67 

treatment. We analyzed 614 paired longitudinal isolates representing 307 subjects from eight 68 

studies17,22,25–29. We find a high turnover of low-frequency alleles in loci associated with 69 

antibiotic resistance but that mutant alleles in these loci that rise to a frequency of 19% are 70 

predicted to fix in-host with a sensitivity of 27.0% and specificity of 95.6%. We show that 71 

changes in allele frequency are common among replicate isolates and that changes in frequency 72 

of 70% are indicative of in-host evolution using archived MTB isolates. We demonstrate that 73 

many loci involved the acquisition of antibiotic resistance and modulation of innate host-74 

immunity appear to be under positive selection. 75 
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RESULTS 76 

Identifying clonal Mtb populations in-host  77 

To isolate the in vivo clonal dynamics of Mtb during infection among the 307 subjects 78 

with longitudinal samples, we excluded 32 subjects with isolate microbiological contamination at 79 

any time point23, and 31 subjects with evidence for mixed infection with two or more Mtb 80 

lineages24 (Fig. 1b, Supplementary Fig. 2). We also excluded 44 subjects with evidence for re-81 

infection with a different Mtb strain between the first and second time points, using a pairwise 82 

genetic distance >7 fixed SNPs (fSNPs) (Methods, Fig. 1c, Supplementary Fig. 2). We 83 

implemented WGS SNP calling filters to minimize the likelihood of false positives and estimated 84 

the error rate of our analysis pipeline using a control dataset of 82 isolate pairs (162 total) that 85 

were in vitro technical or biological replicates (Methods, Supplementary Fig. 2-3). Of the 307 86 

subjects, 200 had isolate pairs that passed all filters, with an estimated false positive SNP rate of 87 

0.0513 or less. The 200 isolates represented the five main Mtb lineages. 88 

 89 

In-host pathogen dynamics in antibiotic resistance loci 90 

The presence of minor resistance alleles in-host has implications for the development of 91 

resistance amplification and has previously been studied for small sample sizes using WGS11,22. 92 

To investigate temporal dynamics related to antibiotic pressure6,11,22, we identified non-93 

synonymous and intergenic SNPs within a set of 36 predetermined resistance loci associated 94 

with antibiotic resistance7,30 (Supplementary Table 4) that changed in allele frequency by more 95 

than 5%6 between the first and second sampling time point (Methods). We detected 1,964 such 96 

SNPs across our sample of 200 subjects, 1,799 were non-synonymous, 91 were intergenic, and 97 

74 occurred within the rrs region. (Supplementary Table 5).  98 
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We searched for evidence for competition between Mtb strains with different drug 99 

resistance mutations6,11,22, or clonal interference, by characterizing longitudinal isolates fulfilling 100 

the following three criteria: (i) isolates contain multiple resistance SNPs in the same gene within 101 

the same subject, (ii) at alternate allele frequencies that change in opposing directions over time 102 

and (iii) the alternate (mutant) allele frequency was intermediate to high at ³ 40% in at least 1 103 

isolate30 for at least one of the co-occurring SNPs. This identified 11 cases of clonal interference 104 

(Fig. 2a, Supplementary Fig. 4), demonstrating most often the fixation of a single allele in the 105 

second isolate from a mixture of multiple alleles at lower frequencies in the first isolate 106 

collected. 107 

 108 

Antibiotic Resistance mutations are associated with delayed culture conversion and begets 109 

resistance amplification  110 

Although detailed data on treatment regimens for the study subjects was not available to 111 

us, the source studies17,22,25–29 indicated that all subjects had either recently completed treatment 112 

or were receiving treatment when samples were collected. Microbiological criteria for treatment 113 

failure include persistent positive sputum culture between 2 to 5 months from treatment initiation 114 

varying by treatment program31. We considered subjects with samples collected ≥60 days apart, 115 

by definition culture positive at sample collection time, as delayed culture conversion, failure or 116 

relapse cases (hitherto failure for brevity) (Supplementary Fig. 1a). Of the 270 subjects with 117 

mixed or clonal infection and reinfection, 5 had incomplete isolate collection dates 118 

(Supplementary Table 2). Of the remaining 265 subjects, 230 had samples collected ≥60 days 119 

apart and consisted of 35 reinfections (13%), 28 mixed infections at one or two time points 120 

(11%) and the majority, 167, had clonal infection (Supplementary Fig. 1a, 2).  121 
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To identify antibiotic resistance (AR) acquisition among subjects with clonal infection, 122 

we defined an AR SNP as one of the previously identified 1,964 SNPs with moderate to high 123 

DAF ³ 40% based on prior evidence of association between such SNPs and phenotypic 124 

resistance30. Forty-one AR SNPs were detected across our sample. The acquisition of AR SNPs 125 

was significantly associated with failure (𝑃 = 0.017 Fisher’s exact test); 16.2% of failures 126 

acquired at least 1 AR SNP while none of the other 28 subjects acquired an AR SNP during 127 

treatment (Supplementary Fig. 1a). We examined genotypic resistance to any drug, or 128 

multidrug resistance (MDR i.e. resistance to at least isoniazid and a rifamycin) by interrogating 129 

the first isolate collected from each subject for fixed AR SNPs30 (Methods). Using this 130 

approach, we identified 230 pre-existing AR SNPs in 39% (65/167) of the failure subjects with 131 

23% (39/167) being MDR (Supplementary Fig. 1b-c, Supplementary Tables 6 and 7). The 132 

acquisition of additional resistance mutations was significantly associated with pre-existing AR 133 

(𝑂𝑅 = 6.03, 𝑃 = 6.8 × 10./ Fisher’s exact test) or pre-existing MDR (𝑂𝑅 = 4.95, 𝑃 =134 

3.8	 × 10.4 Fisher’s exact test) with 20/27 (74%) of AR SNP acquisition among failure cases 135 

occurring in subjects with pre-existing resistance. 136 

 137 

Allele frequency >19% predicts subsequent fixation of resistance variants.  138 

We determined the lowest AR allele frequency that can accurately predict the 139 

development of fixed resistance alleles later in time6,11 (Fig. 2b). We studied the AF trajectories 140 

of 1,964 AR SNPs detected with an 𝐴𝐹7 >5% at the first time point. We calculated the true 141 

positive rate (TPR) and false positive rates (FPR) for varying values of 𝐴𝐹7 ∈142 

{0,1, 2,⋯ ,99,100}% (Supplementary Fig. 1d, Fig. 2b, Methods). Allowing a maximum FPR 143 

of 5%, we found the optimal classification threshold to be 𝐴𝐹7∗ = 19% with an associated 144 
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sensitivity of 27.0% and a specificity of 95.6%. Ten mutant alleles across 14 isolates from 7 145 

subjects had a frequency between 19% and 75% at the first time point and rose to fixation at the 146 

second time point (mean DAF 41%). 147 

 148 

Genome-wide in-host diversity  149 

Beyond antibiotic pressure, selective forces acting on the infecting Mtb strain in-host are 150 

largely unknown. To investigate this reliably across the entire Mtb genome, we first examined 151 

the genome-wide allele frequency distribution for both technical replicates (in vitro technical or 152 

biological replicates, sample size m=62 after exclusions, Supplementary Figure 2) and in-host 153 

longitudinal pairs (Supplementary Fig. 2-3). We detected five SNPs in glpK (with DAF ³ 25%) 154 

among five replicate pairs (mean DAF=45%) consistent with an adaptive role for glpK mutations 155 

in vitro32 and accordingly excluded this gene from further analysis (Methods). The genome-wide 156 

AF distribution demonstrated an abundance of SNPs with small changes in AF among both 157 

replicate and longitudinal pairs likely resulting from technical factors or noise. To clearly 158 

distinguish signal related to in-host factors from noise, we determined the DAF threshold above 159 

which SNPs/isolate-pair were rare among technical replicates i.e. constituted	5% or less of the 160 

total SNPs when replicate and longitudinal pairs were pooled (Supplementary Fig. 3). We 161 

determined this DAF threshold to be 70% and selected 178 SNPs that developed in-host among 162 

the 200 TB cases (Supplementary Fig. 3c, Supplementary Table 10).  163 

 164 

Characteristics of mutations in-host 165 

Of the 178 SNPs, 115 were non-synonymous, 42 synonymous, and 21 were intergenic 166 

(Fig. 3c). The 157/178 coding SNPs were distributed across 129/3,886 genes and were observed 167 
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in 71/200 subjects (Fig. 3b,d). The preponderance of non-synonymous SNPs is as previously 168 

observed for Mtb9,33,34. We analyzed the spectrum of mutations and found the GC > AT 169 

nucleotide transition to be the most common. The GC > AT transition is putatively due to 170 

oxidative damage including the deamination of cytosine/5-methyl-cytosine or the formation of 8-171 

oxoguanine35,36. The transversion AT > TA was the least common substitution (Fig. 4a). We 172 

expected the number of SNPs detected between longitudinal isolates to increase with time 173 

between isolate collection. Regressing the number of SNPs per subject on the timing between 174 

isolate collection (for 195 subjects with isolate collection dates) (Fig. 4b), we found SNPs to 175 

accumulate at an average rate of 0.57 SNPs per genome per year (𝑃 = 4.8 × 10.77) consistent 176 

with prior in vivo estimates26,35.  177 

 178 

Antibiotic Resistance and PE/PPE genes vary while antigens remain conserved 179 

To understand how different classes of proteins evolve in-host, we separated Mtb genes 180 

into five non-redundant categories (Methods): Antibiotic resistance - genes as defined above7, 181 

PE/PPE – gene family unique to pathogenic mycobacteria, thought to influence 182 

immunopathogenicity and is characterized by conserved proline-glutamate (PE) and proline-183 

proline-glutamate (PPE) motifs at the N protein termini10,34,37,  Antigen - genes encoding a CD4+ 184 

or CD8+ T-cell epitope8,10 (excluding PE/PPE genes), Essential - genes required for growth in 185 

vitro and in vivo10,38,39, and Non-Essential - genes not categorized into one of the aforementioned 186 

categories. The vast majority of genes in each category did not vary within subject (Fig. 4c). 187 

Antibiotic resistance genes were on average the most diverse category while Essential genes 188 

varied the least (Fig. 4d). Antigen genes appeared to be as conserved as both Essential (𝑃 = 0.49 189 

Mann-Whitney U-test) and Non-Essential genes (𝑃 = 0.45 Mann-Whitney U-test) while PE/PPE 190 
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genes showed higher levels of nucleotide diversity than both Essential (𝑃 = 0.0038 Mann-191 

Whitney U-test) and Non-Essential genes (𝑃 = 0.0012 Mann-Whitney U-test) (Fig. 4d). 192 

 193 

PE/PPE variation is independent of T-cell recognition 194 

To test whether variation in Antigen or PE/PPE genes occurred in response to T-cell 195 

recognition, we separated each gene in these categories into (CD4+ and CD8+ T-cell) epitope and 196 

non-epitope concatenates and recalculated nucleotide diversity for these concatenates (Fig. 4e-197 

h). For both Antigen and PE/PPE genes (Fig. 4f,h), epitope concatenates were less diverse than 198 

non-epitope concatenates (𝑃 = 0.018 and 𝑃 = 0.028 respectively, Whitney U-test). Only one in-199 

host SNP was detected within an epitope-encoding region in the gene PPE18 (Fig. 4g, 200 

Supplementary Fig. 6, Supplementary Table 9). This suggests that T-cell recognition does not 201 

drive diversity in these regions. 202 

The PE/PPE genes consist of 3 sub-families (Fig. 4i-j), PE-PGRS genes with PE motifs 203 

at the N-terminus along with redundant polymorphic GC-rich repetitive sequence, PE genes with 204 

PE motifs but without redundant polymorphic GC-rich repetitive sequence, and PPE genes with 205 

proline-proline-glutamate motifs at the N-terminus40. On average, PPE and PE-PGRS genes 206 

appeared more diverse in-host than PE genes (𝑃 = 0.019	and	𝑃 = 0.068 respectively, Mann-207 

Whitney U-test). 208 

 209 

Identifying candidate pathoadaptive loci from genome-wide variation 210 

To identify genes involved in pathogen adaptation18,19, we applied a test of mutational 211 

density41 (Methods) by pooling variation across all 200 pairs of genomes and identifying those 212 

genes with more mutations than expected under a neutral model of evolution where variants are 213 
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Poisson distributed across the genome42 (Fig. 3b, Supplementary Table 11). We also searched 214 

for evidence of convergent evolution i.e. genes or pathways where in-host SNPs developed in ≥ 215 

2 subjects (Methods). Seven known antibiotic resistance genes7,12 had significant mutational 216 

density (𝛼 = 0.05, Bonferroni correction) or were convergent across patients: rpoB, gyrA, katG, 217 

rpoC, embB, ethA and pncA (mutated in six, four, four, three, three, two and one subject 218 

respectively) (Fig. 3b,d). Single in-host SNPs occurred in eight additional known resistance loci 219 

including three intergenic regions, and in prpR, a gene recently implicated with drug tolerance43 220 

(Supplementary Table 10). Three genes with unknown function: Rv0139, Rv0895, and Rv1543 221 

were convergent in two subjects each, two of which (Rv0139, Rv1543) had significant 222 

mutational density (P<2x10-5) and; three additional genes including PPE60 displayed significant 223 

mutational density (P<2x10-5) (Fig. 3b). We found evidence for convergence in six pathways not 224 

known to result in antibiotic resistance. These pathways are involved with biotin biosynthesis 225 

(fadD23, fadD29, and fadD30), ribosomal large subunit proteins (rpmB1, rplE, and rplY), 226 

glycerolipid and glycerophosolipid metabolism (aldA and Rv2974c), ESAT-6 protein secretion 227 

(Rv3870 and Rv3877), coenzyme B12/cobalamin synthesis (cobH and cobK) and the 228 

uncharacterized pathway CBSS-164757.7.peg.5020 (fdxB and PPE18) (Supplementary Table 229 

14). 230 

 231 

In-host mutations display phylogenetic convergence across multiple global lineages 232 

We reasoned that pathoadaptive mutations observed to sweep to fixation in-host and not 233 

compromise pathogen transmissibility are likely to arise independently within other subjects and 234 

in separate geographic regions in a convergent manner7. With the exception of rpoBC, we 235 

excluded regions known to encode antibiotic resistance and screened a genetically and 236 
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geographically diverse set of 10,018 sequenced clinical isolates for mutations occurring in the 237 

same gene identified in the tests for mutational density or convergence at the gene/pathway level 238 

described above (22 genes total, Methods, Fig. 5, Supplementary Table 17-18). A mutation 239 

was characterized as phylogenetically convergent if it was present ≥10 isolates within at least 240 

two Mtb lineages (Lineages 1-4) (Methods, Fig. 5a).  241 

We identified 67 sites within five of the 22 genes to be phylogenetically convergent (Fig. 242 

5b, Supplementary Table 19). These included the conserved protein of unknown function 243 

Rv0095c (18 sites), the PPE genes PPE60 (9 sites) and PPE18 (22 sites). We included two genes 244 

associated with antibiotic resistance that are known targets of positive selection for comparison 245 

to our other hits, rpoB, known to encode resistance to rifampicin7, (12 sites) and rpoC, known to 246 

encode compensatory rifampicin mutations44 (6 sites). We manually inspected the alignments 247 

corresponding to the four in-host SNPs in PPE genes PPE60 and PPE18 (Supplementary Fig. 248 

9,11) and performed in silico read simulations to confirm SNP calls including repetitive and 249 

PE/PPE regions and finally confirmed calls using PacBio sequence data on a subset of isolates 250 

(Methods).  251 
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DISCUSSION 252 

This is the first study examining in-host longitudinal Mtb diversity at scale. To 253 

understand how Mtb populations change over time, we sought to investigate changes in the 254 

genetic composition of Mtb populations in-host by searching for changes in allele frequencies in 255 

serially collected isolates11,22,29. In our 400 Mtb whole genomes sampled from 200 active TB 256 

patients heavily enriched for delayed culture conversion, treatment failure and relapse, we find a 257 

wealth of dynamics in genetic loci associated with antibiotic resistance, including a high turnover 258 

of minor variants22. Of patients with delayed culture conversion, treatment failure or relapse, we 259 

observe a relatively high percentage, 16%, to develop antibiotic resistance over time. The rate of 260 

in vivo resistance acquisition is higher for the subset of patients with MDR at the outset and 261 

negative outcomes, estimated here at 36%. This not only emphasizes the importance of 262 

appropriately tailoring treatment regimens but also the need for close surveillance for resistance 263 

acquisition by phenotypic or genotypic means. The observed high rate of resistance acquisition 264 

also emphasizes Mtb’s biological adaptability to drug pressure in vivo. For most other pathogens, 265 

resistance acquisition in the course of one infection is very rare45. In addition to clonal 266 

acquisition of resistance and of clinical relevance, we found 27% of patients with unsuccessful 267 

treatment outcomes to have mixed infection or reinfection with different Mtb strains. This high 268 

percentage suggests that care of these patients and control of disease transmission can be better 269 

guided if pathogen sequencing is routinely performed for cases meeting these microbiological 270 

criteria especially in high TB prevalence settings.  271 

Under drug selective pressure, we show that clonal interference purges diversity as only a 272 

subset of co-existing minor antibiotic resistance alleles reach fixation in many loci. Detection of 273 

several minor alleles within an antibiotic resistance locus may thus hint at eventual fixation of 274 
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one of the alleles within the Mtb population and resistance amplification. We provide a proof of 275 

concept that minor alleles can predict future antibiotic resistance, by demonstrating that 276 

canonical antibiotic resistance variants occurring at a frequency as low as 19% accurately predict 277 

fixation of the variant in >95% of mutations in-host. Yet we find the sensitivity of this threshold 278 

to be low, with 73% of new fixed resistance variants not initially observed at an abundance of 279 

≥19%. This is likely related to our simplistic assumption that selective forces are more or less 280 

similar between patients, time intervals, drugs and mutations and hence our threshold was 281 

estimated by averaging over these variables. In reality predictive minor allele frequencies will 282 

vary by drug, type of mutation, patient and treatment variables and these variables can be 283 

investigated further for improved sensitivity as more data on this question becomes available. 284 

While various sources of error prevent making inferences on changing bacterial 285 

composition (genome-wide) when allele frequencies between samples change by small 286 

magnitudes, we determined an appropriate threshold for identifying mutations in-host using 287 

archived or frozen Mtb isolates. This demonstrates the importance of including replicate clinical 288 

isolates in WGS studies with longitudinal sampling schemes from the same hosts. While 289 

culturing sputa from subjects followed by in vitro expansion of bacterial pathogens creates 290 

experimental noise, other methods of sample extraction, such as DNA extraction directly from 291 

MGIT subject samples46 and higher sequencing depth, may allow for calling relevant changes in 292 

allele frequencies at lower thresholds. This would permit the unbiased study of loci that may be 293 

under frequency-dependent selection, where changes in allele frequencies would unlikely change 294 

by as much as 70% as we used here.  295 

We detected 178 alleles rising to near fixation in-host across our sample of 200 subjects. 296 

The observed distribution of variants including the high rate of non-synonymous substitutions 297 
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and the predominance of GC > AT variants are consistent with other sequencing studies of in-298 

host or clinical MTB16,35 and adds validity to our analysis approach. The underlying mechanism 299 

explaining these observations in Mtb have included purifying pressure on synonymous variants 300 

and oxidative DNA damage respectively33,35. Overall the observed diversity spared the CD4+ and 301 

CD8+ T cell epitope encoding regions of the genome, consistent with prior studies8,10,47 and 302 

adding to the existing literature describing that host adaptive immunity does not drive directional 303 

selection in Mtb genomes. Diversity was concentrated in both antibiotic resistance regions and to 304 

an even larger extent in PE/PPE genes. Although previous studies have generally avoided 305 

reporting short-read variant calls in PE/PPE regions, we demonstrate using read simulation, 306 

visualization of illumina read alignments and comparison with long-read sequencing data that the 307 

SNPs captured in our study are highly unlikely to be false positive calls. We found PPE and PE-308 

PGRS genes to be more diverse in-host than PE genes and detected a signal of positive selection 309 

acting on two genes belonging to the PPE genes but no genes belonging PE or PE-PGRS sub-310 

families (Fig. 5). This indicates that PPE genes may be more functionally relevant in the process 311 

of host-adaptation. 312 

Evidence of directional selection in Mtb genomes have thus far been largely restricted to 313 

adaptation to antibiotic treatment9,12,22. We identified six genes and six pathways displaying 314 

diversity in-host and not known to be associated with antibiotic resistance (Fig. 3d). For a subset 315 

we demonstrate similar diversity has arisen independently in separate hosts and in strains with 316 

different genetic backgrounds suggesting positive selection (Fig. 5). We also identify in-host 317 

variation in 12 loci known to be involved in the acquisition of antibiotic resistance7,44 (Fig. 3d) 318 

and this lends further validity in identifying genes under selective pressure in vivo. The pathways 319 

showing in-host convergence may be important for interactions between host-and pathogen 320 
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arising from either metabolic or immune pressure. Mtb is one of a few types of bacteria that 321 

possess the capacity for de novo coenzyme B12/cobalamin synthesis, and this pathway has been 322 

implicated in Mtb survival in-host and Mtb growth48. We identified four genetic variants that 323 

developed in three separate patients and in three consecutive genes from the same locus cobG, 324 

intergenic cobG-cobH, cobH and cobK (Rv2064-Rv2067). This observation contributes to 325 

mounting evidence on the importance of this pathway for in vivo Mtb survival and may have 326 

implications for drug development49,50. Biotin biosynthesis is also relatively unique to 327 

mycobacteria and plays an important role in Mtb growth, infection and host survival during 328 

latency51.The other identified pathways include ESAT-6 protein secretion known to play a role in 329 

the modulation of host innate immune response52. 330 

Three additional loci not known to be associated with antibiotic resistance and found to 331 

be phylogenetically convergent, include the genes Rv0095c, PPE18 and PPE60. Although of 332 

unknown function Rv0095c (SNP A85V) was recently associated with transmission success of 333 

an Mtb cluster in Peru53. Both PPE18 and PPE60 have been shown to interact with toll-like 334 

receptor 2 (TLR2)54, 55. Additionally, PPE18 was the only gene to encode an epitope containing a 335 

SNP in-host; mutations in the epitope-encoding regions of this gene have previously been 336 

described in a set of geographically separated clinical isolates56. We also observed one variant 337 

arise in-host in PPE54, a gene implicated in Mtb’s ability to arrest macrophage phagosomal 338 

maturation (phagosome-lysosome fusion) and thought to be vital for intracellular persistence57. 339 

The mechanism by which PPE54 accomplishes this is unknown, but Mtb modification of 340 

phagosomal function is thought to be TLR2/TLR4-dependent58. 341 

Mtb is known to disrupt numerous innate immune mechanisms including phagosome 342 

maturation, apoptosis, autophagy as well as inhibition of MHC II expression through prolonged 343 
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engagement with innate sensor toll-like receptor 2 (TLR2) among others14. SNPs in human genes 344 

involved with innate-immune pathways have been implicated in-host susceptibility to TB59–61. 345 

Specifically, SNPs in TLR2 (thought to be the most important TLR in Mtb recognition)60 and 346 

TLR4 have been associated with susceptibility to TB disease59,61. Overall, these observations and 347 

our results are consistent with ongoing co-evolution between humans and Mtb. It appears that 348 

both human (e.g. immune receptors and cytokines) and Mtb (e.g. surface proteins) genetic loci 349 

may interact and respond to reciprocal adaptive changes, leaving a signature of selection in the 350 

genetic diversity of both humans and Mtb populations9. Most co-evolution between Mtb and 351 

humans, the main reciprocal adaptations between host and pathogen are thought to have occurred 352 

long ago and as a result of long-term host-pathogen interactions9,61. Unexpectedly, we observe 353 

these dynamics over the short evolutionary timescale of a single infection which has important 354 

implications for vaccine development40.   355 
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METHODS 356 

Sequence Data 357 

Longitudinal Isolate Pairs: This study included data for 614 clinical isolates of M. tuberculosis 358 

that were sampled from the sputum of 307 subjects resulting in n = 307 longitudinal pairs. The 359 

sequencing data for 456 publicly available isolates was downloaded from Genbank62, sequenced 360 

using Illumina chemistry to generate paired-end reads and came from previously published 361 

studies (T22, C25, W26, B27, G17, X29, H28, P63) (Supplementary Fig. 2).   362 

Replicate Isolate Pairs: This study included three types of replicate isolate pairs. (S2 - Sequenced 363 

Twice) DNA pooled from a single Mtb clinical isolate that had undergone in vitro expansion was 364 

sequenced in separate runs on an Illumina sequencing machine (m = 5). (C2 – Cultured & 365 

Sequenced Twice) Mtb was cultured from a single frozen clinical sample at separate time points, 366 

then sequenced on an Illumina sequencing machine after DNA extraction from culture (m = 73). 367 

(P3) Three sputum samples were obtained from a single subject within a 24 hour period22, 368 

cultured separately, underwent DNA extraction and then sequencing on an Illumina sequencing 369 

machine. For the purposes of this study, we compared these three isolates pairwise (m = 3). 370 

Public Sequence Data: We downloaded raw sequence data for 10,018 clinical isolates from the 371 

public domain62. Isolates had to meet the following quality control measures for inclusion in our 372 

study: (i) at least 90% of the reads had to be taxonomically classified as belonging to the 373 

Mycobacterium tuberculosis complex after running the trimmed FASTQ files through Kraken64, 374 

(ii) at least 95% of bases had to have coverage of at least 10x after mapping the processed reads 375 

to the H37Rv Reference Genome, and (iii) the global lineage of the isolate was determined via 376 

SNP barcoding65. 377 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/726430doi: bioRxiv preprint 

https://doi.org/10.1101/726430
http://creativecommons.org/licenses/by-nd/4.0/


 19 

DNA extraction for PacBio Sequencing: MTB cultures were allowed to grow for 4-6 weeks. 378 

Pellets were heat-killed at 80°C for 20 minutes66,67, the supernatants were removed, and the 379 

enriched cell pellet was subjected to DNA extraction soon after or stored frozen until extraction. 380 

Heat-killed cells pellets were immersed and briefly vortexed in 200ul lysis buffer (15% sucrose, 381 

0.05M Tris-Cl pH 8.0, 0.05M EDTA, pH 8.068, 50ul of 100mg/ml lysozyme added, and samples 382 

were incubated overnight at 37°C. To each sample was added 50ul of 2.5mg/ml proteinase K, 383 

100ul 20% SDS, and 4ul RNaseA/T1, and samples were incubated for 10 minutes at 65°C. 800ul 384 

of ChIP DNA binding buffer from Zymo Genomic DNA Clean and Concentrator-25 was added, 385 

and the samples were mixed vigorously by hand for at least 60 seconds. The cell debris was 386 

pelleted for 2 min at maximum in a microfuge, supernatants were transferred to the Zymo 387 

column, and DNA cleaned according to manufacturer’s protocol (Zymo Research, Irvine, CA), 388 

except that 10mM Tris-Cl pH 8.0 was used for elution to omit EDTA. Yields were determined 389 

using fluorescent quantitation (Qubit, Invitrogen/Thermofisher Scientific) and quality was 390 

assessed on a 0.8% GelRed agarose gel with 1XTAE, separated for 90 minutes at 80V.  391 

PacBio Sequencing of Mtb Isolates: Approximately 1 mg of high molecular weight genomic 392 

DNA was used as input for SMRTbell preparation, according to the manufacturer’s 393 

specifications (SMRTbell Template Preparation Kit 1.0, Pacific 394 

Biosciences, https://www.pacb.com/wp-content/uploads/2015/09/Procedure-Checklist-20-kb-395 

Template-Preparation-Using-BluePippin-Size-Selection.pdf).  Briefly, HMW gDNA was sheared 396 

to 20kb using the Covaris g-tube at 4500 rpm. Following shearing, gDNA underwent DNA 397 

damage repair, ligation to SMRTbell adaptors and exonuclease treatment to remove any 398 

unligated gDNA. At least 500 ng final SMRTbell library per sample was cleaned with AMPure 399 

PB beads and 3-50 kb fragments were size selected using the BluePippin system on 0.75% 400 
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agarose cassettes and S1 ladder, as specified by the manufacturer (Sage Science). Size selected 401 

SMRTbell libraries were annealed to sequencing primer and bound to the P6 polymerase prior to 402 

loading on the RSII sequencing system (Pacific Biosciences). Sequencing was performed using 403 

C4 chemistry and 240-minute movies. Following data collection, raw data was converted into 404 

subreads for subsequent analysis using the RS_Subreads.1 pipeline within SMRTPortal (version 405 

2.3), the web-based bioinformatics suite for analysis of RSII data. 406 

 407 

Epitope Collection and Analysis 408 

CD4+ T and CD8+ T cell epitope sequences were downloaded from the Immune Epitope 409 

Database69 on May 23rd, 2018 according to criteria described previously8 [linear peptides, M. 410 

tuberculosis complex (ID:77643, Mycobacterium complex), positive assays only, T cell assays, 411 

any MHC restriction, host: humans, any diseases, any reference type] yielding a set of 2,031 412 

epitope sequences (Supplementary Table 8). We mapped each epitope sequence to the genes 413 

encoded by the H37Rv Reference Genome70 using BlastP with an e-value cutoff of 0.01 414 

(Supplementary Fig. 5). We retained only epitope sequences that mapped to at least 1 region in 415 

H37Rv (due to sequence homology, some epitopes mapped to multiple regions) and whose 416 

BlastP peptide start/end coordinates matched those specified in IEDB (n = 1,949 representing 417 

1,505 separate epitope entries in IEDB). We then filtered out any epitopes occurring in Mobile 418 

Genetic Elements which resulted in a final set of 1,875 epitope sequences, representing 348 419 

genes (antigens) used for downstream analysis. The distribution of peptide lengths for this final 420 

set of epitopes is given in Supplementary Fig. 5. Since many of these epitope sequences 421 

overlap, we constructed non-redundant epitope concatenate sequences for each antigen (n = 348) 422 
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gene8,10,71. The regions of each antigen not encoding an epitope were concatenated into a non-423 

epitope sequence for that gene. 424 

 425 

Gene Sets 426 

Every gene on H37Rv was classified into one of six non-redundant gene categories according to 427 

the following criteria: (i) genes identified as belonging to the PE/PPE family of genes10,37 were 428 

classified as PE/PPE (n = 167), (ii) genes flagged as being associated with antibiotic resistance 429 

were classified into the Antibiotic Resistance category (n = 28), (iii) genes encoding a T cell 430 

epitope (but not already classified as a PE/PPE or Antibiotic Resistance gene) were classified as 431 

an Antigen (n = 257), (iv) genes required for growth in vitro38 and in vivo39 and not already 432 

placed into a category above were classified as Essential genes (n = 682), (v) genes flagged as 433 

transposases, integrases, phages or insertion sequences were classified as Mobile Genetic 434 

Elements10 (n = 108), (vi) any remaining genes not already classified above were placed into the 435 

Non-Essential category (n = 2752) (Supplementary Table 3). 436 

 437 

Variant Calling 438 

Illumina FastQ Processing and Mapping to H37Rv: The raw sequence reads from all sequenced 439 

isolates were trimmed with Prinseq72 (settings: -min_qual_mean 20) (version 0.20.4) then 440 

aligned to the H37Rv Reference Genome (Genbank accession: NC_000962) with the BWA 441 

mem73 algorithm (settings: -M) (version 0.7.15). The resulting SAM files were then sorted 442 

(settings: SORT_ORDER = coordinate), converted to BAM format and processed for duplicate 443 

removal with Picard (http://broadinstitute.github.io/picard/) (version 2.8.0) (settings: 444 

REMOVE_DUPLICATES = true, ASSUME_SORT_ORDER = coordinate). The processed 445 
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BAM files were then indexed with Samtools74. We used Pilon75 on the resulting BAM files to 446 

call bases for all reference positions corresponding to H37Rv as well as micro-Indels from pileup 447 

(settings: --variant). 448 

Single Nucleotide Polymorphism (SNP) Calling: To prune out low-quality base calls that may 449 

have arisen due to sequencing or mapping error, we dropped any base calls that did not meet any 450 

of the following criteria21: (i) the call was flagged as either Pass or Ambiguous by Pilon, (ii) the 451 

reads aligning to that position supported at most 2 alleles (ensuring that 1 allele matched the 452 

reference allele if there were 2), (iii) the mean base quality at the locus was > 20, (iv) the mean 453 

mapping quality at the locus was > 30, (v) none of the reads aligning to the locus supported an 454 

insertion or deletion, (vi) a minimum coverage of 25 reads at the position, and (vii) the position 455 

is not located in a mobile genetic element region of the reference genome. We then used the 456 

Pilon-generated75 VCF files to calculate the frequencies for both the reference and alternate 457 

alleles, using the INFO.QP field (which gives the proportion of reads supporting each base 458 

weighted by the base and mapping quality of the reads, BQ and MQ respectively, at the specific 459 

position) to determine the proportion of reads supporting each base for each locus of interest. 460 

Additional SNP Filtering for Isolate Pairs: To call SNPs (and corresponding changes in allele 461 

frequencies) between pairs of isolates (Replicate and Longitudinal pairs), we required: (i) SNP 462 

Calling filters be met, (ii) the number of reads aligning to the position is below the 99th 463 

percentile for all of the calls made for that isolate, (iii) the call at that position passes all filters 464 

for each isolate in the pair, and (iv) SNPs in glpK were dropped as mutants arising in this gene 465 

are thought to be an artifact of in vitro expansion32; we detected four non-synonymous SNPs in 466 

glpK between three longitudinal pairs (mean DAF=64%). 467 
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Additional SNP Filtering for Antibiotic Resistance Loci Analysis: To call SNPs (and 468 

corresponding minor changes in allele frequencies) between pairs of isolates (Longitudinal 469 

Pairs), we required: (i) SNP Calling filters be met, (ii) Additional SNP Filtering for Isolate Pairs 470 

filters be met, (iii) C𝐴𝐹7DEF −	𝐴𝐹HDEFC = 	DAF	 ≥ 5%, (iv) if 5% ≤ DAF < 20%, then the SNP was 471 

only retained if each allele (across both isolates) with AF	 > 0% was supported by at least 5 472 

reads (ensuring that at least 5 reads supported each minor allele at lower values of DAF), (v) the 473 

SNP was classified as either intergenic or non-synonymous, (vi) the SNP was located in a gene, 474 

intergenic region or rRNA coding region associated with antibiotic resistance (Supplementary 475 

Table 4).  476 

Additional SNP Filtering for Public Isolates: We screened a set of 10,018 public isolates for the 477 

same SNPs detected in our in-host analysis. In these isolates, we evaluated the base calls at the 478 

same reference positions for which we detected in-host SNPs and required that the calls be 479 

flagged as Pass by Pilon in addition to our other filters for SNP calling. This ensured that at least 480 

75% of reads at a given position supported the same alternate allele detected in-host. 481 

PacBio de novo Assembly, Genome Polishing, and Variant Calling: PacBio and Illumina 482 

sequencing data was available for 19 clinical Mtb isolates. We used Canu76 to de novo assemble 483 

the raw PacBio subreads from these 19 isolates (settings: genomeSize=4.4m -pacbio-raw) 484 

(version 1.8). We used Circlator77 to close the resulting assembly using the corrected-trimmed 485 

reads provided by Canu. PacBio’s bax2bam function (settings: --subread) was used to convert 486 

PacBio legacy BAX files to BAM format. We ran PacBio’s implementation of Minimap278 487 

(pbmm2) to map and sort raw PacBio subreads to the closed genome from Circlator. We 488 

iteratively polished the assembly three times by running the Quiver algorithm79 and used 489 

Samtools74 to index the fasta files from the resulting assemblies. Fifteen of our samples 490 
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assembled into a single contig, 2 samples assembled into 2 contigs each, 1 assembled into 4 491 

contigs and 1 assembled into 24 contigs (Supplementary Table 20). To call SNPs relative to the 492 

H37Rv reference, we used Minimap280 to align each PacBio assembly to the H37Rv reference 493 

sequence. We used the paftools.js call utility included with Minimap2 to generate variant calls 494 

from each assembly to reference alignment. We excluded samples that assembled into more than 495 

a single contig from downstream analysis. Additionally, we excluded samples: M0018577_8a, 496 

M0013712_6, and M0002959_6 due to having a pairwise genetic distance > 100 SNVs with 497 

their corresponding Illumina sequenced samples. This large number of SNVs between PacBio 498 

and Illumina sequences originating from the same Mtb isolate was likely due to contamination or 499 

mislabeling of samples. 500 

 501 

Mixed Lineage and Contamination Detection for Isolate Pairs 502 

Kraken: To filter out samples that may have been contaminated by foreign DNA during sample 503 

preparation, we ran the trimmed reads for each longitudinal and replicate isolate through 504 

Kraken264 against a database23 containing all of the sequences of bacteria, archaea, virus, 505 

protozoa, plasmids and fungi in RefSeq (release 90) and the human genome (GRCh38). We 506 

calculated the proportion reads that were taxonomically classified under the Mycobacterium 507 

tuberculosis Complex (MTBC) for each isolate and implemented a threshold of 95%. An isolate 508 

pair was dropped if either isolate had less than 95% of reads aligning to MTBC. 509 

F2: To further reduce the effects of contamination, we aimed to identify samples that may have 510 

been subject to inter-lineage mixture samples resulting from of a co-infection (F2). We computed 511 

the F2 lineage-mixture metric for each longitudinal and replicate isolate (Fig. 1). We wrote a 512 

custom script to carry out the same protocol for computing F2 as previously described24. Briefly, 513 
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the method involves calculating the minor allele frequencies at lineage-defining SNPs65.  From 514 

64 sets of SNPs that define the deep branches of the MTBC65, we considered the 57 sets that 515 

contain more than 20 SNPs to obtain better estimates of minor variation24,65. For each SNP set 𝑖, 516 

(i) we summed the total depth and (ii) the number of reads supporting the most abundant base (at 517 

each position) over all of the reference positions (SNPs) that met our mapping quality, base 518 

quality and insertion/deletion filters, which yields 𝑑Q and 𝑥Q respectively. Subtracting these two 519 

quantities yields the minor depth for SNP set 𝑖, 𝑚Q = 𝑑Q − 𝑥Q. The minor allele frequency 520 

estimate for SNP set 𝑖 is then defined as 𝑝Q = 𝑚Q ∕ 𝑑Q. Doing this for all 57 SNP sets gives 521 

{𝑝7, 𝑝H,⋯ , 𝑝/V}. We then sorted {𝑝7, 𝑝H,⋯ , 𝑝/V} in descending order and estimated the minor 522 

variant frequency for all of the reference positions (SNPs) corresponding to the top 2 sets 523 

(highest 𝑝Q values) which yields the F2 metric. Letting 𝑛2 be the number of SNPs in the top 2 524 

sets, then 𝐹2 = 	∑ 𝑚Y
ZH
Y[7 	 	∑ 𝑑QZH

Q[7⁄ . Isolate pairs were dropped if the F2 metric for either isolate 525 

passed the F2 threshold set for mixed lineage detection (Fig. 1, Supplementary Fig. 2). 526 

 527 

Pre-existing Genotypic Resistance 528 

We determined pre-existing resistance for a subject (with a  pair of longitudinal isolates) by 529 

scanning the first isolate for the detection of at least 1 of 177 SNPs predictive of resistance with 530 

AF ³ 75% (from a minimal set of 238 variants30). We excluded predictive indels and the gid 531 

E92D variant as the latter is likely a lineage marking variant that is not indicative of antibiotic 532 

resistance. We defined pre-existing multidrug resistance for a subject by scanning the first isolate 533 

collected for detection of at least 1 SNP predictive of Rifampicin resistance (14/178 predictive 534 

SNPs) and at least 1 SNP predictive of Isoniazid resistance (18/178 predictive SNPs). 535 

 536 
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True & False Positive Rate Analysis for Heteroresistant Mutations 537 

To determine the predictive value of low-frequency heteroresistant alleles, we classified SNPs as 538 

fixed if the alternate allele frequency in the 2nd isolate collected from the subject was at least 539 

75% (alt AF2 ≥ 75%). We first dropped SNPs for which alt AF1	≥ 75% and alt AF2	≥ 75% 540 

(high frequency mutant alleles in both isolates). We then set a threshold (𝐹Q) for the alternate 541 

allele frequency detected in the 1st isolate collected from the subject (alt AF1) and predicted 542 

whether an alternate allele would rise to a substantial proportion of the sample (alt AF2 ≥ 75%) 543 

as follows: 544 

𝑎𝑙𝑡	𝐴𝐹7 < 𝐹Q	 ⟶ 𝑎𝑙𝑡	𝐴𝐹H < 75% 545 
𝑎𝑙𝑡	𝐴𝐹7 ≥ 𝐹Q	 ⟶ 𝑎𝑙𝑡	𝐴𝐹H ≥ 75% 546 

We classified every SNP as True Positive (TP), False Positive (FP), True Negative (TN) or False 547 

Negative (FN) according to: 548 

𝑇𝑃:			𝑎𝑙𝑡	𝐴𝐹7 ≥ 𝐹Q				&			𝑎𝑙𝑡	𝐴𝐹H ≥ 75% 549 
𝐹𝑃:			𝑎𝑙𝑡	𝐴𝐹7 ≥ 𝐹Q				&			𝑎𝑙𝑡	𝐴𝐹H < 75% 550 
𝑇𝑁:			𝑎𝑙𝑡	𝐴𝐹7 < 𝐹Q				&			𝑎𝑙𝑡	𝐴𝐹H < 75% 551 
𝐹𝑁:			𝑎𝑙𝑡	𝐴𝐹7 < 𝐹Q				&			𝑎𝑙𝑡	𝐴𝐹H ≥ 75% 552 

True Positive Rates (TPR) and False Positive Rates (FPR) were calculated as: 553 

𝑇𝑃𝑅 = 	
#𝑇𝑃

#𝑇𝑃 + #𝐹𝑁 				𝐹𝑃𝑅 =
#𝐹𝑃

#𝐹𝑃 + #𝑇𝑁 554 

Finally, we made predictions for all SNPs and calculated the TPR and FPR for all values of 𝐹Q 	∈555 

{0%, 1%, 2%,⋯ ,98%, 99%, 100%}.  556 

 557 

Mutation Density Test 558 

The method to detect significant variation for a given locus amongst pairs of sequenced isolates 559 

has been described previously41. Briefly, let 𝒩Y	~	𝑃𝑜𝑖𝑠m𝜆Yo be a random variable for the number 560 
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of SNPs detected across all isolate pairs (for the in-host analysis this is the collection of 561 

longitudinal isolate pairs for all subjects) for gene 𝑗. Let (i) 𝑁Q = number of SNPs across all pairs 562 

for gene 𝑖, (ii) |𝑔Q| =	length of gene 𝑖, (iii) 𝑃 =	number of genome pairs and (iv) 𝐺 =	the number 563 

of genes across the genome being analyzed (all genes in the essential, non-essential, antigen, 564 

antibiotic resistant and family protein categories).  565 

 566 

Then the length of the genome (concatenate of all genes being analyzed) is given by ∑ |𝑔Q|t
Q[7  567 

and the number of SNPs across all genes and genome pairs is given by ∑ 𝑁Qt
Q[7 . The null rate for 568 

𝒩Y is given by the mean SNP distance between all pairs of isolates, weighted by the length of 569 

gene 𝑗 as a fraction of the genome concatenate and number of isolate pairs: 570 

𝜆Y = 	 u
∑ 𝑁Qt
Q[7

𝑃 vu
|𝑔Q|

∑ |𝑔Q|t
Q[7

v w
1
𝑃x 571 

The p-value for gene 𝑗 is then calculated as Pr	m𝑁Q > 𝒩Yo. We tested 3,386 genes for mutational 572 

density and applied Bonferroni correction to determine a significance threshold. We determine a 573 

gene to have a significant amount of variation if the assigned p-value < {.{/
|,|}~

≈ 1.477 × 10./. 574 

 575 

Nucleotide Diversity 576 

We define the nucleotide diversity m𝜋�o for a given gene 𝑔 as follows: (i) let C𝑔𝑒𝑛𝑒�C =	base-577 

pair length of the gene, (ii) 𝑁Q,Y =	number of in-host SNPs (independent of the change in allele 578 

frequency for each SNP) between the longitudinal isolates for subject 𝑖 occurring on gene 𝑗 and 579 

(iii) 𝑃 =	number of subjects. Then  580 

𝜋� = w
1
𝑃x u

1
C𝑔𝑒𝑛𝑒�C

v�𝑁Q,�

�

Q[7

 581 
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Correspondingly, let 𝐺 be a category consisting of 𝑀 genes, then the average nucleotide diversity 582 

for 𝐺	is given by: 583 

𝜋t = 	w
1
𝑀x w

1
𝑃x�u

1
C𝑔𝑒𝑛𝑒YC

v
�

Y[7

��𝑁Q,Y

�

Q[7

� 584 

 585 

SNP confirmation in repetitive genomic regions 586 

Several of the SNPs detected belong to the GC-rich repetitive PE/PPE gene category37. Variants 587 

called on these genes are commonly excluded from comparative genomic analyses8,10,16,21,25 due 588 

to the limitations of short-read sequencing data and the possibility of making spurious variant 589 

calls in these regions of the genome, however the rates at which these false calls occur has not 590 

been evaluated. We reasoned that our stringent filtering criteria, quality of sequencing data and 591 

depth of coverage allowed us to reliably detect variants in these regions of the genome.  592 

SNP Calling Simulations: Certain repetitive regions of the Mycobacterium tuberculosis genome 593 

(ESX, PE/PPE loci) may give rise to false positive and false negative variant calls due to the mis-594 

alignment of short-read sequencing data. To test the rate of false negative and false positive SNP 595 

calls in loci with in-host SNPs (Fig. 5) we collected the set of non-redundant SNPs observed in 596 

these loci (Supplementary Tables 16, 19). Next, we collected a set of publicly available 597 

reference genomes (Supplementary Table 15) and introduced these mutations into the 598 

respective loci positions in the reference genomes. We then simulated short-read Illumina 599 

sequencing data of comparable quality to our sequencing data from these altered reference 600 

genomes. Using our variant-calling pipeline to call polymorphisms, we then estimated the 601 

number of true and false positive SNP calls for each gene, based off of how many introduced 602 

SNPs were called (true positives), how many introduced SNPs were not called (false negatives) 603 
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and how many spurious SNPs were called (false positives). A schematic of our simulation 604 

methodology is given in Supplementary Fig. 5, a detailed explanation is given in the 605 

Supplementary Note and the results of our simulations (given in Supplementary Fig. 8) 606 

confirm a low false-positive rate. 607 

PacBio Assembly vs. Illumina Mapping SNP Calling: We compared SNP calling for the genes 608 

Rv0095c, PPE18, PPE54 and PPE60 between 12 isolates for which we had a complete PacBio 609 

assembly and Illumina sequencing data (Supplementary Table 20). Unlike Illumina generated 610 

reads, PacBio reads are much longer and have randomly distributed error profiles81 which makes 611 

PacBio sequencing ideal for constructing microbial genomes and identifying variants in 612 

repetitive regions given high coverage. We used our variant calling procedures as outlined above 613 

to call SNPs from assemblies constructed from de novo assembly of PacBio reads (𝐀) and from 614 

mapping Illumina reads to the H37Rv reference genome (𝐁) for the four genes of interest 615 

(Supplementary Table 21). We then calculated the number of SNPs that were detected by both 616 

methods |𝐀 ∩ 𝐁|, the number of SNPs detected only from mapping Illumina reads |𝐀\𝐁| and the 617 

number of SNPs detected only in the PacBio assemblies |𝐁\𝐀| (Supplementary Fig. 12). In 618 

these four genes, we observed that a large proportion of SNPs were detected by both sequencing 619 

methods (|𝐀 ∩ 𝐁|), and that the number of SNPs falsely detected by Illumina (|𝐀\𝐁|) was zero or 620 

extremely low across all samples. 621 

We found that 17/178 in-host SNPs and 31/68 phylogenetically convergent SNPs were present in 622 

at least 1/12 of our PacBio de novo assembled genomes (Supplementary Table 22), including 623 

SNPs within repetitive genes Rv0095c, PPE18, PPE54 and PPE60. We evaluated the capacity of 624 

Illumina short-read sequencing technology to detect our in-host SNPs of interest in repetitive 625 

genes. For each SNP we measured: (1) the number of times our Illumina SNP calling pipeline 626 
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correctly identified a SNP when it was present (|𝐀 ∩ 𝐁|), and (2) the number of times Illumina 627 

falsely called a SNP (|𝐀\𝐁|). All five of our detected in-host SNPs present in PPE18, PPE54 628 

and PPE60 were always called correctly by Illumina sequencing (|𝐀 ∩ 𝐁|). Furthermore, no in-629 

host SNPs nor any phylogenetically convergent SNPs were spuriously called via Illumina 630 

sequencing and mapping (|𝐀\𝐁|). The only in-host or phylogenetically convergent SNPs 631 

displaying any inconsistent Illumina variant calling were in the Rv0095c gene as some SNPs 632 

were called from PacBio sequencing data but not Illumina data. Overall, we detect the presence 633 

of many in-host and phylogenetically convergent SNPs in Mtb clinical isolates demonstrating 634 

that these SNP calls (from Illumina reads) are unlikely to have resulted from erroneous variant 635 

calling. 636 

 637 

Global Lineage Typing 638 

We determined the global lineage of each longitudinal (𝑁 = 614) and public isolate (𝑁 =639 

10,018) using base calls from Pilon-generated VCF files and a subset of 413 previously 640 

established lineage-defining diagnostic SNPs65. 641 

 642 

Phylogenetic Convergence Analysis 643 

We selected a set of genes to test for phylogenetic convergence based on the following criteria: 644 

(i) in-host SNPs were detected within the gene across multiple hosts (in-host convergence at the 645 

gene level), (ii) the gene was classified as mutationally dense (Supplementary Table 11), (iii) 646 

the gene belonged to a pathway in which in-host SNPs were detected across multiple hosts 647 

(Supplementary Table 14) and at least one in-host SNP was detected within the gene (in-host 648 

convergence at the pathway level). Twenty-two genes fit at least one of these criteria 649 
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(Supplementary Table 17). We then scanned 10,018 genetically diverse isolates for SNPs 650 

within these genes according to our SNP calling methodology above (Supplementary Table 651 

18). To determine phylogenetic convergence for a given SNP site, we required the detection of 652 

the alternate allele in at least 10 isolates for at least two global lineages. Sixty-eight SNP sites 653 

across six genes were detected as having a signal of phylogenetic convergence (Supplementary 654 

Table 19). A single SNP site, in which the alternate allele was present in 9,775/10,108 isolates, 655 

reflected a rare allele in the reference genome and was dropped from further analysis yielding a 656 

set of 67 phylogenetically convergent SNP sites detected across five genes (Fig. 5). 657 

 658 

Data Analysis and Variant Annotation 659 

Data analysis was performed using custom scripts run in Python and interfaced with iPython82. 660 

Statistical tests were run with Statsmodels83 and figures were plotted using Matplotlib84. 661 

Numpy85, Biopython86 and Pandas87 were all used extensively in data cleaning and manipulation. 662 

Functional annotation of SNPs was done in Biopython86 using the H37Rv reference genome and 663 

the corresponding genome annotation. For every SNP called, we used the H37Rv reference 664 

position provided by the Pilon75 generated VCF file to extract any overlapping CDS region and 665 

annotated SNPs accordingly. Each overlapping CDS regions was then translated into its 666 

corresponding peptide sequence with both the reference and alternate allele. SNPs in which the 667 

peptide sequences did not differ between alleles were labeled synonymous, SNPs in which the 668 

peptide sequences did differ were labeled non-synonymous and if there were no overlapping 669 

CDS regions for that reference position, then the SNP was labeled intergenic. 670 

 671 

Pathway Definitions 672 
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We used SEED88 subsystem annotation to conduct pathway analysis and downloaded the 673 

subsystem classification for all features of Mycobacterium tuberculosis H37Rv (id: 83332.1) 674 

(Supplementary Table 12). We mapped all of the annotated features from SEED to the 675 

annotation for H37Rv. Due to the slight inconsistency between the start and end chromosomal 676 

coordinates for features from SEED and our H37Rv annotation, we assigned a locus from 677 

H37Rv to a subsystem if both the start and end coordinates for this locus fell within a 20 base-678 

pair window of the start and end coordinates for a feature in the SEED annotation 679 

(Supplementary Table 13).  680 
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FIGURE LEGENDS 896 

Figure 1 – Selection of patients with longitudinal clonal infection (a) Allele frequency change 897 

between paired isolates (∆𝐴𝐹) = |𝐴𝐹7� − 𝐴𝐹H�| = |𝐴𝐹7� − 𝐴𝐹H�|. (b)  The F2 measure >0.04 898 

(Methods) was used to identify and exclude isolate pairs with evidence for mixed strain growth 899 

at any time point. (c) Replicate and longitudinal pairs with fixed SNP (fSNP) distance of >7 were 900 

excluded. For longitudinal isolates fSNP>7 was assessed as consistent with Mtb reinfection with 901 

a different strain.  902 

 903 

Figure 2 – Allele frequency dynamics within antibiotic resistance loci. (a) The antibiotic 904 

resistance genes embB, katG, and gyrA demonstrate evidence for competing clones during 905 

infection (patterns for other genes in Supplementary Figure 4). (b) Plot of true positive rate 906 

(TPR) and false positive rate (FPR) for detecting eventual fixation of a resistance allele as a 907 

function of initial allele frequency (𝐴𝐹7>5%). 908 

 909 

Figure 3 – Genome-wide diversity in 200 clonal Mtb infections. (a) Distribution of five major 910 

Mtb lineages among the 200 clonal Mtb infections. (b) Distribution of 178 in-host SNPs among 911 

the 200 longitudinal isolate pairs across the 4.41 Mbp Mtb genome (blue circles: synonymous, 912 

red circles: non-synonymous). Blue and red circles on the innermost black ring indicate the 913 

locations of SNPs detected in one patient; circles on the next ring represent SNPs detected in two 914 

patients. The −log7{(p-value) of the mutational density test (Methods) by gene is plotted in the 915 

outermost, red and green, regions. Labeled yellow circles represent genes significant at the 916 

bonferroni-corrected cutoff (𝛼 = 0.05/3,886). (c) Distribution of DAF by SNP type: sSNP: 917 

synonymous, nSNP: non-synonymous, iSNP: intergenic. (c) Heat-map of SNPs per gene (rows) 918 
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and patient (columns). Colored circles across columns indicate the strain phylogenetic lineage 919 

(as represented in (a)). Gene names colored according to gene category (Fig 4d) with 920 

parentheses indicating the number of subjects with a SNP in a given gene. *Indicates genes in 921 

which SNPs are detected within multiple hosts. 922 

 923 

Figure 4 - PE/PPE genes vary considerably within host while putative antigens remain 924 

conserved. (a) Mutational spectrum of in-host SNPs. (b) In-host SNP counts vs. time between 925 

isolate collection (195/200 subjects with dates shown, *W26 isolates only had year of collection).  926 

(c) boxplots of nucleotide diversity by gene within each of 5 non redundant categories (see text). 927 

(𝑛 = number of genes). (d) Average nucleotide diversity across genes by category. Nucleotide 928 

diversity in epitope and non-epitope region (Methods) of each gene in the Antigen (e,f) and 929 

PE/PPE (g,h) gene categories. (i,j) PE/PPE genes separated into three non-redundant categories: 930 

PE, PE-PGRS, and PPE. (i) The average nucleotide diversity by category. (j) box plot of 931 

nucleotide diversity by gene. 932 

 933 

Figure 5 – Alleles acquired in-host show evidence of phylogenetic convergence across 10,018 934 

clinical Mtb isolates. (a) Global lineage distribution among 10,018 clinical Mtb isolates. (b) 935 

Sixty-seven SNP sites detected within five genes displayed evidence of phylogenetic 936 

convergence (Methods). The alternate allele for each SNP was detected in at least 10 isolates 937 

within at least two global lineages. The number of isolates with each alternate allele, broken 938 

down by global lineage, is displayed. Each mutation is labeled with the reference allele, H37Rv 939 

coordinate, and alternate allele (blue:synonymous, red:non-synonymous). The gene name or 940 

H37Rv locus tag each mutation occurs within is indicated at the bottom. 941 
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SUPPLEMENTARY NOTE 29 

Reference Genome Collection 30 

We downloaded 60 reference genomes (RefGenome) (i.e. completely assembled Mycobacterium 31 

tuberculosis genomes) from NCBI (Genbank accession IDs can be found in Supplementary 32 

Table 15). We limited our collection to genomes for which there were corresponding annotation 33 

files.  34 

 35 

Mapping CDS regions from Reference Genomes to H37Rv 36 

Since the regions of interest were repetitive loci that have many homologies elsewhere in the 37 

genome, we were unable to use traditional alignment methods to map the genes of interest from 38 

H37Rv to the other RefGenomes. Instead, we made use of the clonal structure of the Mtb 39 

genome to construct gene mappings from H37Rv to the RefGenomes as follows 40 

(Supplementary Figure 7a): 41 

1. For each gene 𝑔 annotated in H37Rv, collect the set of gene lengths 5 genes upstream 42 

and 5 genes downstream of 𝑔 from H37Rv. Compare the set of 11 H37Rv gene lengths to 43 

every set of 11 consecutive gene neighborhoods on the RefGenome and assign a score 44 

based off of the intersection of each pair of sets. 45 

2. Look at the gene neighborhood(s) with the top score after scanning the RefGenome and 46 

pairwise globally align1 𝑔 to every gene in the top scoring neighborhood using the 47 

following criteria: (i) identical characters are given 2 points, (ii) 1 point is deducted for 48 

each non-identical character, (iii) 2 points are deducted for opening a gap, (iv) 2 points 49 

are deducted for extending a gap. 50 
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3. Take the top scoring alignment 𝑟 and assign a mapping from H37Rv gene 𝑔 to 51 

RefGenome gene 𝑟 if (i) the pairwise alignment score is > 0 and (ii) the base pair length 52 

of 𝑔 and 𝑟 are equivalent (the latter ensures correct placement of mutations in 53 

downstream analysis). If either of these criteria is not met, then we do not assign a 54 

mapping from 𝑔 to any CDS region on that RefGenome. 55 

 56 

Filtering Low-Quality Mapped Reference Genomes 57 

To assess the quality of the mappings from H37Rv to the set of RefGenomes, we compared the 58 

reference position start coordinates of each assigned mapping between each RefGenome and 59 

H37Rv. Again making use of Mtb clonality, we reasoned that the genomic structure of each pair 60 

of genomes is similar (if each RefGenome is indexed to start at the first gene on H37Rv Rv0001, 61 

then well mapped RefGenomes will have mapped genes that are located within a neighborhood 62 

of the coordinates from H37Rv). To test this (for each RefGenome), we took the absolute 63 

difference between the start coordinates for all of the mapped genes between the RefGenome and 64 

H37Rv. We then averaged these differences across all gene mappings between both genomes. 65 

This measures the conservation (of the ordering) of the mapped genes between each pair of 66 

genomes (H37Rv & RefGenome) and gives an indication of how successful the mappings were 67 

on a global scale. We downloaded and mapped genes for 60 Genome Assemblies from 68 

GenBank2 and assessed the quality of each set of mappings using the measure described above 69 

(Supplementary Fig. 7b-c). We excluded 6 RefGenomes on the basis of sporadic gene 70 

mappings against H37Rv which was determined by looking at the distribution of the mapping 71 

measure for all 60 assemblies. We kept the remaining 54 genomes for use in the simulations. 72 

 73 
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Altering RefGenomes at SNP Test Sites 74 

We make use of the set of the (non-redundant) observed in-host SNPs across all genes (Fig. 3d, 75 

Supplementary Table 16) and set of phylogenetically convergent SNPs (Fig. 5b, 76 

Supplementary Table 19). We alter each RefGenome by introducing mutations (that correspond 77 

to the aforementioned SNPs) into the genes successfully mapped to H37Rv, ensuring that the 78 

new bases differ from the corresponding base positions on H37Rv. Since successful mappings 79 

require that the mapped genes be the same length, the mutations are introduced into the same site 80 

on the RefGenome with respect to the gene specific coordinates (i.e. a gene 𝑛 bp long will have 81 

coordinates {1, 2,⋯ , 𝑛 − 1, 𝑛} from 5. → 3′). We store information pertaining to which bases 82 

were altered for each RefGenome {𝑆𝑁𝑃	𝑠𝑒𝑡	𝛃}. No simulations are run for genes on 83 

RefGenomes that are not successfully mapped to H37Rv. 84 

 85 

Simulating Reads from Complete Genomes 86 

To validate our SNP calling methodology using the set of RefGenomes, we used ART3 to 87 

simulate short-read sequencing data altered versions of the RefGenomes (Supplementary Fig. 88 

7b). Since the aim of our simulations was to study the quality of our variant calls on our real 89 

data, we simulated data for each (altered) RefGenome that was of comparable quality to our real 90 

sequencing data: Illumina HiSeq 1000, read length of 100bp, mean coverage of 80x, paired end 91 

reads, 200bp mean size of DNA fragments, 25bp standard deviation of DNA fragment size 92 

(settings: -ss HS10 -l 100 -f 80 -p -m 200 -s 25). 93 

 94 

Mapping Simulated Reads to H37Rv and Calling SNPs 95 
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Next we mapped the pool of simulated reads from the altered RefGenomes against the H37Rv 96 

reference genome and called SNPs according to most of the same procedures and WGS filters 97 

outlined in Methods. However, in this instance we called SNPs at reference positions that 98 

supported an alternate allele and required that calls were flagged as Pass by Pilon (where the 99 

alternate allele frequency was ≥ 75% and no Ambiguous, Low Coverage, or Deletion flags were 100 

present at that position). For each RefGenome, this yielded the set of SNPs (between the altered 101 

RefGenome and H37Rv) called by our pipeline {𝑆𝑁𝑃	𝑠𝑒𝑡	𝐁} (Supplementary Fig. 7b). 102 

 103 

Calling SNPs with MUMmer 104 

We used Mummer34 to call SNPs between H37Rv and each (unaltered) RefGenome. We aligned 105 

each pair of genomes and called SNPs between the alignments using the following commands:  106 

1) nucmer -mum H37Rv.fasta RefGenome.fasta 107 

2) delta-filter -r -q H37Rv_RefGenome.delta > H37Rv_RefGenome.filter 108 

3) show-snps -Clr -T H37Rv_RefGenome.filter > H37Rv_RefGenome.snps 109 

The resulting SNP calls yielded the set of SNPs between each of the unmodified (unaltered) 110 

RefGenomes and H37Rv {𝑆𝑁𝑃	𝑠𝑒𝑡	𝐀} (Supplementary Fig. 7b). 111 

 112 

True & False Positive SNP Call Analysis 113 

To calculate the number of true positives and false positives with regard to our SNP calling 114 

pipeline for each gene 𝑔 of interest (Supplementary Fig. 8), we define the following sets of 115 

H37Rv coordinates for each RefGenome: 116 

• 𝜷 - SNPs introduced into (altered) RefGenome 117 

• 𝑨 - SNPs called between (unaltered) RefGenome & H37Rv 118 

• 𝑩 - SNPs called between (altered) RefGenome & H37Rv 119 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/726430doi: bioRxiv preprint 

https://doi.org/10.1101/726430
http://creativecommons.org/licenses/by-nd/4.0/


• 𝑪 - all reference positions (or coordinates) on H37Rv 120 

The set of coordinates where an alternate allele was introduced into the RefGenome and called 121 

by the pipeline (true positive SNPs for gene 𝑔) is given by: 122 

𝑇𝑃D = F𝐵D ∖ 𝐴DJ ∩ F𝛽D ∖ 𝐴DJ 123 

where we normalize by SNP set 𝐴D to make sure we're only accounting for test SNPs in our 124 

computations. The set of coordinates where an alternate allele was note introduced and called by 125 

the pipeline (false positive SNPs for gene 𝑔) is given by: 126 

𝐹𝑃D = NF𝐵D ∖ 𝐴DJ ∩ 𝐶DP ∖ 𝑇𝑃D 127 

The set of coordinates where an alternate allele was introduced but was not called by the pipeline 128 

(false negative SNPs for gene 𝑔) is given by:  129 

𝐹𝑁D = F𝛽D ∖ 𝐴DJ ∖ 𝑇𝑃D 130 

The results of our simulations (Supplementary Fig. 8) indicate that the number of true positive 131 

calls is consistent with the number of known SNPs across all genes and simulations. Perhaps 132 

more importantly, our results also suggest that false positive calls are rarely made for any SNP in 133 

our sample. Thus, while we may not have called all of the existing variation between paired 134 

isolates (false negative calls), it is unlikely that we called non-existing variation between any pair 135 

of isolates (false positives). That is, false-positive SNPs are rarely called, even in repetitive loci 136 

such as the PE/PPE gene family, supporting our decision to keep all SNP calls for downstream 137 

analysis.  138 
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SUPPLEMENTARY FIGURES 139 

 140 

Supplementary Figure 1 - Pre-existing resistance is associated with resistance amplification. 141 

(a) The acquisition of AR SNPs is associated with subjects who fail treatment. (b-c) Among 142 

subjects who fail treatment, (b) subjects with pre-existing mutations that confer antibiotic 143 

resistance and (c) those that have pre-existing MDR are more likely to acquire antibiotic 144 
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resistance mutations throughout the course of infection. (d) The allele frequency trajectories for 145 

SNPs that occur in subjects over the course of infection can be used to study the prediction of 146 

further antibiotic resistance using the frequency of alternate alleles detected in the longitudinal 147 

isolates collected from subjects.  148 

  149 
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 150 

Supplementary Figure 2 - Filtering out laboratory-contaminated samples and subjects with 151 

mixed infections. We implemented several filters to mitigate the effects of contamination from 152 

laboratory error or samples from co-infected hosts (Methods). Our analysis included three types 153 

of replicate pairs (S2, C2, P3) and serial pairs from eight studies (P, C, W, T, B, G, X, H) 154 

(Methods). At each step, we filtered out any pair of isolates if at least one isolate failed to pass 155 

the filter in place (indicated by dashed arrows). First, we used Kraken to filter out isolates that 156 

had less than 95% of reads taxonomically classified under MTBC. Second, we filtered out 157 

.CC-BY-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 6, 2019. ; https://doi.org/10.1101/726430doi: bioRxiv preprint 

https://doi.org/10.1101/726430
http://creativecommons.org/licenses/by-nd/4.0/


isolates that did not meet the F2 threshold. Third, we filtered out isolate pairs that had a genetic 158 

distance greater than 7 fixed SNPs. Our final filtered isolate pair sets included 62 replicate isolate 159 

pairs and 200 serial isolate pairs. 160 

  161 
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 162 

Supplementary Figure 3 - Replicate pairs reveal levels of biological noise associated with 163 

repeated sampling. (a,b) We analyzed the distribution of DAF for all SNPs detected across all 164 

replicate pairs (𝑚 = 62) and longitudinal pairs (𝑛 = 200) for SNPs where DAF ≥ 25%. (b) 165 

SNPs were detectable at lower levels of DAF for both types of isolate pairs, but SNPs with 166 

higher values of DAF were only found in longitudinal pairs. (c) To determine a DAF threshold 167 

for calling SNPs representative of changes in bacterial population composition in-host, we 168 

calculated the average number of SNPs per pair of isolates at different DAF thresholds for both 169 

replicate and longitudinal pairs. At a DAF threshold of 70% the number of SNPs between 170 

replicate pairs represents ≈ 5% of the SNPs detected amongst all replicate and longitudinal 171 

pairs, weighted by the number of pairs in each group.  172 
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 173 

Supplementary Figure 4 – Mutant allele trajectories consistent with clonal interference. 174 

Several examples of co-occurring mutant alleles and their allele frequency trajectories between 175 

serial isolate collection demonstrate genetic diversity patterns consistent with competing clones 176 

in-host. 177 

  178 
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 179 

Supplementary Figure 5 - Basic characteristics of epitopes used in analysis. We downloaded a 180 

set of 2,031 epitope peptide sequences from IEDB7 and used BLASTP to map these peptide 181 

sequences to H37Rv imposing an e-value cut-off of 0.01 (Methods). (a) The distribution of e-182 

values and (b) distribution of peptide lengths for the retained epitope mappings.  183 

  184 
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 185 

Supplementary Figure 6 - Most T cell epitopes remain conserved in-host during active TB 186 

disease. No SNPs were detected in-host for a vast majority of CD4+ and CD8+ T cell epitopes, 187 

however 1 SNP was detected in a small number (𝑛 = 5) of overlapping epitopes in PPE18. A 188 

list of these epitopes is given in Supplementary Table 9. 189 

  190 
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 191 

Supplementary Figure 7 - Overview of simulation methodology. To test the accuracy of calling 192 

SNPs in repetitive regions with our workflow, we introduced mutations into complete 193 

Mycobacterium tuberculosis genomes (Reference Genomes), simulated reads from those 194 

genomes and assessed the accuracy recalling the mutations from the simulated reads while not 195 

introducing spurious mutations (Supplementary Note). (a) We used a sliding window of gene 196 

lengths along with a local alignment algorithm to map genes from the H37Rv reference genome 197 

to the set Reference Genomes. (c) We discarded Reference Genomes that mapped poorly (gene-198 

to-gene) to the H37Rv reference genome (green-RefGenomes kept for simulations, red-discarded 199 
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RefGenomes). (b) A schematic of our simulation methodology from Reference Genome 200 

collection to obtaining SNP sets 𝑨, 𝑩 and 𝜷 which are used in our calculations of true positive 201 

and false positive calls for each gene (Supplementary Note).  202 
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Supplementary Figure 8 - Simulations indicate that we can accurately recall most introduced 204 

SNPs while rarely making spurious SNP calls. We tested the number of true and false 205 

positives for each gene with detectable in-host SNPs (Fig. 3d) and for each gene with 206 

phylogenetically convergent SNPs (Fig. 5b). For each gene we collected a set of non-redundant 207 

SNPs (genomic positions at which these SNPs were called) observed across all subjects 208 

(Supplementary Table 16) and SNPs observed to have a signal of phylogenetic convergence 209 

(Supplementary Table 19), the number of SNPs collected for each gene is given in (d, h). We 210 

then introduced these mutations into 54 complete genomes (RefGenomes) and simulated reads 211 

after introducing the respective mutations (Supplementary Note). Only genes that were mapped 212 

from H37Rv to a given RefGenome were part of the simulation for that RefGenome. (c, g) The 213 

number of successful mappings for each gene (i.e. the number of times each gene was part of a 214 

simulation). This is also the number of times true and false positive estimates were calculated for 215 

each gene (1 estimate / simulation). (a, e) False positive calls were rarely made across all genes 216 

and simulation runs indicating the rarity of false positive SNP calls (calling a mutation that 217 

wasn't introduced) made by our pipeline for observed in-host SNPs and SNPs displaying a signal 218 

of phylogenetic convergence, even in repetitive regions. (d) The number of true positive calls 219 

across all genes (across most simulation runs) closely matched the number of introduced SNPs 220 

for each gene indicating the rarity of False Negative SNP calls (not calling a mutation that was 221 

introduced). We note that no true or false positive estimates for Rv0192A were computed since 222 

this gene did not map to H37Rv for any of the 54 Reference Genomes used for the simulations. 223 
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 225 

Supplementary Figure 9 - In-host SNP detected in PPE18. IGV8 image of BAM alignment 226 

(reads sorted by start location) for serial clinical isolates that were cultured from sputum 227 

collected from patient P0001839. (a) 500 and (b) 3000 basepair windows centered at reference 228 

position 1339741. Isolate 1 is the BAM alignment for the isolate collected in 2003 and the 229 

reference position 1339741 matches the reference allele (C). Isolate 2 is the BAM alignment for 230 

isolate collected in 2008 and reference position 1339741 supports an alternate allele (G). 231 
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 232 

Supplementary Figure 10 - In-host SNP detected in PPE54. IGV8 image of BAM alignment 233 

(reads sorted by start location) for serial clinical isolates that were cultured from sputum 234 

collected from patient P0910. (a) 500 and (b) 3000 basepair windows centered at reference 235 

position 3730411. Isolate 1 is the BAM alignment for the isolate collected first and the reference 236 

position 3730411 matches the reference allele (G). Isolate 2 is the BAM alignment for isolate 237 

collected 24 weeks after isolate 1 and reference position 3730411 supports an alternate allele 238 

(A). 239 
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 240 

Supplementary Figure 11 - In-host SNPs detected in PPE60. IGV8 image of BAM alignment 241 

(reads sorted by start location) for serial clinical isolates that were cultured from sputum 242 

collected from patient 309611. (a) 500 and (b) 3000 basepair windows centered at reference 243 

position 3895269. Isolate 1 is the BAM alignment for the isolate collected on September 25, 244 

2001 and the reference positions 3895269, 3895281, 3895282 match the reference alleles (G,T,G 245 

respectively). Isolate 2 is the BAM alignment for isolate collected on October 18, 2002 and 246 

reference positions 3895269, 3895281, 3895282 support alternate alleles (C,C,A respectively). 247 
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 248 

Supplementary Figure 12 – Most SNP calls are congruent between Illumina and PacBio in 249 

Rv0095c, PPE18, PPE54 and PPE60. For each gene, the number of SNPs classified as |𝐀 ∩ 𝐁| 250 

(PB & IL), |𝐁\𝐀| (PB only), and |𝐀\𝐁| (IL only) was plotted for each of our 12 isolates that 251 

underwent PacBio and Illumina Sequencing. No calls were made solely from Illumina read 252 

mapping (|𝐀\𝐁|) in (a) Rv0095c, (b) PPE18 or (d) PPE60 demonstrating conservative SNP 253 

calling from Illumina reads in these genes. (c) In PPE54, 3/12 isolates had a small number of 254 

SNPs that were called only by Illumina (|𝐀\𝐁|). It is important to note that these false positive 255 

SNPs (|𝐀\𝐁|) did not include any of the 178 in-host SNPs (Supplementary Table 10). For the 256 

other 9/12 isolates, SNP calls in PPE54 were either congruent between Illumina and PacBio 257 

(|𝐀 ∩ 𝐁|) or only called by PacBio (|𝐁\𝐀|) demonstrating a low number of false positives across 258 

our 12 Illumina – PacBio sample pairs.  259 
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SUPPLEMENTARY TABLE DESCRIPTIONS 260 

Supplementary Table 1: A separate XLSX file containing details for all replicate and serial 261 

isolates before Kraken, F2, or pairwise SNP filtering. 262 

 263 

Supplementary Table 2: A separate XLSX file containing details for all (𝑛 = 400) serial 264 

isolates used for in-host analysis after filtering for contaminated & mixed isolate pairs. 265 

 266 

Supplementary Table 3: A separate XLSX file with the gene categories assigned to each 267 

H37Rv locus tag. 268 

 269 

Supplementary Table 4: A separate XLSX file containing a list of genomic regions (with  270 

H37Rv coordinates) associated with antibiotic resistance. 271 

 272 

Supplementary Table 5: A separate XLSX file containing all SNPs (with DAF ³ 5%) in loci 273 

associated with antibiotic resistance (Supplementary Table 4) across our sample of 200 serial 274 

isolate pairs. 275 

 276 

Supplementary Table 6: A separate XLSX file containing all pre-existing antibiotic resistant 277 

SNPs detected in the 1st isolate collected from each subject with collection dates > 60 days 278 

apart. 279 

 280 
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Supplementary Table 7: A separate XLSX file containing all pre-existing antibiotic resistant 281 

SNPs detected in the 1st isolate collected from each subject with collection dates ≤ 60 days 282 

apart. 283 

 284 

Supplementary Table 8: A separate CSV file containing all of the epitopes downloaded from 285 

IEDB on May 23, 2018. 286 

 287 

Supplementary Table 9: A separate XLSX file containing the epitopes belonging to PPE18 288 

where an in-host SNP was detected.  289 

 290 

Supplementary Table 10: A separate XLSX file containing information for all 179 in-host 291 

SNPs detected across all serial isolate pairs. 292 

 293 

Supplementary Table 11: A separate XLSX of all genes identified as dense, along with 294 

assigned gene category and p-value from mutation density test. 295 

 296 

Supplementary Table 12: A separate TSV file containing the downloaded SEED annotation for 297 

H37Rv. 298 

 299 

Supplementary Table 13: A separate CSV file containing the list of H37Rv locus tags 300 

corresponding to each subsystem classified by SEED. 301 

 302 
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Supplementary Table 14: A separate XLSX file containing the pathways and (corresponding 303 

in-host SNPs) displaying evidence of parallel evolution. 304 

 305 

Supplementary Table 15: A separate XLSX file with details for the publicly available 306 

completed genomes used in our simulations. 307 

 308 

Supplementary Table 16: A separate XLSX file with the non-redundant in-host SNPs identified 309 

in genes and used for SNP calling simulations. 310 

 311 

Supplementary Table 17: A separate XLSX file with details for all genes that were evaluated 312 

for a signal of phylogenetic convergence in 10,018 publicly available isolates. 313 

 314 

Supplementary Table 18: A separate XLSX file with details for all SNPs that were found in 315 

10,018 publicly available isolates after screening for SNPs occurring within (a) mutationally 316 

dense genes, (b) genes convergent in-host & (c) genes belonging to pathways that were 317 

convergent in-host.  318 

 319 

Supplementary Table 19: A separate XLSX file with details for SNP sites occurring within the 320 

genes in Supplementary Table 17 displayed a signature of phylogenetic convergence after 321 

screening 10,018 publicly available isolates. The number of isolates with each unique mutation 322 

(broken down by global lineage) is given. 323 

 324 
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Supplementary Table 20: A separate XLSX file containing details for isolates that underwent 325 

Illumina and PacBio sequencing. 326 

 327 

Supplementary Table 21: A separate XLSX file containing all 80 SNPs called from the PacBio 328 

assemblies and from mapping Illumina reads for Rv0095c, PPE18, PPE54 and PPE60 across the 329 

12 isolates with both PacBio and Illumina Sequencing data. Each SNP is annotated with the: (1) 330 

number of samples where Illumina SNP calling correctly identified the SNP when the SNP was 331 

also present in the paired PacBio assembly, (2) number of samples where Illumina SNP calling 332 

falsely identified the SNP when the SNP was not present in the paired PacBio assembly. 333 

 334 

Supplementary Table 22: A separate XLSX file containing a list of the 17/178 in-host SNPs 335 

and 31/68 phylogenetically convergent SNPs present in at least 1/12 isolates with both PacBio 336 

and Illumina sequencing data. Each SNP is annotated with the: (1) presence of this SNP within 337 

our 12 complete PacBio assemblies,  (2) number of samples where Illumina SNP calling 338 

correctly identified when the SNP also present in the paired PacBio assembly, (3) number of 339 

samples where Illumina SNP calling falsely identified the SNP when the SNP was not present in 340 

the paired PacBio assembly. 341 

  342 
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