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Abstract: 
The mechanistic target of rapamycin (mTORC1) is a nutrient responsive protein kinase complex that 

helps co-ordinate anabolic processes across all tissues. There is evidence that signaling through 

mTORC1 in skeletal muscle may be a determinant of energy expenditure and aging and therefore 

components downstream of mTORC1 signaling may be potential targets for treating obesity and age-

associated metabolic disease. Here, we generated mice with Ckmm-Cre driven ablation of Tsc1, which 

confers constitutive activation of mTORC1 in skeletal muscle and performed unbiased transcriptional 

analyses to identify pathways and candidate genes that may explain how skeletal muscle mTORC1 

activity regulates energy balance and aging. Activation of skeletal muscle mTORC1 produced a striking 

resistance to diet- and age-induced obesity without inducing systemic insulin resistance. We found that 

increases in energy expenditure following a high fat diet were mTORC1-dependent and that elevated 

energy expenditure caused by ablation of Tsc1 coincided with the upregulation of skeletal muscle-

specific thermogenic mechanisms that involve sarcolipin-driven futile cycling of Ca2+ through SERCA2. 

Additionally, we report that constitutive activation of mTORC1 in skeletal muscle reduces lifespan. 

These findings support the hypothesis that activation of mTORC1 and its downstream targets, 

specifically in skeletal muscle, may play a role in nutrient-dependent thermogenesis and aging.  

 
Key words: Skeletal muscle, Energy expenditure, Thermogenesis, mTORC1, aging, obesity, sarcolipin 

Introduction 
Obesity is a worldwide health problem, with comorbidities including diabetes, cardiovascular and liver 

disease [1].  Current modalities to prevent or reverse obesity are ineffective and short-lived, either due 

to poor adherence to lifestyle interventions or reductions in energy expenditure and increases in hunger 

after weight loss [2–4].  The genetic and dietary modifiers of energy expenditure are not well 

understood, but there is evidence that signaling through the mechanistic Target of Rapamycin Complex 

1 (mTORC1) may play a role [5–8]. 

 

mTORC1 is a nutrient responsive protein kinase complex expressed in all known eukaryotic cells.  This 

complex is activated by anabolic signals including insulin, amino acids and energy abundance, and 

repressed during periods of energy and nutrient deprivation (see [9] for review).  mTORC1 integrates 

these signals, and helps co-ordinate anabolic processes such as protein synthesis, lipogenesis [10–12], 

glycogenesis [13] and cellular differentiation [14–16], while also promoting insulin resistance [10,17].  

These effects are often tissue-specific, reflecting the cell-type specific responses to elevated nutrient 

and energy status. 
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Skeletal muscle is the major site of postprandial glucose disposal and the primary determinant of 

resting energy expenditure in mammals [18,19].  Constitutive activation of mTORC1, via muscle-

specific deletion of its negative regulator Tsc1, results in age-related myoatrophy, dysregulation of 

autophagy induction and increased expression of mitochondrial enzymes [6,20,21]. Consistent with the 

latter, cell culture models implicate mTORC1 as a positive regulator of mitochondrial biogenesis and 

aerobic ATP production [22–24]. During the aging process, skeletal muscle exhibits a fiber-type 

transformation towards a more oxidative phenotype, concomitant with increased mTORC1 activity. In 

line with these observations, several studies have implicated mTORC1 inhibition as a mechanism of 

organismal lifespan extension in yeast, worms and mammals [25–27]; however, the tissue or tissues 

that link mTORC1 activity to lifespan have not yet been identified.  

 

Skeletal muscle is an important tissue for understanding aging, insulin sensitivity and changes in 

energy metabolism, as functional differences in muscle strength predict lifespan in humans [28–33].  

Furthermore, mTORC1 regulates several important metabolic processes in muscle; including oxidative 

stress, the unfolded protein response, autophagy and lipid metabolism [20,34,35]. Here, we have 

performed unbiased transcriptional analyses to identify pathways and candidate genes that may explain 

how skeletal muscle mTORC1 activity regulates energy balance and aging. We show that chronic 

mTORC1 activation in skeletal muscle (via deletion of its negative regulator, Tsc1) promotes increased 

energy expenditure, but reduced lifespan. 

Materials and Methods 

Animals 
All mice were purchased from The Jackson Laboratory.  Unless otherwise stated, animals were fed a 

normal chow diet from Harlan Teklad (catalog # 7912). For high fat diet (HFD) studies, animals were 

provided ad libitum access to a diet with 45% of calories from fat (Research Diets D1492).  HFD 

feeding was initiated when animals were approximately 10 weeks of age. For tissue collection, animals 

were anesthetized with isoflurane before being sacrificed by cervical dislocation at 25 weeks of age. 

 

Muscle-specific Tsc1 knockouts were generated by crossing FVB-Tg(Ckmm-Cre)5Khn/J transgenic 

mice (stock 006405) with floxed Tsc1tm1Djk/J mice (stock 005680). To generate F1 mice that were 

heterozygous for the floxed allele, mice that either possessed or lacked the Ckmm-Cre transgene were 

intercrossed to generate knockout mice (Tsc1fl/fl, Ckmm-CreTg/+), wild type mice (Tsc1+/+, Ckmm-Cre+/+) 

and controls containing the transgene only (Tsc1+/+, Ckmm-CreTg/+), or the floxed allele only (Tsc1fl/fl, 

Ckmm-Cre+/+).  All four genotypes were studied in all experiments. If there were no significant 

differences between the three control genotypes, these results were combined and labeled as wild-
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type. Animals were sacrificed in either the fed or fasted state as indicated in the figure legends, at 

approximately ZT3. All animal procedures were carried out in accordance with the National Institute of 

Health guide for the care and use of Laboratory animals and were approved by The University of 

Michigan and UTHSC Institutional Animal Care and Use Committees prior to the work being performed. 

 

Body Composition and Indirect Calorimetry 
Body weights were determined using a standard scale, whereas body composition was determined in 

conscious animals by magnetic resonance (EchoMRI 1100, EchoMRI, Houston, TX). Adipose tissue 

weights (dorsolumbar-inguinal and gonadal depots) were dissected from both the left and right sides 

(the combined weight of both sides is reported).  For indirect calorimetry studies, physical activity, VO2 

and VCO2 were determined using a home-cage style Comprehensive Laboratory Animal Monitoring 

System (CLAMS, Columbus Instruments, Columbus, OH) with hanging feeders containing pelleted 

food, under light and temperature-controlled conditions (12:12hr, 25ºC). Ambulatory activity was 

calculated as the sum of x and y axis beam breaks.  The first 6h of CLAMS measurements were 

discarded to accommodate acclimation, after which continuous measurements were made over three 

consecutive days. Data were analyzed by mixed linear models with considerations [36,37]. To account 

for the dominant effect of lean mass on total energy expenditure, lean mass was included as a 

covariate in the mixed linear models.  Energy expenditure was calculated as heat, using the Lusk 

equation in Oxymax software (Columbus Instruments, Columbus, OH), and rates of carbohydrate and 

lipid oxidation were calculated according to Péronnet and Massicotte [38] with the assumption that the 

rate of protein oxidation occurring under standard housing conditions is negligible. For rapamycin 

treatments, animals were individually housed for 10 consecutive days (days 3-10 were in CLAMS 

cages). Mice received four days of vehicle treatment (1% Tween, 1% PEG-8000), followed by three 

days of treatment with either vehicle or the selective mTOR inhibitor rapamycin (3 mg/kg/d, via 

intraperitoneal injection). Mice were then switched to HFD and indirect calorimetry measurements 

continued for an additional three days, during which time mice continued to receive daily injections of 

either vehicle or rapamycin. 

 

Hyperinsulinemic Euglycemic Clamp and Tissue 2-Deoxyglucose Uptake 
Animals were anesthetized with sodium pentobarbital (50−60 mg/kg, given intraperitoneally) and 

indwelling catheters were implanted into the right jugular vein and the right carotid artery. The catheters 

were tunneled subcutaneously and exteriorized at the back of the neck via a stainless-steel tubing 

connector that was fixed subcutaneously upon closure of the incision. Animals were allowed to recover 

and mice with healthy appearance, normal activity, and weight regain to or above 90% of their pre-

surgery levels were used for the study. Experiments were carried out in conscious and unrestrained 
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animals using techniques described previously [39–42]. The primed (1.0 µCi)-continuous infusion 

(0.05 µCi/min and increased to 0.1 µCi/min at t = 0) of [3-3H] glucose (50 µCi/ml in saline) was started 

at t = -120min. After a 5-6 hour fast, the insulin clamp was initiated at t = 0, with a prime-continuous 

infusion (40 mU/kg bolus, followed by 2.5 mU/kg/min) of human insulin (Novo Nordisk). Euglycemia 

(120~130 mg/dL) was maintained during the clamp by measuring blood glucose every 10 min and 

infusing 50% glucose at variable rates, accordingly.  Blood samples were collected from the right 

carotid artery at t = 80, 90, 100, and 120 min for determination of glucose specific activity.  Blood insulin 

concentrations were determined from samples taken at t = -10 and 120 min. A bolus injection of [1-14C]-

2-deoxyglucose ([14C]2DG; PerkinElmer) (10 µCi) was given at t = 120 min. Blood samples were taken 

at 2, 5, 10, 15, and 25 min after the injection for determination of plasma [14C]2DG radioactivity. At the 

end of the experiment, animals were anesthetized with an intravenous injection of sodium pentobarbital 

and tissues were collected and immediately frozen in liquid nitrogen for later analysis of tissue [1-14C]-

2-deoxyglucose phosphate ([14C]2DGP) radioactivity. Blood glucose was measured using an Accu-

Chek glucometer (Roche, Germany). Plasma insulin was measured using the Linco rat/mouse insulin 

ELISA kits.  For determination of plasma radioactivity of [3-3H]glucose and [1-14C]2DG, plasma samples 

were deproteinized with ZnSO4 and Ba(OH)2 and counted using a Liquid Scintillation Counter 

(Beckman Coulter LS6500 Multi-purpose Scintillation Counter). Glucose turnover rate, hepatic glucose 

production and tissue glucose uptake were calculated as described elsewhere [40,41,43]. 

Insulin Tolerance Test 
Insulin tolerance tests were performed in high fat fed mice at 24 weeks of age. The day prior to the test, 

body composition was determined by magnetic resonance (Echo MRI1100, Houston, TX) and lean 

mass values were used to calculate insulin dose (1 U/kg of lean mass; Humulin R-100, Lilly, U.S.A). On 

the day of the test, fasting blood glucose concentrations were determined following a 6 hr fast, after 

which mice received an intraperitoneal injection of insulin diluted in sterile PBS. Blood glucose 

concentrations were measured every 15 min over a two-hour period post-injection (One Touch Ultra2 

hand-held glucometer, LifeScan Europe, Zug, Switzerland). 

 

RNA Sequencing Analysis and Bioinformatics 
Total RNA was extracted from m. quadriceps femoris using a Pure Link RNA mini kit (Life 

Technologies) and then analyzed using an Agilent Bioanalyzer DNA High Sensitivity kit.  All samples 

had a RNA Integrity numbers >7.9.  The RNA (1 μg) was enriched for Poly A RNA using an Ambion 

Dynabeads mRNA Direct Micro kit and barcoded libraries for sequencing were prepared using the Life 

Technologies RNAseq V2 kit for Ion Torrent according to manufacturer’s standard protocol. The 

libraries were pooled based on the concentration of each sample between 200-350bp, purified on a 

Pippin Prep gel, quantified by the Agilent Bioanalyzer and sequenced on an Ion Torrent Proton 

sequencer.  Alignments were made to the mouse genome GRCm38.75 using Tophat 2.0.10 [44] and 
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Bowtie 1.0.0 [45] to incorporate color space data.  Counts tables were generated using HTSeq version 

0.5.4p5 [46].  Differential expression analyses were performed using DESeq2 version 1.20.0 [47].  All 

results are presented in Supplementary Table 1, and deposited into the Gene Expression Omnibus as 

GSE84312.  To compare our results to other gene-sets we performed Gene Set Enrichment Analyses 

(GSEA) comparing our rank-ordered gene lists to annotated gene sets from Gene Ontology, KEGG, 

Biocarta, Reactome, TRANSFAC and CGP provided as part of MSigDB v6.2 [48,49].  All pathways that 

met significance at an adjusted p-value of 0.25 are presented in Supplementary Table 2.  For 

comparison of differentially expressed genes, we re-analyzed the Tsc2 knockout MEFs from 

GSE21755 [50] and compared with our differentially regulated gene sets. 

 

Western Blotting 
Protein lysates were generated from m. quadriceps femoris in RIPA buffer (50 mM Tris pH 7.4, 0.25% 

sodium deoxycholate, 1% NP40, 150 mM sodium choride, 1 mM EDTA, 100 μM sodium vanadate, 

5mM sodium fluoride, 10 mM sodium pyrophosphate and 1X protease inhibitors) or HTNG buffer (50 

mM HEPES, pH 7.4, 150 mM sodium chloride, 10% glycerol, 10% triton X-100 and 1X protease 

inhibitors) by mechanical disruption in a Qialyser for 5 minutes at 30Hz.  Lysates were clarified at 14 

000 RPM for 15 minutes and quantified by Bradford assays.  Proteins were separated by SDS-PAGE, 

transferred to nitrocellulose and blotted with antibodies described in the figure legends.  Primary 

antibodies used in this study were raised against pS6 (pSer236/236, Cell Signaling #2211), S6 (Cell 

Signaling #2317), GAPDH (Proteintech #10494) and Sarcolipin (EMD Millipore #ABT-13).  Near infra-

red secondary antibodies raised against rabbit (Alexa Fluor #A21109) and mouse (Alexa Fluor 790 

#A11371) were used to visualize blots on a LiCor Odyssey. Relative protein abundance was quantified 

using Image Studio Lite software. 

 

NADH Tetrazolium Reductase Staining 

For histology, muscles (m. quadriceps femoris) were frozen in liquid nitrogen-cooled isopentane, 

mounted in OTC and sectioned using a cryostat to 10 µm thickness. Frozen sections were incubated at 

37°C for 30 min in pre-warmed 200 mM Tris buffer pH7.4, containing 245 µM nitro blue tetrazolium and 

1.13 mM NADH. Sections were rinsed in water, dehydrated, and mounted under coverslips. Staining 

was visualized and photographed using an Evos XL Core transmitted-light inverted imaging system 

(Thermo Fisher Scientific). 

 

Statistical Analyses 
All statistical analyses were performed using R, version 3.2.2 [51].  For longitudinal measurements 

(body weights, fat mass and lean mass), data were analyzed by mixed linear models using 
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uncorrelated random slopes and intercepts using the lme4 package version 1.1-8 [52]. Statistical 

significance was determined via likelihood ratio tests between models containing or missing the 

genotype term.  Pairwise comparisons were tested for normality via a Shapiro-Wilk test, and for equal 

variance via Levene’s test.  For survival analyses and Cox proportional hazard tests, the survival 

package was used (version 2.38-3, [53,54]).  We tested the assumptions of proportional hazards (with 

Shoenfeld residuals) and found no significant deviation from this assumption (p=0.875).  Based on 

these, appropriate pairwise tests were performed as indicated in the figure legends.  Corrections for 

testing of multiple hypotheses were done using the method of Benjamini and Hochberg [55]. Statistical 

significance was designated at p/q<0.05 for all assays, except GSEA analyses where q<0.25 was used.  

All raw data and statistical analyses for this manuscript are available at 

http://bridgeslab.github.io/TissueSpecificTscKnockouts. 

Results 

Rapamycin Treatment Blunts High Fat Diet-Induced Increases in Energy Expenditure 
To test whether mTORC1 plays a role in the short-term thermogenic responses to obesogenic diets, we 

measured the total energy expenditure of C57BL6/J mice during a dietary shift between low fat (chow) 

and HFD in the presence or absence of the specific mTOR inhibitor rapamycin.  As depicted in Figure 

1A, individually housed animals were vehicle-injected daily for four days, followed by three days of 

either vehicle or rapamycin injection.  After three days of treatment, all animals were moved from a 

chow diet to HFD.  As shown in Figure 1B, the switch to HFD caused an 8.1% increase in total energy 

expenditure in the vehicle injected mice during the dark phase and a 6.4% increase during the light 

phase.  Compared to vehicle treated mice, rapamycin injection suppressed the HFD-induced increase 

in energy expenditure (p=2.1x 10-4). Notably, these effects were not associated with decreases in 

physical activity (Figure 1C).  These data support the hypothesis that mTORC1 is required for the 

increase in energy expenditure observed in response to acute HFD feeding.   

 

Activation of mTORC1 in Muscle Increases Energy Expenditure 
To test whether skeletal muscle mTORC1 activation would result in increases in energy expenditure, 

we performed indirect calorimetry studies on Ckmm-Cre driven Tsc1 knockout mice. We observed 

increased total energy expenditure in muscle specific Tsc1 knockout mice (Figure 1D, p<1 x 10-6), and 

the magnitude of this difference was greater during the dark (active) phase (7.0% increase in males, 

6.8% increase in females). Although the greatest energy expenditure differences primarily occurred 

during the active phase, we did not observe any differences in physical activity (Figure 1E).  While there 

were no significant differences in the respiratory exchange ratio (RER) between knockout and control 

male mice (Figure 1F), female muscle Tsc1 knockout mice had a lower RER during the dark period 
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(suggestive of greater lipid utilization while active), and a higher RER during the light period (suggestive 

of greater carbohydrate utilization while resting) compared to their control counterparts. This finding is 

corroborated by rates of carbohydrate and lipid oxidation (Figure 1 G and H), and may suggest sexual 

dimorphism in how muscle mTORC1 signaling affects metabolic flexibility.  Together, these data are 

consistent with a physiological role for mTORC1 in moderating organismal energy expenditure.   

 

Activation of mTORC1 in Muscle does not alter energy intake  
We next evaluated the effect of Ckmm-Cre driven Tsc1 knockout on energy intake in animals receiving 

either standard laboratory chow or HFD. As shown in Figure 1I, mice receiving the HFD ingested more 

calories than mice receiving chow (p<0.001); however, there were no differences in energy intake 

between control and muscle Tsc1 knockout mice within each diet (p=0.426), and no differences 

between sexes (p=0.785). While not significant, there was a slight elevation in the energy intake of 

male knockout mice receiving HFD, consistent with previous reports that show mice with ACTA1-Cre 

driven Tsc1 knockout eat more food relative to their body weight than control mice when provided a diet 

consisting of 60% calories from fat [5].   

 

Activation of mTORC1 in Muscle Causes Resistance to Age- and Diet-Induced Obesity 
Given our finding that mTORC1 activation in skeletal muscle caused elevated energy expenditure in the 

absence of increased energy intake or physical activity, we sought to understand the physiological 

significance of mTORC1 activation on body composition. The body weights (Figure 2A) and 

composition (Figure 2B-C) of male muscle Tsc1 knockout mice given a normal chow diet was 

determined weekly, over the course of 7 months.  As animals aged, control mice accreted body fat, 

whereas fat mass gains were minimal in the knockout group; a striking 84% difference being observed 

between knockout and control groups (Figures 2B, p=1.7 x 10-10). Previous work using ACTA1-Cre 

mediated knockout of Tsc1 also report lower body fat accumulation in knockouts compared to control 

mice [5,6], concomitant with reductions in lean mass [6,21], the latter finding not replicated in this study 

(Figure 2C, p=0.743 at endpoint). To determine if reductions in body fat gains were adipose depot-

specific, we determined the weights of subcutaneous (dorsolumbar-inguinal) and visceral (epididymal) 

fat pads from male control and Tsc1 knockout mice, and found that both fat depots were markedly 

lighter (decreased 79% and 76%, respectively, each p<0.0001; Figure 2D). Together, these findings 

demonstrate that skeletal muscle mTORC1 activation results in lower adiposity gains across the 

lifespan. 

 

Activation of mTORC1 in Muscle Does Not Induce Systemic Insulin Resistance 
Activation of mTORC1 has been reported to induce systemic insulin resistance in some systems, so we 

next determined insulin sensitivity in these mice by insulin tolerance test. As shown in Figure 2E, male 
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knockout mice had similar insulin responsiveness to control mice.  To pursue this unexpected finding 

further, we performed hyperinsulinemic euglycemic clamps, and found similar results. The rate of 

glucose infusion during the clamp was not different in knockout mice, nor were glucose turnover rates 

(Figure 2F) or the accumulation of 2-deoxyglucose in gastrocnemius muscles (Figure 2G).  2-

deoxyglucose uptake into brown adipose tissue was not different between knockout and control mice, 

whereas  2-deoxyglucose uptake into both subcutaneous and visceral white adipose tissue depots was 

markedly elevated.  

 

To determine if a palatable, hypercaloric diet would induce changes in body composition or insulin 

sensitivity in mice with Ckmm-Cre driven knockout of Tsc1, we placed mice on a diet containing 45% of 

calories from fat and found that both male and female mice were resistant to HFD-induced weight gain. 

(Figure 3A) Differences in body weight were primarily due to differences in fat mass, which, compared 

to control mice, was 60% lower in knockout males and 58% lower in knockout females by the end of the 

study (Figure 3B, p<1.0x10-6 for each). These data are consistent with previous reports in ACTA1-Cre 

mediated Tsc1 knockout mice fed a diet containing 60% calories from fat [5,6]; however, in our model 

lean masses across both sexes were not different between control and knockout mice on HFD (Figure 

3C, p=0.941). Consistent with the in vivo body composition data, we observed a 75-80% difference in 

the weights of both the gonadal and inguinal fat pads from male and female knockout mice compared 

to their relative control groups (all p<0.001; Figure 3D). Together, these findings demonstrate that 

mTORC1 activation in skeletal muscle can protect against adiposity gains under otherwise obesogenic 

conditions.  

 

As shown in Figure 3E, compared to control mice, both male and female muscle Tsc1 knockout mice 

were more insulin responsive (33% reduction in the area under the blood glucose curve for females, 

45% difference for male mice; p=0.045 and 0.014 respectively). This finding is consistent with the 

hypothesis that muscle Tsc1 knockout mice are not lipodystrophic but have improved glycemic control 

in addition to reduced adiposity. We propose that mice with muscle Tsc1 knockout are protected from 

HFD-induced adipose tissue expansion as a result of having chronically elevated energy expenditure, 

and that the attenuated body fat gains observed in muscle Tsc1 knockout mice facilitates the 

preservation of insulin sensitivity in the face of a HFD.  

 

Muscle mTORC1 Activation Causes Enrichment of Gene Sets Involved in Fatty Acid Uptake and 
Amino Acid Uptake 
To gain further insight into the mTORC1 activity-driven mechanisms within skeletal muscle that 

increase energy expenditure and limit body fat accumulation in Tsc1 knockout mice, we performed 

RNA sequencing studies in RNA obtained from m. quadriceps femoris from chow-fed male mice with 
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Ckmm-Cre driven Tsc1 knockout and their floxed litter mates. We identified 4403 differentially 

expressed gene transcripts in these animals, including 2464 upregulated genes and 1939 

downregulated genes (see Supplementary Table 1 for complete list).  To identify the pathways and 

networks associated with these differentially expressed gene transcripts, we performed gene-set 

enrichment analyses, finding 674 differentially regulated gene sets (see Supplementary Table 2). 

Among the significantly enriched gene sets were genes also regulated by Tsc2 deletion in MEFs, and 

by treatment with rapamycin [50,56], indicating there are a core set of mTORC1 dependent genes that 

are similarly regulated across different tissues.  Consistent with this observation, we found that 58% of 

the differentially expressed genes in the Tsc1 knockout muscles overlapped with previously published 

differentially expressed genes in Tsc2 knockout MEFs [50]. Other gene sets we identified as being 

upregulated by Tsc1 ablation in skeletal muscle include IGF1 targets in MCF-7 cells [57], genes 

involved in protein synthesis, amino acid (Figure 4A) and fatty acid uptake (Figure 4B), and calcium 

trafficking (Figure 4C),.  Most amino acid transporters were increased at the mRNA level (Figure 4A), 

while the fatty acid binding protein Fabp3 was also increased at the transcriptional level (Figure 4B). 

 

Muscle mTORC1 Activation Increases Thermogenic Signaling via Alterations in Intramyocellular 
Ca2+ Dynamics  
To identify the molecular mechanisms causing increased energy expenditure in muscle Tsc1 knockout 

mice, we determined the expression of transcripts known to be important contributors to skeletal 

muscle thermogenesis. We observed dramatic increases in the ATP-dependent SR/ER Ca2+ pump 

SERCA2 (encoded by Atp2a2, see Figure 4C), and its un-coupler Sarcolipin (encoded by Sln; Figure 

4C), proteins previously reported as playing an integral role in muscle-specific thermogenesis [58–61]. 

At the protein level, Sarcolipin was increased 4.1-fold (p=4.5 x 10-6; Figure 4D, pS6 is shown as a 

positive control for mTORC1 activation).  We propose that the increased energy expenditure observed 

in mice with muscle-specific Tsc1 ablation may be caused, in part, by increased futile cycling of Ca2+ by 

uncoupled SERCA2 (therefore increasing ATP hydrolysis) at the SR. Consistent with this hypothesis, 

we observed increases in the expression of other transcripts important for Ca2+ trafficking, including 

Pln, Casq2, Stim1 (Figure 4C), Mfn1-2 (Supplementary Table 1) and the subunits of the mitochondrial 

calcium importer (Mcu, Micu1 and Micu2; Supplementary Table 1).  We also observed reductions in 

Ryr1, Calm1 and Calm3 expression (Figure 4C), and reductions several plasma membrane Ca2+ 

transporters (see Supplementary Table 1), changes that are likely adaptive mechanisms to manage 

increased intracellular Ca2+ levels associated with SERCA2 uncoupling.  
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Constituent mTORC1 Activation Increases the Oxidative Profile of Skeletal Muscle  
We also evaluated transcriptional markers of muscle fiber type and observed increases in markers for 

more oxidative fiber types, including Myh7, Mb, Tnnc1, Tnni1 and Atp2a2, along with downregulation of 

markers for glycolytic fibers, including Myh4, Pvalb, Tnnc2, Tnni2 and Atp2a1 (Figures 4C and E, and 

Supplementary Table 1). These data suggest that skeletal muscle mTORC1 activation increases the 

oxidative profile of skeletal muscle at the transcriptional level. These findings are also supported by our 

observation that skeletal muscle from Tsc1 ablated mice has greater NADH-dehydrogenase activity 

(Figure 4F), and are consistent with findings from previous studies on ACTA1-Tsc1 knockout muscles 

that report the accumulation of mitochondrial enzymes and changes in muscle fiber size [20,62].   

 

Muscle mTORC1 Activation Reduces Lifespan 
To determine whether skeletal muscle mTORC1 activation-induced increases in energy expenditure 

affected lifespan, we monitored muscle Tsc1 knockout animals without manipulation as they aged.  

Increased signs of aging, including hunched and scruffy appearances at an earlier age, were observed 

in knockout mice compared to their control littermates. As shown in Figure 5, muscle-specific Tsc1 

knockout mice died of natural causes earlier than control mice.  Based on a Cox-proportional hazard 

model, the hazard ratio was 4.17-fold higher compared to non-knockout littermates (p=2.0 x 10-5).   

 

To determine how muscle Tsc1 ablation reduces lifespan, a subset of mice were fixed in formalin upon 

death and sent for veterinary pathology. However, we were unable to identify a consistent cause of 

death in these mice. In mice with histologic evidence of lesions, the predominant process was 

neoplasia, and the specific etiology was lymphoma/lymphosarcoma affecting multiple organs, though 

this was only true for control mice (two out of four) but not knockout animals (none out of three). It is 

important to note that lack of a specific diagnosis does not necessarily confirm the lack of lesions in 

examined animals; rather, that autolysis and the small number of animals evaluated may have resulted 

in loss of identifiable processes or tissues in which an etiology was present in-life. 

Discussion 
Here, we show that high fat diet-induced increases in energy expenditure are mTORC1-dependent. We 

also demonstrate that constitutive activation of skeletal muscle mTORC1 causes elevated total energy 

expenditure independent of changes in physical activity, and that mTORC1-driven increases in energy 

expenditure coincide with reduced adiposity, increased insulin responsiveness and the upregulation of 

skeletal muscle-specific thermogenic mechanisms that involve ATP-dependent futile cycling of Ca2+. 

Consistent with prior work [6,20], we also show transcriptional evidence for an mTORC1-dependent 
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fiber type transition to a more oxidative phenotype, along with other markers of altered substrate 

oxidation and energy transformation in skeletal muscle.  

 

Skeletal muscle is an important determinant of tissue insulin responsiveness, energy balance and 

healthy aging. Humans with high baseline grip strength have decreased risk of all-cause mortality [28–

33], whereas interventions that increase muscle mass and strength are associated with improved 

health outcomes in both young and older populations [63,64]. Given that skeletal muscle is also the 

primary determinant of resting energy expenditure [65], understanding the molecular mechanisms that 

influence skeletal muscle health could have important ramifications for the clinical treatment of diseases 

associated with both obesity and aging.  

 

Our understanding of how mTORC1 regulates skeletal muscle physiology largely consists of the 

translation-initiation and post-translational role of mTORC1 and its anabolic response to growth factors, 

nutrients and mechanical loading [9]. Less is known regarding the role of mTORC1 in the regulation of 

skeletal muscle substrate oxidation and energy expenditure; however, it has been suggested that gene 

silencing of mTORC1 alters ATP generation through disruption of PGC-1a driven mitochondrial 

signaling in vitro [22], and that the increase in Ppargc1a expression that occurs in muscle during the 

acute post-exercise phase has been shown to be potentiated in mouse skeletal muscle when mTORC1 

is inhibited by rapamycin [66]. Previous studies have shown that activating mTORC1 in mice through 

deletion of Tsc1 in skeletal muscle results in smaller mice that have significantly lower body fat than 

control mice and are resistant to both diet-induced obesity and age-associated gains in adiposity [5,6].  

Our results agree with these data, and we provide evidence that resistance to the accretion of body fat 

in these animals may be conferred, in part, by an increase in energy expenditure caused by sarcolipin-

driven uncoupling of SERCA2 in skeletal muscle.  

 

Skeletal muscle thermogenic pathways are important contributors to both shivering and non-shivering 

thermogenesis and while mitochondrial-generated thermogenic pathways have been described as 

potential targets for leveraging skeletal muscle thermogenesis to combat obesity [67], other heat 

generating pathways may also be important. The Sarco/Endo-plasmic Reticulum Ca2+-ATPase 

(SERCA) transfers Ca2+ from the sarcoplasm into the lumen of the sarcoplasmic reticulum, hydrolyzing 

ATP in the process. Sarcolipin, a small helical peptide, can interact with SERCA and alter the kinetics 

of Ca2+ re-sequestration by allowing slippage of Ca2+ back into the sarcoplasm, thereby ‘decoupling’ 

Ca2+ uptake from SERCA-dependent ATP hydrolysis and creating a futile cycle of Ca2+ movement that 

generates heat [68].  In the present study, Ckmm-Cre driven Tsc1 deletion resulted in increased whole-

body energy expenditure (Figure 1D), transcriptional upregulation of both SERCA2 and sarcolipin 

(Figure 4C), and increased expression of sarcolipin at the protein level (Figure 4D). We predict that the 
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increased amounts of sarcolipin in muscle Tsc1 knockout mice result in  increased SERCA2 uncoupling 

and higher rates of ATP-dependent futile Ca2+ cycling [58,69], a hypothesis supported by our 

observation that a number of other Ca2+ transporters and Ca2+ responsive mRNA’s are differentially 

expressed in the muscles of these mice (Figure 4C and Supplementary Table 1). Increased muscle 

thermogenesis through the sarcolipin-driven uncoupling of SERCA would increase organismal energy 

expenditure, thereby resulting in lower adiposity gains. Indeed, this hypothesis is consistent with reports 

that obesity is exacerbated when Sln is ablated [58–60] or prevented when it is Sln is overexpressed 

[61].      

 

In addition to the changes in Ca2+ related transcripts, we and others have observed that skeletal 

muscle-specific activation of mTORC1 via deletion of Tsc1 results in an increase in the oxidative profile 

of the skeletal muscle [20].  Furthermore, non-Tsc1-driven models of muscle-specific mTORC1 

activation, such as those involving knockout of individual components of the GATOR1 complex, result 

in increased expression of mitochondrial components, particularly TCA cycle intermediates [70], and 

increased mitochondrial respiration [71].  Conversely, abolishing skeletal muscle mTORC1 activity via 

Raptor knockout increases mitochondrial coupling efficiency but lowers mitochondrial respiration and 

reduces the abundance and activities of mitochondrial enzymes [72]. Here, we show that muscle Tsc1 

knockout mice have an increased reliance on carbohydrate oxidation (Figure 1G). Taken together, 

these observations suggest that mTORC1 influences metabolism by increasing mitochondrial enzyme 

content, the coupling of oxidative phosphorylation to ATP production, and the dissipation of energy via 

uncoupling of the sarcoplasmic reticulum.  

 

We cannot rule out other mechanisms linking muscle mTORC1 activity to elevated energy expenditure 

that may be indirect, such as FGF21 [6,73,74], other myokines or muscle-derived metabolites.  It is also 

worth noting that our observations during the rapamycin experiments are limited in that they do not 

speak to tissue specificity. Our results are consistent with previous reports demonstrating rapamycin 

sensitivity in cold-induced thermogenesis [7,8], and while the focus of those studies has been on the 

important roles of mTORC1 in brown adipose tissue function, they may also speak to the role of 

mTORC1 in muscle or other thermogenic tissues.  Future studies with temporal and tissue-specific loss 

of mTORC1 function conducted in mice housed at temperatures within their thermoneutral zone will be 

key to understanding the relative importance of muscle and BAT in both diet- and cold-induced 

thermogenesis.  Furthermore, findings that mTORC1 is important for thermogenesis in both BAT and 

skeletal muscle may indicate a broader role of mTORC1 in nutrient homeostasis.  One response to 

nutrient overload is to promote anabolism, consistent with mTORC1-dependent activation of protein 

synthesis, lipogenesis, and glycogenesis [13,35,77].  Thus, it is reasonable to propose that nutrient 

overload may promote ineffective catabolism as a way of reducing systemic nutrient stress. 
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Transcriptional profiling across species has identified downregulation of mitochondrial genes in skeletal 

muscle as a common aging signature [78,79], whereas loss of skeletal muscle mitochondrial function is 

associated with age-related sarcopenia in C. elegans [80,81] and mice. Candidate gene studies on 

aging have implicated genes with important roles in skeletal muscle metabolism, including IGF1R, 

AKT1 and FOXO3A [82,83], genes that are also linked to mTORC1 signaling. In humans, 

polymorphisms in FOXO3A have been associated with lengthened lifespan [83–89], whereas both 

mouse and fruit fly models of FOXO3A loss of function result in stronger and longer living model 

organisms [90–92]. Indeed, nonagenarians show downregulation of mTOR pathway genes [93], 

supporting a role for decreased mTOR signaling in human longevity, whereas in rats, inhibition of 

mTORC1 via rapalog treatment ameliorates age-related sarcopenia [94]. Here, we show that despite an 

apparent increase in the oxidative phenotype of muscle, constituent activation of mTORC1 in skeletal 

muscle decreases lifespan in mice, a finding in consensus with other models of mTORC1 activation 

[25–27]. 

 

Conclusions  
We have shown that increases in energy expenditure following a high fat diet- are mTORC1-dependent 

and that elevated energy expenditure caused by ablation of Tsc1, and thus constituent activation of 

skeletal muscle mTORC1, coincides with the upregulation of skeletal muscle-specific thermogenic 

mechanisms that involve the sarcolipin-driven futile cycling of Ca2+ through SERCA2. These findings 

support the hypothesis that activation of mTORC1 and its downstream targets, specifically in skeletal 

muscle, may play a role in adaptive thermogenesis, and point to a role for mTORC1 in stimulating 

mechanisms of energy expenditure in response to caloric overload. Whether mTORC1-dependent Ca2+ 

cycling in muscle is an effective therapeutic strategy for targeting weight loss remains to be determined, 

but given the negative effects of mTORC1 activation on lifespan, clinical utility is expected to be low. 

Future studies will confirm whether mTORC1 exerts its effects on skeletal muscle thermogenic 

pathways directly or indirectly and will identify whether the positive effects of skeletal muscle mTORC1 

activation can be separated from the negative effects to reduce adiposity and protect against obesity.  
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Figure Legends 

Figure 1: mTORC1 regulates energy expenditure.  A) Summary of the rapamycin/high fat diet 

experimental protocol, and its effect on B) energy expenditure and C) ambulatory activity of 10-week-

old male C57BL/6J mice. D) Total energy expenditure, E) ambulatory activity, F) respiratory exchange 

ratios (RER) and G) rates of carbohydrate oxidation and H) fat oxidation of 10-week-old mice with 

Ckmm-Cre driven knockout of Tsc1 and their control littermates. H) Absolute food intake of muscle 

Tsc1-knockout mice and their control littermates that received either normal chow diet (NCD) or a high 

fat diet (HFD). Food intake data were determined over 4-12 weeks on a per-cage basis for mice housed 

by genotype (n=5-20/group). 

 

Figure 2: Skeletal muscle mTORC1 activation attenuates age-associated gains in adiposity.  A) 

Body Weight, B) Total body fat and C) lean mass of male mice with Ckmm-Cre driven knockout of Tsc1 

and their control littermates, as determined longitudinally, from the age of weaning until 29-weeks of 

age. D) Weights of the dorsolumbar-inguinal and gonadal fat depots. E) Blood glucose curves during an 

tolerance test and F) the glucose infusion, glucose turnover and endogenous glucose production rates 

during a hyperinsulinemic euglycemic clamp. G) Tissue 2-deoxyglucose uptake under insulin stimulated 

conditions at the end of the clamp. Statistical significance is denoted by asterisks indicating p<0.05, 

based on a likelihood ratio test (B) or Mann-Whitney test (D and G, due to lack of normality). Data are 

reported for n=7 muscle Tsc1 knockout mice and n=25 control mice. Mice were fasted 5-6 hours prior 

to insulin tolerance tests and hyperinsulinemic clamp studies. 

 
Figure 3: Skeletal muscle mTORC1 activation protects against diet-induced obesity and insulin 
resistance. A) Total body weight, B) total body fat and C) total lean mass of male and female mice with 

Ckmm-Cre driven knockout of Tsc1 and their control littermates following 11-weeks of an obesogenic 

diet containing 45% energy from fat (HFD), beginning at 10-weeks of age. D) Weights of the 

dorsolumbar-inguinal and gonadal fat depots after 11-weeks of HFD. E) Blood glucose concentration 

curves during an insulin tolerance test in 6 hour-fasted male and female mice with Ckmm-Cre driven 

knockout of Tsc1 and their control littermates after 11-weeks of HFD. Statistical significance (*p<0.05, 

n=5/7) was determined via a Welch’s t test (D, males), or a Mann-Whitney test (D, females, due to lack 

of normality). 

 

Figure 4: Skeletal muscle mTORC1 activation alters the transcriptional regulation of nutrient 
uptake and oxidative capacity.  A) Expression of amino acid transporters B) fatty acid transporters, 

C) Ca2+ trafficking and, markers of fiber type E) as determined by RNAseq. D) Representative protein 

expression of S6 phosphorylation at Ser236/236, total S6 and sarcolipin in quadriceps muscles from 

male control mice and mice with Ckmm-Cre driven knockout of Tsc1. F) Representative images of 
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quadriceps muscle from mice with Ckmm-Cre driven knockout of Tsc1 and their control littermates 

stained for NADH-tetrazolium reductase, where oxidative fibers stain darkest. Asterisks indicates 

adjusted p-values of <0.05. 

 

Figure 5: Skeletal muscle mTORC1 activation reduces lifespan in mice.  
Survival curve of male muscle Tsc1 knockout mice on a normal chow diet.  Dotted lines indicate age at 

which 50% of animals died. 
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Supplementary Table Legends 

Supplementary Table 1: Gene expression differences in muscle Tsc1 knockout quadriceps.  Full 

results of differential expression analysis. 

 
Supplementary Table 2: Gene set enrichment analysis of Tsc1 knockout quadriceps.  All 

pathways that met an adjusted p-value of 0.25 are shown.  NES (normalized enrichment score) 

indicates pathway effect size with positive numbers indicating positive enrichment of this gene set in 

these data.  Gene details are the genes which drove this positive or negative association.  Both nominal 

(NOM) and FDR adjusted (FDR) p/q values are shown. 
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