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Abstract  

Background: A distinct neuroanatomical indicator for Post-traumatic Stress Disorder (PTSD) soon 

after exposure is still lacking. Contradictory findings regarding the hippocampus as a potential early 

risk factor could be related to the overlooked contribution of developmental brain anomaly. One 

such anomaly could be a persistently enlarged cavum septum pellucidum (CSP), which has been 

associated with PTSD. To test this assertion, we performed a longitudinal volumetric MRI study on 

trauma survivors, within one-, six- and fourteen-months after trauma. We hypothesized that at one-

month post-trauma, the relation between hippocampal volume and PTSD severity would be 

moderated by CSP volume, and that this early interaction would account for persistent PTSD 

symptoms at subsequent time points.  

Methods: 171 adults which were admitted to emergency room following a traumatic incident, 

underwent clinical assessment and structural MRI within one-month after trauma. Follow-up 

clinical evaluations were conducted six (n=97) and fourteen (n=78) months after trauma. 

Hippocampus and CSP volumes were extracted automatically by FreeSurfer and verified manually, 

and correlated with PTSD severity at each time point.  

Results: At one-month following trauma, CSP volume significantly moderated the relation between 

hippocampal volume and PTSD severity, and this interaction predicted symptom severity at 

fourteen months post-trauma. Specifically, individuals with smaller hippocampus and larger CSP at 

one-month after trauma, showed more severe symptoms at one- and fourteen months following 

trauma exposure.  

Conclusions: Our study provides evidence for an early neuroanatomical cause of PTSD that could 

also predict the progression of the disorder. Such a simple-to-acquire neuroanatomical signature for 

PTSD could guide early management as well as long-term monitoring.  
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Trial Registration: Neurobehavioral Moderators of Post-traumatic Disease Trajectories. 

ClinicalTrials.gov registration number: NCT03756545. 

https://clinicaltrials.gov/ct2/show/NCT03756545 

 

Keywords: Post Traumatic Stress Disorder; Hippocampus; Cavum Septum Pellucidum; Resilience; 

Vulnerability; Risk Factors;  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 1, 2019. ; https://doi.org/10.1101/721134doi: bioRxiv preprint 

https://doi.org/10.1101/721134


5 
 

Introduction  

More than 70% of adults worldwide experience a traumatic event at some time in their 

lives1, yet only a subset of these individuals (1.3% to 12.2%) will develop post-traumatic stress 

disorder (PTSD)2, a highly debilitating mental health disorder, often resistant to existing 

therapeutics3–6. Although accumulating findings point to a neural origin of this post-exposure 

personal outcome, reliable risk factors of vulnerability to develop traumatic stress psychopathology 

have yet to be discovered7–9. Such vulnerability factors could allow accurate diagnosis and 

therapeutic intervention in the early aftermath of the traumatic event, which has been shown to 

reduce the likelihood of developing chronic PTSD10–12.  

The most replicated structural abnormality found in PTSD is lower hippocampal volume13–

18, with substantial evidence that this could represent a risk factor for PTSD, including studies on 

twins with different life experience19,20. It seems that the hippocampus may have a multifaceted role 

in PTSD pathogenesis, including the formation and recall of memory traces for contextual 

information of traumatic events, and providing a representation of safety or danger of the 

situation21. Intriguingly, the hippocampus seems to play a dynamic role in both post-traumatic 

psychopathology and recovery from trauma. While hippocampal volume reduction was observed 

after trauma exposure22 and in chronic PTSD23, increased hippocampal volume was associated with 

clinical improvement of PTSD symptoms24.  Nevertheless, trauma exposure even in the absence of 

PTSD was shown to be associated with hippocampal volume deficits22, and further hippocampal 

volume reduction was seen in chronic PTSD23. Taken together, controversy exists as to whether 

reduced hippocampal size in PTSD is the result of trauma exposure, represents a risk factor for 

PTSD, or a combination of both23,25,26. It might be that the hippocampus is not the only structural 

change in PTSD, and its impact depends on related brain development anomaly.  

One such commonly seen anomaly is persistent enlarged Cavum Septum Pellucidum (CSP), 

known to be related to disturbed brain development27,28. The CSP, sometimes inaccurately referred 

to as “fifth ventricle”, is a small cleft filled with cerebrospinal fluid (CSF), located between two thin 
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translucent leaflet membranes, that extends from the anterior part of the corpus callosum to the 

superior surface of the fornix. In normal development, the fusion of the septi pellucidi occurs within 

three to six months of age, due to rapid growth of the hippocampal alvei and the corpus callosum29. 

However, in some cases the two leaves of the septum pellucidum do not completely fuse, resulting 

in persistent CSP, which above a certain size, may reflect neurodevelopmental anomaly in midline 

structures of the brain27,30 (see Fig. 1). Therefore, persistent enlarged CSP in adults may reflect 

developmental abnormalities of brain structures bordering the septum pellucidum, such as the 

hippocampus29,31.  

A wide variance in the prevalence of CSP in healthy adults has been reported, depending on 

the method of detection, definition criteria, and homogeneity of the population28,32–37. In clinical 

population, abnormally large CSP was associated with schizophrenia28,32,42,33–36,38–41, bipolar 

disorders35,43,44, and others psychopathologies45,46. However, other studies did not find higher rates 

of enlarged CSP in schizophrenia47–49 or other psychiatric disorders50–53, making it difficult to 

determine its connection to psychopathology in a systematic and reliable manner. Interestingly, in 

patients with schizophrenia and an enlarged CSP, smaller amygdala and posterior parahippocampal 

gyrus volumes were also found (compared to schizophrenia patients without CSP)54.  

To date, only two studies have addressed the relationship between the presence of enlarged 

CSP and PTSD symptomatology. A pioneer study by Myslobodsky et al (1995)55 has reported 

increased incidence of CSP (50%) in combat veterans with PTSD, compared with matched normal 

volunteers (14%), suggesting the CSP might be an antecedent marker for psychopathological 

vulnerability to stress. More recently, May et al. (2004)56 found there was a greater proportion of 

abnormal CSP in combat-exposed twins with PTSD and their noncombat-exposed co-twins, 

suggesting that the presence of an abnormal CSP may serve as a familial vulnerability factor for 

PTSD. However, the authors also suggested that PTSD vulnerability is not contributed directly by 

abnormal CSP itself, but rather indirectly by some neurodevelopmental third factor.  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 1, 2019. ; https://doi.org/10.1101/721134doi: bioRxiv preprint 

https://doi.org/10.1101/721134


7 
 

Here, we tested the relationship between CSP volume and hippocampus volume in a large 

population of recent trauma survivors using a longitudinal approach. Specifically, we examined 

hippocampus and CSP volumes within on one-month after trauma, and PTSD symptoms at one-, 

six-, and fourteen-month following trauma exposure. CSP and hippocampal three-dimensional 

volumes were assessed using automated tools to provide a continuous measure of size of a reliably 

demarcated region. While for the hippocampus this automated approach has been validated in 

multiple studies57–59, for the CSP, as far as we know, no such studies were reported. Therefore, we 

employed an additional validation procedure by a blinded neuroradiologist for the automated CSP 

assessment.     

Given the consistent finding of low hippocampal volume in PTSD, and the potential of 

enlarged CSP to serve as vulnerability factor for stress psychopathology, we hypothesized that the 

relationship between hippocampal volume and post-traumatic stress symptoms will be moderated 

by CSP volume. More specifically, we hypothesized that individuals with lower hippocampal 

volume and higher CSP volume would exhibit more severe PTSD symptoms at one-month post-

trauma. To test this assumption, we employed a regression model in which we examined the ability 

of the interaction effect between hippocampal and CSP volumes to predict post-traumatic stress 

symptoms. Using the same regression model, we further examined the predictive power of this 

relation between hippocampus and CSP volumes at one-month post-trauma, with respect to 

subsequent PTSD symptom severity at six- and fourteen-month post-trauma.  
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Methods and Materials  

The present study is part of a larger scale on-going project. Here we present results obtained 

from all the participants which completed clinical and neural assessments within one-month 

following the traumatic incidents (n=171). Out of these 171 individuals, we also present results of 

n=97 and n=78 which currently completed clinical assessments at six- and fourteen-month post-

trauma (respectively). 

 

Participants  

Participants were adult survivors of potentially traumatic events, admitted to a Medical 

Center’s Emergency Room (ER). Individuals were considered for a telephone screening interview if 

they met the following inclusion criteria: (i) Age 18 – 65 years (ii) Able to read and comprehend 

native language (iii) Arrived in the ER due to motor-vehicle accidents, bicycle accidents, physical 

assaults, terrorist attacks, work accidents, large-scale disaster or other trauma types. To reduce 

confounds related to concurrent disorders, the exclusion criteria included: (i) survivors with head 

trauma with coma exceeding a 30 minutes upon ER arrival; (ii) survivors with known medical 

condition that will interfere with their ability to give informed consent, cooperate with screening 

and/or treatment; (iii) survivors with claustrophobia, incompatibility for MRI scan, history of 

substance abuse, current or past psychotic disorder, chronic PTSD; (iv) individuals using 

psychotropic medication or recreational drugs in the week that precedes the assessment.  

 

Procedure 

A member of the research team identified potentially trauma-exposed individuals using the 

ER medical records. Within 10–14 days after potential trauma exposure, the identified individuals 

were contacted by telephone. After verbal consent, risk of PTSD development was assessed using a 

modified dichotomous version of the PTSD Checklist (PCL) questionnaire61. Participants which 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 1, 2019. ; https://doi.org/10.1101/721134doi: bioRxiv preprint 

https://doi.org/10.1101/721134


9 
 

met PTSD symptom criteria or at least part of it, and did not meet any of the exclusion criteria, 

received verbal information about the study. They were subsequently invited to participate in both 

comprehensive clinical assessment and a high-resolution MRI scan, within one-month post-trauma 

(TP1). Two identical follow-up meetings (including both clinical and neural assessments) were 

conducted at six- and fourteen-month after trauma (TP2 and TP3, respectively). The study met all 

ethical regulations as required by ethics committee in the local Medical Center (Reference number 

0207/14). All participants gave written informed consent in accordance with the Declaration of 

Helsinki. The study ClinicalTrials.gov registration number is NCT03756545.  

 

Clinical Assessment 

The clinical status of participants was determined by the Clinician-Administered PTSD 

Scale (CAPS)62,63, structured clinical interview corresponding to DSM-based PTSD criteria as 

determined by dimensions of frequency, intensity, and severity of symptoms. An instrument 

combining both CAPS-4 and CAPS-5 was used, based on DSM-IV and DSM-5 criteria, 

accordingly. The CAPS contain explicit, behaviorally anchored questions and rating scale 

descriptors to enhance reliability. It yields a continuous symptom severity score, obtained by 

summing individual items’ scores (each item ranges from 0-4, with 0 being absent to 4 being 

extreme/incapacitating).  

 

Magnetic Resonance Imaging (MRI)  

Acquisition. MRI scans were conducted using a Siemens 3T MAGNETOM scanner, 

located at the Tel Aviv Sourasky Medical Center. In order to assess subcortical and cortical 

volumes, as well cortical thickness, we used a high resolution sagittal T1-weighted magnetization 

prepared rapid gradient echo (MPRAGE) sequence (TE=2.29 msec, TR=2400 msec, flip angle=8°, 

FOV =224 mm, Slice Thickness 0.70 mm, voxel size 0.7x0.7x0.7 mm).  

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted August 1, 2019. ; https://doi.org/10.1101/721134doi: bioRxiv preprint 

https://doi.org/10.1101/721134


10 
 

Analysis. Cortical reconstruction and volumetric segmentation was performed with the 

FreeSurfer (FS) image analysis suite 64, which is documented and freely available for download 

online (http://surfer.nmr.mgh.harvard.edu/). Right and left hippocampal and CSP volumes were 

derived from this process for each subject. The automated hippocampal volumetric measurement by 

FS was previously shown to have a good agreement with manual hippocampal volumetric 

assessment, as well as with other automatic methods58,65,66; however, this was not done for CSP 

volumetric measurement. In order to validate the automated measurement of the CSP, individuals’ 

CSP sizes were manually verified by a senior neuroradiologist (D.N.) who was blinded to 

participants’ clinical symptoms. For each subject, the FS mask of the CSP was evaluated 

independently according to its correct location and intensity. Based on this blind assessment, 

participants were divided into two groups: those in which there was agreement between the FS 

marking and the manual neuroradiologist evaluation, and those in which there was disagreement 

between the two (hence were excluded from the final analysis). 

 

Statistical Analysis  

In order to test whether CSP volume moderated the relationship between bilateral 

hippocampal volume and PTSD symptoms, moderation analysis including hierarchical multiple 

regression analysis was conducted using PROCESS macro for SPSS67,68. In the first step, two 

independent variables (bilateral hippocampus and CSP volumes at TP1), alongside four covariates 

(participants’ age, gender, trauma type and intracranial volume (ICV)), were used to predict the 

dependent variable (PTSD symptom severity as measured by CAPS-4 or CAPS-5 total scores). In 

the second step of the regression, the centered interaction term between hippocampal volume and 

CSP volume was added to the regression model to test its contribution. Significant interactions were 

probed by testing the conditional effects of CSP volume at the different quartiles of hippocampal 

volume (Q1=25th percentile, Q2=50th percentile=Median, Q3=75th percentile).  
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In accordance with common norms, the skewed distribution of CSP volume was treated by 

adding a constant (b=1.25) to the original values of CSP volume, and then a log transformation was 

performed on these modified values69. Bilateral hippocampal volume, and total scores of both 

CAPS-4 and CAPS-5 followed a normal distribution, therefore did not require transformations. 

Furthermore, to reduce the threat of multi-collinearity, both hippocampal and CSP volumes were 

centered prior to analyses, and an interaction term between these two was created70. 

 

 

Results  

A total of 171 participants completed clinical and neural assessments within one-month 

following their traumatic incident (TP1). Out of which, 10 individuals were excluded from the 

analysis due to a missing MPRAGE sequence (n=3), missing clinical data (n=3), or poor quality 

structural scan (n=4). The CSP sizes of the remaining 161 participants were manually verified by a 

senior neuroradiologist (see MRI Analysis under Methods and Materials). Based on this blind 

assessment, for 28 participants (17%) there was a disagreement between the FS marking and the 

manual neuroradiologist evaluation, hence they were excluded from the analysis. For the remaining 

133 participants, there was an agreement between the FS marking and the manual neuroradiologist 

evaluation, hence they were included in the final analyses described below.  

The majority of the traumatic events which the participants exhibited were motor-vehicle 

accidents (n=108, 81%). The other most common types of trauma included bicycle accidents (n=13, 

10%) and physical assaults (n=11, 8%). For the follow-up assessments, n=97 and n=78 participants 

which completed clinical assessments at six- and fourteen-month post-trauma (TP2 and TP3; 

respectively), were included in the final analyses. No significant differences were found between 

the 97 individuals which completed TP2 assessments and the 36 which did not, in bilateral 

hippocampal volume (p=0.747), CSP volume (p=0.491), or ICV (p=0.813). Furthermore, no 
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significant differences were found between the 78 individuals which completed TP3 assessments 

and the 19 which did not, in bilateral hippocampal volume (p=0.220), CSP volume (p=0.990), or 

ICV (p=0.650). For further demographic, clinical, and neuroanatomical characteristics of all 

participants along the three time-points, refer to Table 1. 

Volumetric markers of PTSD symptom severity at one-month after trauma exposure (TP1) 

To test the hypothesis that PTSD symptoms one-month after trauma are a function of 

multiple volumetric abnormalities, and more specifically whether CSP volume moderates the 

relationship between hippocampal volume and PTSD severity, a hierarchical multiple regression 

analysis was conducted (see details under Statistical Analysis). Results showed that bilateral 

hippocampus volume and CSP volume, alongside four covariates (participants’ age, gender, trauma 

type and ICV), accounted for a significant amount of variance of total scores of both CAPS-4 (R2 = 

0.323, F(6, 126) = 2.439, p = 0.029). After the interaction term between hippocampal volume and 

CSP volume was added, the regression model accounted for a significant change in proportion of 

CAPS-4 total scores (ΔR2 = 0.035, ΔF(1,125) = 5.057 ,p = 0.026). Consistent with our hypothesis, 

a significant interaction (moderation) effect was found between bilateral hippocampus volume and 

CSP volume in predicting CAPS-4 total scores at one-month post-trauma (b = -0.0134, t(125) = -

2.249, p = 0.026) (See Table 2). Importantly, neither hippocampal volume nor CSP volume by 

themselves predicted CAPS-4 total scores (p = 0.109; p = 0.183, respectively). 

The above-mentioned interaction was probed by testing the conditional effects of CSP 

volume at the different quartiles of hippocampal volume (Q1=25th percentile, Q2=50th 

percentile=Median, Q3=75th percentile) (see Fig. 2). At low hippocampal volume (Q1), CSP 

volume was significantly related to PTSD severity (CAPS-4: p=0.008; CAPS-5: p=0.028). 

However, at median and high hippocampal volumes (Q2 and Q3 respectively), the relationship 

between CSP and hippocampus was not significant (p>0.15 for both CAPS-4 and CAPS-5) (see 

Fig. 2). 
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When using CAPS-5 total scores (instead of CAPS-4) to assess PTSD symptom severity 

with identical statistical approach, the regression model accounted for a significant amount of 

variance of CAPS-5 total scores (R2 = 0.332, F(6, 126) = 2.603, p = 0.021). After the interaction 

term was added, the regression model accounted for a marginally significant change in proportion 

of CAPS-5 total scores (ΔR2 = 0.024, ΔF(1,125) = 3.539 ,p = 0.062). Consistent with our 

hypothesis, a marginally significant interaction (moderation) effect was found between bilateral 

hippocampus volume and CSP volume in predicting CAPS-5 total scores at one-month post-trauma 

(b = -0.0059, t(125) = -1.881, p = 0.062). Examination of this interaction showed a similar pattern 

to the one mention-above using CAPS-4 total scores: individuals with large CSP had a negative 

relationship between hippocampal volume and CAPS-5 scores; however, this relationship did not 

exist in individuals with small or without CSP (see above).  

 

Volumetric predictors of PTSD symptom severity at follow-up assessments (TP2 and TP3) 

To further examine the relation between hippocampal and CSP volumes at TP1 and 

subsequent PTSD symptoms at TP2 and TP3, two additional hierarchical multiple regression 

analyses were conducted (one for TP2 and one for TP3). The outcome measure for PTSD symptom 

severity was CAPS-4 total scores (and not CAPS-5), since it presented the more robust findings for 

TP1. 

Focusing on PTSD symptom assessment at six months after trauma (TP2), the hierarchical 

regression model accounted for a non-significant proportion of the variance in PTSD symptom 

severity, both without the interaction (R2 = 0.080, F(6,90) = 1.304 ,p = 0.264), and when it was 

added (ΔR2 = 0.012, ΔF(1,89) = 1.187 ,p = 0.279). Hence, there was no significant moderation 

(interaction) effect between hippocampal and CSP volumes in predicting CAPS-4 total scores at 

TP2. 
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Focusing on PTSD symptom assessment at fourteen months after trauma (TP3), the 

hierarchical regression model without the interaction accounted for a non-significant proportion of 

the variance in PTSD symptom severity (R2 = 0.034, F(6,71) = 0.442 ,p = 0.862). After adding the 

interaction term between hippocampal volume and CSP volume to the regression model, it 

accounted for a significant proportion of the variance in PTSD symptom severity (ΔR2 = 0.075, 

ΔF(1,70) = 5.913 ,p = 0.018). A significant interaction (moderation) effect was found between 

bilateral hippocampus and CSP volumes at TP1 in predicting CAPS-4 total scores at TP3 (b = -

0.014, t(70) = -2.432, p = 0.018) (See Table 4). Importantly, neither hippocampal volume nor CSP 

volume by themselves predicted CAPS-4 total scores (p = 0.970; p = 0.996, respectively).  

The above-mentioned interaction was probed by testing the conditional effects of CSP 

volume at the different quartiles of hippocampal volume (Q1=25th percentile, Q2=50th 

percentile=Median, Q3=75th percentile) (see Fig. 3). At low hippocampal volume (Q1), CSP 

volume was marginally significantly related to PTSD severity (p=0.057). However, at median and 

high hippocampal volumes (Q2 and Q3 respectively), the relationship between CSP and 

hippocampus was not significant (p=0.952 and p=0.276 respectively) (see Fig. 3). 

 

 

Discussion  

The current study revealed a moderation effect of CSP volume on the relationship between 

hippocampal volume and PTSD symptom severity in a population of recent trauma survivors. 

Specifically, we found that smaller hippocampus volume, together with larger CSP volume, was 

associated with more severe PTSD symptoms within one-month post-trauma. More so, such 

relationship at the early aftermath of trauma predicted greater persistence of PTSD at fourteen-

month following trauma exposure. Altogether these findings point to an objective and easy to 

acquire neuroanatomical signature of PTSD severity among recent trauma survivors, as well as 

provide a predictive risk factors for persistent chronicity for the disorder. While a great amount of 
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literature suggests the role of hippocampal volume in PTSD25, fewer studies have linked abnormal 

CSP with post-traumatic psychopathology55,56. Our results provide novel insights regarding the 

relationship between these two brain structures in marking contemporary symptoms and predicting 

chronic course of PTSD. Importantly, their combined effect supports a brain development origin for 

PTSD vulnerability following exposure to potentially traumatic event.   

Reduced hippocampal volume is the most consistent finding in structural MRI studies of  

patients diagnosed chronic PTSD71–74. Controversy exists, however, over the nature and source of 

smaller hippocampal volumes in PTSD; whether volumetric differences represent the consequence 

of traumatic exposure, or a pre-existing trait that predisposes people to pathological stress reactions 

to a traumatic event75–78. Our results suggest that in the presence of a smaller hippocampus, an 

abnormally enlarged CSP might serve as a risk factor for developing PTSD following trauma.  

Because an enlarged CSP is considered a neurodevelopmental anomaly, it has been 

postulated as a potential marker for psychiatric disorders that have neurodevelopmental origins79. 

As the postnatal closure of the CSP is dependent on adjacent growing brain structures, a risk for 

developing different psychopathologies might be associated with a combination of both enlarged 

CSP and smaller limbic system structures (e.g. hippocampus and amygdala)80. Here we provide 

evidence that a combination of enlarged CSP and smaller hippocampal volume might be associated 

with PTSD symptomatology.  

Our study combined early structural brain indices with longitudinal PTSD clinical measures, 

enabling to examine the relationship between potential neuroanatomical measures and PTSD 

symptom severity in the first critical year following trauma. Indeed, we demonstrated that enlarged 

CSP together with smaller hippocampus measured at one-month following exposure, marked PTSD 

development and predicted their persistence over 14 months. Nevertheless, the combination of 

enlarged CSP and smaller hippocampus at one-month post-trauma did not significantly predicted 

symptom severity at six-month post-trauma. This might be explained by the dynamic clinical 

manifestations during the first critical year following trauma, in which there is a progressive 
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reduction in the severity of PTSD symptoms81–84. An intermediary point of six-month might be too 

early to capture the tangible chronic PTSD subtype, whereas 14-months may portray a more stable 

representation of the chronic disorder as it was shown to predict over 90% of expected PTSD 

recovery3,85. 

The methodological strengths of the current study derive from the standardized structural 

MRI measurements obtained in a large population-based sample of 171 trauma-exposed individuals 

with different demographic characteristics (e.g. age, gender). In specific, we applied an automated 

approach for the volume assessment of CSP, yet included only cases that have been also validated 

by a neurologist (see MRI Analysis).  This approach, although commonly applied with the 

hippocampus, goes beyond the current practice with regard to CSP measurements. Indeed 

methodological drawbacks, mainly the great variation in the way that the studies detected and 

quantified CSP, have yet limited a tangible conclusion regarding the contribution of CSP to 

psychopathology. The most commonly applied method has been a subjective classification by a 

radiologist of small or large CSP28,32,36,86, dependent on different definitions and criteria, resulting 

in large variability and inconsistencies among raters. Moreover, this manual classification requires 

both time and expertise. Some researchers adopted more quantitative methods of classification, such 

as counting the number of slices in which the cavity clearly appears (especially on coronal MRI 

views), and multiplying it by the slice thickness in order to calculate the anterior-to-posterior length 

of the cavum31,33,41,47,54,87. Even with this more quantitate method, there are still conflicting results 

among the studies that employed such technique48. Moreover, such linear measurements only 

permit a unidimensional representation of the CSP, which can have a complex three-dimensional 

shape. Volumetric CSP measurement, as employed in this study, may be more meaningful than 

linear methodologies, since that they provide detailed information about the true size of the 

structure88. Our comprehensive approach of combining automated and manual assessments allowed 

greater confidence in the results and strengthen findings’ generalizability. Having a large sample 
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size allowed to find a sufficient group of individuals with enlarged CSP presence (n=38), thus 

increasing the statistical power and conclusions.  

Although our findings are promising, this work has several limitations. First, as in most 

PTSD studies, there is a lack of baseline measurement before trauma exposure. However, as 

structural brain changes typically occur at time frames of months and years, and considering that 

MRI scans were conducted in here within one-month form exposure, it is plausible to assume that 

structural abnormalities would reflect pre-disposition factors rather than consequence of trauma 

exposure. Second, majority of participants suffered from a single trauma, which was mostly related 

to car accidents. Future work may explore the relationship between these structural brain 

abnormalities and PTSD symptom severity among varying traumatic events (e.g. terror attacks, 

sexual or interpersonal violence, continuous traumatic experiences). Lastly, future studies should 

further examine the relation between hippocampus, CSP and PTSD symptomatology in trauma-

exposed individuals in order to increase the validity and replicability of out findings.  

This study suggests a promising opportunity of an easy-to-detect individual neuroanatomical 

abnormalities, large CSP and small hippocampus, that together could serve as distinct 

neuroanatomical signature for the likelihood to develop psychopathology following exposure to 

traumatic events. Such risk factors can be used meaningfully to improve early diagnostic 

assessment and since it further predicted long term prognosis of the PTSD, it could also serve as a 

monitoring marker for treatment outcome. As structural MRI is becoming more available, we could 

readily identify individuals who could benefit from early intervention following trauma and follow 

up their clinical course in an objective manner. 
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Tables Titles and Legends  

Table 1. Demographic, clinical and neuroanatomical characteristics of the participants along the three time-
points. Means (M) and standard deviations (SD) of participants’ age, gender (Women:Men), CAPS-5 and 
CAPS-4 total scores, bilateral hippocampal volume and CSP volume, at one-, six- and fourteen-month 
following trauma (TP1, TP2 and TP3, respectively).  

 
 TP1 (n=133) TP2 (n=97) TP3 (n=78) 

Measure M SD M SD M SD 

Age 34.38 12.01 35.82 12.46 35.40 12.87 

Gender (W:M) 67:66 - 48:49 - 37:41 - 

CAPS-5 Total 24.30 11.85 14.74 11.40 8.65 8.58 

CAPS-4 Total 50.29 22.72 30.19 22.98 18.05 17.53 

Hippocampus Vol 8464 928 8448 936 8475 875 

CSP Vol 1.51 3.19 1.62 3.24 1.57 3.25 

 

 

Table 2. Hippocampus volume at TP1 moderates relationship between CSP volume at TP1 and PTSD 
symptoms at TP1. Regression model of CAPS-4 total scores at TP1 predicted from CSP and hippocampal 
volumes of 133 participants, with age, gender, trauma type and ICV as covariates. 

Predictor Coefficient SE t p 

Bilateral Hippocampus Volume .0040 .0025 1.6131 .1092 

CSP Volume 7.9672  5.9510 1.3388 .1831 

CSP x Hippocampus* -.0134 .0060 -2.2487 .0263 

Age* -.3374 .1617 -2.0867 .0389 

Gender 2.9068 4.8019 .6054 .5460 

Trauma Type -.3097 .9858 -.3142 .7539 

ICV* .0000 .0000 -2.1171 .0362 

*p <.05 
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Table 3. Hippocampus volume at TP1 moderates relationship between CSP volume at TP1 and PTSD 
symptoms at TP3. Regression model of CAPS-4 total scores at TP3 predicted from CSP and hippocampal 
volumes of 78 participants, with age, gender, trauma type and ICV as covariates. 

Predictor Coefficient SE t p 

Bilateral Hippocampus Volume -.0001 .0027 -.0382 .9696 

CSP Volume .0297  6.1805 .0048 .9962 

CSP x Hippocampus* -.0144 .0059 -2.4316 .0176 

Age .0087 .1583 .0550 .9563 

Gender -.2879 4.9999 -.0576 .9543 

Trauma Type -.2979 1.0966 -.2717 .7867 

ICV .0000 .0000 -1.0894 .2797 

*p <.05 
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Figures Titles and Legends  

Figure 1: Cavum Septum Pellucidum (CSP). Coronal view of the T1-weighted (MPRAGE) image of an 
example subject. A red line marks the CSP as identified by Freesurfer automatic volumetric segmentation. 

 

Figure 2: Interaction between hippocampus and CSP volumes at TP1 in predicting TP1 PTSD symptoms. 
Conditional effects of TP1 CSP volume on TP1 CAPS-4 total scores at different TP1 hippocampal volumes 
of 133 individuals (Q1=Low Hippocampal Volume in red, Q2=Median Hippocampal Volume in green, 
Q3=High Hippocampal Volume in blue). Both hippocampal and CSP volumes are centered. *significant at 
p<0.05 

 

Figure 3: Interaction between hippocampus and CSP volumes at TP1 in predicting TP PTSD symptoms. 
Conditional effects of TP1 CSP volume on TP3 CAPS-4 total scores at different TP1 hippocampal volumes 
of 78 individuals (Q1=Low Hippocampal Volume in red, Q2=Median Hippocampal Volume in green, 
Q3=High Hippocampal Volume in blue). Both hippocampal and CSP volumes are centered. *significant at 
p<0.1 
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