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Abstract 

N-myristoylation is a ubiquitous class of protein lipidation across eukaryotes and N-myristoyl 

transferase has been proposed as an attractive drug target in several pathogens. Functionally the 

myristate often primes for subsequent palmitoylation and stable membrane attachment, however, 

growing evidence also suggests additional regulatory roles for myristoylation on proteins. Here we 

describe the first global chemoproteomic screening of protein myristoylation in Toxoplasma gondii. 

Through quantitative mass spectrometry coupled with validated chemoproteomic tools, we identify 65 

myristoylated proteins. We report functionally important myristoylation on the key signalling protein 

CDPK1 and, surprisingly, myristoylation of the microneme protein 7 (MIC7), a predicted type-I-

transmembrane protein. We demonstrate that myristoylation of MIC7 is not important for the trafficking 

to micronemes, but appears to play a role in host cell invasion. This dataset represents a large fraction 

of the parasite’s myristoylated proteome and a prerequisite to investigate this modification in 

Toxoplasma.  

 

Introduction 

Toxoplasmosis is affecting approximately one third of the world’s population (Robert-Gangneux and 

Darde, 2012). It is caused by the obligate protozoan parasite Toxoplasma gondii originating from the 

phylum Apicomplexa. While the majority of human infections are asymptomatic, the disease manifests 

its severity in immunocompromised individuals, such as those receiving chemotherapy, transplants or 

HIV/AIDS patients.  Key steps in the successful propagation of T. gondii infection in the acute phase 

are orchestrated cycles of invasion and egress from the host cells (Black and Boothroyd, 2000). These 

crucial processes are regulated by several post-translational modifications (PTMs), such as 

phosphorylation (Gaji et al., 2015; Jacot and Soldati-Favre, 2012; Lourido et al., 2010; Lourido et al., 
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2012; Treeck et al., 2014), ubiquitination (Silmon de Monerri et al., 2015), and also protein lipidation, 

such as palmitoylation and myristoylation (Alonso et al., 2012; Frenal et al., 2014).  

While the extent of protein palmitoylation in Toxoplasma has been investigated (Caballero et al., 2016; 

Foe et al., 2015), the myristoylated proteome remains uncharacterised. Myristoylation can prime 

proteins for subsequent palmitoylation and stable protein-membrane association, it has also been 

shown to facilitate protein-protein interactions (PPIs) and affect protein structure and stability (Martin et 

al., 2011; Wright et al., 2010). N-myristoylation is an irreversible, predominantly co-translational 

covalent addition of myristic acid to an N-terminal glycine (Boutin, 1997; Gordon et al., 1991). It is 

catalysed by N-myristoyl transferase (NMT), which is conserved in Toxoplasma and has been reported 

to be a prominent drug target in fungal (Devadas et al., 1995; Nagarajan et al., 1997), Trypanosome 

(Frearson et al., 2010; Wright et al., 2016) and Leishmania infections (Hutton et al., 2014; Wright et al., 

2015). In Plasmodium falciparum (the causative agent of malaria), inhibition of NMT leads to severe 

pleiotropic consequences affecting parasite development (Schlott et al., 2019; Wright et al., 2014), 

highlighting the importance of myristoylation for pathogen survival and progression.  

An N-terminal ‘MG’ motif is a requirement, but not a predictor of myristoylation. Circa 6% of all gene 

products in Toxoplasma contain the N-terminal glycine and an in silico prediction of myristoylation 

suggests that ~ 1.8% of all T. gondii gene products are modified (Alonso et al., 2019).  The functional 

relevance of myristoylation has been described for only a few T. gondii proteins, mainly in conjunction 

with adjacent palmitoylation that allows stable membrane attachment. These proteins include key signal 

mediators in parasite egress and invasion, e.g. CDPK3 (Garrison et al., 2012; McCoy et al., 2012), PKG 

(Brown et al., 2017), PKAr (Jia et al., 2017; Uboldi et al., 2018); proteins involved in parasite gliding, 

e.g. GAP45 and GAP70 (Frenal et al., 2010); division, e.g. ISP1, 2 and 3 (Beck et al., 2010); and correct 

rhoptry positioning required for invasion, e.g. ARO (Mueller et al., 2013). Collectively these studies show 

key roles for myristoylation throughout the parasite’s lytic cycle, but its function in the absence of 

palmitoylation or its relation to other PTMs remains poorly described.   

By combining metabolic tagging with orthogonal chemoproteomic tools and mass spectrometry (MS), 

we provide experimentally validated libraries of myristoylated as well as glycosylphosphatidylinositol 

(GPI) anchored proteins in T. gondii. We identify all the previously reported myristoylated proteins and 

novel substrates with heterogeneous localizations and variable functions across the lytic cycle. We 

validate the presence and elucidate the functional importance of myristoylation on two selected targets: 

the well characterized key signalling protein CDPK1 and the microneme protein MIC7. Utilizing 

conditional target depletion and complementation with wild-type (cWT) and myristoylation mutant (cMut) 

versions, we demonstrate that myristoylation is functionally important for CDPK1 and, somewhat 

surprisingly, MIC7, a predicted type-I-transmembrane protein. Taken together, our study points to 

unexpected and novel functions of myristoylation in Toxoplasma that extend beyond priming for 

palmitoylation and stable membrane attachment.  
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Results 

Metabolic tagging allows for enrichment and visualization of myristoylated and GPI-anchored 

proteins in T. gondii 

To visualize the extent of myristoylation in T. gondii, we adapted a metabolic tagging approach that has 

previously been applied to mammalian cells (Broncel et al., 2015; Thinon et al., 2014) and protozoan 

parasites (Wright et al., 2014; Wright et al., 2016; Wright et al., 2015). In this workflow, a myristic acid 

(Myr) analogue containing a terminal alkyne group (YnMyr) is added to cell culture upon infection with 

Toxoplasma (Figure 1A). The hydrophobic nature of YnMyr allows for cell membrane penetration, while 

the alkyne tag allows for NMT-mediated metabolic tagging of both host and parasite target proteins. 

Upon cell lysis, tagged proteins are liberated and conjugated to azide-bearing multifunctional capture 

reagents by a click reaction (Heal et al., 2011). The conjugation process introduces secondary labels, 

like biotin and fluorophores, allowing for target enrichment on streptavidin beads and visualization via 

in-gel fluorescence (igFL), respectively. To investigate the extent of YnMyr incorporation, intracellular 

tachyzoites were treated with either Myr or increasing concentrations of YnMyr for 16 h. Tagged proteins 

were conjugated to a capture reagent, resolved by SDS-PAGE, and visualized by igFL. Protein tagging 

in vivo was non-toxic and concentration-dependent without any detectable background (Figure S1A). 

In addition, it did not seem to depend on parasite localization inside or outside the host cell, and was 

efficiently out-competed by excess myristate, indicating that YnMyr works ‘on target’ (Figure S1B). To 

estimate the efficiency of target enrichment, we took advantage of the biotin moiety that enables a 

streptavidin-based pull down. We observed robust enrichment of protein targets in a YnMyr-dependent 

manner, and detected very little background in controls (Figure S1C).  

It has been reported that YnMyr can be incorporated not only at N-terminal glycines via amide bonds, 

but also through ester-linked incorporation of myristate into GPI anchors (Wright et al., 2014). These 

two distinct types of tagging can be readily distinguished by their different sensitivity to base treatment; 

amide bonds are stable in basic conditions, whereas ester bonds are hydrolysed. To visualize the extent 

of YnMyr incorporation into GPI anchors in Toxoplasma, we performed base treatment prior to 

enrichment of target proteins and observed a reduction of igFL signal for selected enriched bands 

(Figure 1B). To further validate the base treatment approach, we probed known N-myristoylated and 

GPI-anchored Toxoplasma proteins, GAP45 and SAG1, for their ability to be enriched in a base-

dependent manner. In the absence of treatment, both proteins were robustly pulled down with YnMyr, 

while upon base treatment, only GAP45 remained enriched, confirming that it is a true myristoylation 

target (Figure 1C). Collectively, we confirmed that YnMyr is a robust and high-fidelity myristate analogue 

and demonstrated that it can be applied to profile both N-myristoylated and GPI-anchored proteins in 

live Toxoplasma gondii. 
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Figure 1. Metabolic tagging allows for enrichment and visualization of myristoylated and GPI-

anchored proteins in T. gondii. (A) Metabolic tagging workflow. (B) In gel fluorescence visualization 

of YnMyr-dependent enrichment without and with the base treatment (top) and Western blot with α-

SFP1 (TGGT1_289540) showing the loading control (bottom). (C) Western blot analysis of YnMyr-

dependent pull down for known myristoylated and GPI-anchored proteins GAP45 and SAG1, 

respectively. See also Figure S1. 

 

Identification of the myristoylated proteome in T. gondii  

To confidently identify myristoylated proteins in Toxoplasma, we applied state-of-the-art MS-based 

proteomics combined with validated chemical tools (Figure 2A; (Broncel et al., 2015; Speers and 

Cravatt, 2005; Thinon et al., 2014; Wright et al., 2014). We started with a small-scale pilot experiment 

to test our workflow, and differentiate between the myristoylation-based enrichment and the GPI-

anchored targets. We metabolically labelled tachyzoites of the RH strain with either YnMyr or Myr each 

at 25 µM for 16 h. We then lysed the intracellular parasites and performed the click reaction with the 

azido biotin capture reagent 1 to facilitate YnMyr-dependent enrichment of tagged proteins. To 

distinguish myristoylated from GPI-anchored targets, we applied base treatment prior to the 

streptavidin-based pull down. Following trypsin digestion, we analysed samples by LC-MS/MS and 

performed label free quantification of enriched proteins. We quantified 2363 human and Toxoplasma 

proteins, 349 of which were parasite proteins with YnMyr intensities irrespective of base treatment 

(Table S1). To identify GPI-anchored proteins, we calculated log2 fold changes between base-treated 

and untreated samples (Figure S2A). To threshold we utilized the least extreme negative value (log2 
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fold change < -1) quantified from all Surface Antigen Proteins (SAGs) detected in our study, which are 

known to be GPI-anchored. This selection strategy yielded 52 targets, that included known and 

predicted GPI-anchored proteins (Table S1, Figure S2A). To identify myristoylated proteins we utilized 

a stringent selection method based on the robust YnMyr/Myr enrichment (log2 fold change > 2), the 

presence of a myristoylation motif (MG), and insensitivity towards base treatment. 56 proteins met these 

criteria, including those previously reported as myristoylated (Table S1). Analysis of supernatants from 

the pulled down samples did not reveal any substantial changes between the YnMyr and Myr 

proteomes, confirming that the observed target enrichment is not due to altered protein abundance 

(Figure S2B and Table S1).  

After successful testing of the metabolic tagging workflow, we performed a more elaborate MS 

experiment that utilizes cleavable capture reagents bearing either trypsin (reagent 2) or TEV (reagent 

3) cleavable linkers (Figure 2A). In contrast to a non-cleavable reagent (e.g. reagent 1) that provides 

only indirect proof of target myristoylation (Figure 2B), cleavable reagents allow for detection of 

myristoylated peptides in addition to peptides that originate from the enriched proteins (Figure 2B). This 

additional layer of confidence in target identification is especially important given the high level of non-

myristoylation dependent background reported for metabolic tagging with YnMyr (Broncel et al., 2015; 

Wright et al., 2016; Wright et al., 2015). While reagent 2 has been validated as a tool for myristoylated 

protein and peptide discovery (Broncel et al., 2015), reagent 3 (Speers and Cravatt, 2005), which is 

expected to produce less background and improve myristoylated peptide discovery, has not previously 

been applied to study protein myristoylation. We therefore first tested reagent 3 in terms of YnMyr-

dependent protein enrichment and observed robust pull down of potential targets (Figure S2C). We 

next generated samples for the MS workflow as described above but, instead of conjugating reagent 1, 

we conjugated either 2 or 3, each in biological triplicate, to tagged proteins via click reaction to enable 

myristoylation-dependent pull down. As depicted in Figure 2B, reagent 2 requires only a single step 

trypsin digestion to liberate both unmodified and myristoylated peptides in one pool. By contrast, 

reagent 3 requires both trypsin and TEV protease and, depending on the enzyme combination, releases 

unmodified and myristoylated peptides in either one (TEV I) or two (TEV II) separate fractions (Figure 

2B). The TEV I strategy should address the common problem encountered with the on-bead trypsin 

digestion, i.e. the increased level of background from the non-specifically bound proteins, while the TEV 

II option should increase the modified peptide discovery. Following digestion, all samples were 

subjected to LC-MS/MS, and label free quantification was performed to identify proteins robustly 

enriched in YnMyr-dependent manner. This yielded 206 human and 117 T. gondii proteins bearing the 

MG myristoylation motif (Table S2).  Within the parasite protein pool, we obtained statistically significant 

(FDR 1%, log2 fold change >2) enrichment in YnMyr over Myr controls for 72 targets using reagent 2 

(Table S2). For reagent 3, which was used in two different scenarios (TEV I and TEV II) resulting in 

larger variability between replicates, we utilized a fold change based threshold (log2 fold change > 2) 

and obtained 48 robustly enriched targets (Table S2). The overlap between reagents 2 and 3 reached 

60% (Table S2), providing substantial confidence to the accuracy of our results. Reassuringly, we 

observed a ~ 5 and ~ 8-fold reduction in background in TEV I vs TEV II and TEV I vs reagent 2, 

respectively, as shown by the number of proteins quantified in Myr controls (Table S2). Collectively we 
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identified 76 significantly YnMyr-enriched proteins utilizing all three capture reagents (Figure 2C, Table 

S2).  

 

Figure 2. Identification of the myristoylated proteome in T. gondii. (A) Structures of capture 

reagents used in this study with key functional components highlighted: biotin and azide moieties in 

blue and bold, respectively, cleavable linkers in grey with the cleavage site indicated by arrows. (B) 
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Schematic representation of the MS workflow using non-cleavable and cleavable capture reagents. (C) 

Top: Venn diagram illustrating the overlap between significantly YnMyr-enriched proteins identified with 

capture reagents used in this study. The number of significantly enriched proteins per reagent and in 

total is given in parenthesis. Bottom: Venn diagram showing the overlap in myristoylated peptide 

discovery between the two cleavable capture reagents used in this study. The number of modified 

peptides identified with each reagent and in total is given in parenthesis. (D) Label free quantification 

of the log2 fold changes in YnMyr enrichment over the Myr control plotted against the statistical 

significance for all parasite proteins detected in this study. Proteins with N-terminal glycine and 

significant, base-insensitive enrichment are highlighted in blue and red subject to the presence of a 

myristoylated peptide. All other identified proteins (background and GPI-anchors) are represented in 

grey. (E) Pie chart showing the distribution of reported and predicted (ToxoDB) cellular localization for 

the identified myristoylated proteins. See also Figure S2, Table S1, Table S2 and Table S3. 

 

We next focused on the identification of myristoylated peptides in samples processed with reagents 2 

and 3. Utilizing stringent criteria for the unbiased identification of the myristoylation adduct, as well as 

manual validation of the acquired MS/MS spectra, we identified 31 myristoylated peptides (Table S2), 

24 of which were detected using reagent 2, and 20 using reagent 3 (Figure 2C). None of these peptides 

were detected in Myr controls, and the myristoylation adduct was not identified on cysteines, confirming 

that YnMyr was not significantly incorporated into palmitoylation sites. Despite almost equal numbers 

of peptides detected by the two reagents, the overlap was only 40% (Figure 2C), confirming different 

specificities and the added value of orthogonal methods for modified peptide detection. As envisioned 

in our design strategy, we obtained a 30% increase in myristoylated peptide discovery in TEV II vs TEV 

I workflow (Figure S2D).  

Finally, to generate a high confidence list of myristoylated proteins in Toxoplasma, we combined our 

results on both protein enrichment and the modified peptide levels. We filtered for proteins identified 

with at least two capture reagents or proteins for which we detected a lipid modified peptide. This 

resulted in 65 proteins, of which 48% have direct MS/MS evidence for protein myristoylation (Table S3, 

Figure 2D). Our target pool includes all proteins previously reported as myristoylated (Figure 2D) which 

indicates that this analysis covers a large fraction of the myristoylated proteome in Toxoplasma. The 

majority (90%) of our substrate pool represent novel targets of TgNMT with important functions across 

the lytic cycle (Table S3), including CDPK1 (egress/invasion; (Lourido et al., 2010)); PPM5C 

(attachment; (Yang et al., 2019)); ARF1 and Rab5B (trafficking; (Kremer et al., 2013; Liendo et al., 

2001)). We did not obtain any evidence for myristoylation on known secreted Toxoplasma proteins, 

such as rhoptry or dense granule proteins. Moreover, approximately one third of the reported targets 

are uncharacterized proteins, indicating that a large amount of unexplored myristoylation-related 

biology is still to be uncovered in Toxoplasma.  

Identified targets showed heterogeneous localization (Figure 2E). We found proteins with known or 

predicted localization at the plasma membrane, as well as membrane-bound compartments (e.g. 

endoplasmic reticulum (ER) and Golgi apparatus). Stable attachment at membranes usually requires a 

double acylation, i.e. both myristoylation and palmitoylation (Wright et al., 2010). In agreement with this, 

35% of our targets were previously reported to be palmitoylated ((Caballero et al., 2016; Foe et al., 
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2015); Table S3). Since palmitoylation is frequently enriched at the protein N-terminus, in close 

proximity to the myristate, we analysed the first 20 amino acid sequences of our targets (Figure S2E) 

and found that only about half of them had cysteines (sites of palmitoylation) and, hence, the potential 

for double acylation. This observation suggests that at least 50% of the target pool are likely only 

myristoylated at the N-terminus. Consistent with this, we found proteins with less defined localizations 

e.g. CDPK1, where myristoylation may serve a more discrete function beyond just a simple plasma 

membrane anchor.   

We also compared our data with the myristoylated proteome of the related P. falciparum (Wright et al., 

2014). We converted Plasmodium hits into Toxoplasma orthologues and compared the overlap of both 

species. This yielded 23 shared targets, which corresponds to 35% of the Toxoplasma and 62% of the 

P. falciparum experimentally validated myristoylated proteome (Figure S2F). Interestingly, 39 (60%) 

targets from the Toxoplasma dataset have orthologues in P. falciparum and 31 (48%) of them contain 

an MG motif, hinting at potentially unexplored PfNMT substrates (Table S3). A further 26 (40%) of our 

targets did not have orthologues in P. falciparum (Table S3), indicating that they are unique to 

Toxoplasma, and therefore have the potential to uncover the parasite-specific biology.  

Myristoylation is important for CDPK1 function  

CDPK1 is an essential regulator of microneme secretion and, therefore, a prerequisite for parasite 

motility, invasion and egress from host cells. Although the protein’s function has been thoroughly 

characterized (Lourido et al., 2013; Lourido et al., 2010; Ojo et al., 2010), it has not previously been 

shown as myristoylated. Accordingly, we first validated our finding by metabolic tagging and a 

myristoylation-dependent pull down after base treatment. As depicted in Figure 3A, CDPK1 was 

enriched in a base-independent manner which was further corroborated by the identification of the 

myristoylated peptide by MS (Figure 3B). 

To investigate the role of myristoylation in CDPK1 function, we generated an inducible knock-down 

(iKD) line using the mini auxin inducible degron (mAID) strategy (Brown et al., 2018), which allows for  

proteasomal degradation of mAID-tagged proteins in an indole acetic acid (IAA) dependent manner. To 

generate the CDPK1 iKD line, we C-terminally tagged endogenous CDPK1 in RHΔku80 TIR1 parasites 

with a mAID-Myc cassette (Figure 3C). Successful mAID integration was verified by PCR (Figure S3), 

while tagged protein expression and IAA sensitivity was confirmed by immunoblot (Figure 3D). 

Introduction of the mAID cassette had no discernible fitness cost (Figure 3E), or impact on CDPK1’s 

function in egress (Figure 3F). By contrast, IAA-mediated depletion of CDPK1 had profound effects on 

the parasite lytic cycle (Figure 3E) and, as expected (Lourido et al., 2010), completely abolished 

ionophore-induced egress (Figure 3F). We complemented the iKD line by introducing HA-tagged WT 

(cWT) or myristoylation defective (cMut, G2>A) copies of cdpk1 into the uprt locus (Figure 4A). We 

verified correct integration of both complementation constructs (Figure S4A), confirmed their equivalent 

and IAA-independent expression, as well as IAA sensitivity of the endogenous mAID-tagged CDPK1 

within these lines (Figure 4B). In addition, we validated cWT and cMut lines biochemically by performing 

a YnMyr-dependent pull down and immunoblotting (Figure 4C). As expected, the endogenous copy of 
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CDPK1 was efficiently enriched from both complemented lines, whereas the pull down of complements 

was only identified for the WT, but not the myristoylation mutant.  

 

Figure 3. CDPK1 myristoylation and inducible knock-down. (A) Western blot analysis of YnMyr-

dependent pull down for CDPK1 in base-treated and untreated samples. Base-insensitive pull down 

validates CDPK1 as a true myristoylation target. (B) MS/MS evidence for CDPK1 myristoylation. (C) 

Schematic representation of mAID-based knock-down strategy used for the conditional depletion of 

CDPK1. (D) Validation of IAA-dependent depletion of CDPK1 in the iKD line illustrated by Western 

blotting with α-Myc antibody. The band at 75 kD represents α-Myc-related background. α-Toxoplasma 

(Toxo) antibody was used as loading control. (E) Plaquing assays illustrating that CDPK1 is essential 

for the intracellular growth of Toxoplasma. Assay performed in three biological replicates, each in 

technical triplicate, representative images are shown. (F) Conditional depletion of CDPK1 abolishes 

ionophore-induced egress from host cells. Intracellular parasites were treated with IAA or vehicle 

(EtOH) for 2 h and egress was initiated by addition of 8 µM A23187. The number of intact vacuoles was 

monitored over the course of 6 min. Each data point is an average of two biological replicates, each in 

technical triplicate, error bars represent standard deviation. See also Figure S3. 
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Given that myristoylation is frequently reported to facilitate membrane association (Martin et al., 2011; 

Wright et al., 2010), we examined the localization of cWT and cMut CDPK1 by immunofluorescence 

analysis (Figure 4D). No clear differences were detected with a primarily punctate staining within the 

cytosol observed in both lines. As myristoylation-regulated changes in localization may be subtle, we 

explored the possible effects of myristoylation on CDPK1 localization using fractionation experiments 

(Figure 4E). First, we evaluated the partitioning pattern of the endogenous, myristoylated CDPK1. 

RHΔku80 YFP expressing parasites were metabolically tagged with Myr or YnMyr and lysed in a 

hypotonic buffer to preserve intact membrane structures. Next, lysates were pelleted by centrifugation 

(16,000 x g) and the resulting cytosolic fraction was subjected to an additional high speed (100,000 x 

g) centrifugation step. Each fraction was then clicked to a capture reagent, pulled down and 

myristoylation-dependent partitioning revealed by Western blotting. In contrast to the doubly acylated 

GAP45, which was present exclusively in the pellet, CDPK1 was observed in both the pellet and 

cytosolic fractions of the first spin (Figure 4E, left). Following further centrifugation of the cytosolic 

fraction, CDPK1 partitioned exclusively into the pellet (Figure 4E, left), suggesting potential association 

with some vesicular structures or higher molecular weight complexes. We next used both cWT and 

cMut lines to elucidate any myristoylation dependent changes to CDPK1 localization. While cWT could 

be found exclusively in the 100,000 x g pellet, removal of myristoylation in the cMut caused a release 

of the pellet associated protein into cytosolic fraction (Figure 4E, right).  

To evaluate the role of CDPK1 myristoylation in parasite fitness, we performed plaque assays (Figure 

4F). In the presence of the endogenous copy of CDPK1, both complemented lines developed normally. 

Upon IAA-mediated depletion of endogenous CDPK1, however, we observed a substantial decrease in 

cMut plaque size. This finding demonstrates that one or more steps of the Toxoplasma lytic cycle are 

negatively affected by a loss of CDPK1 myristoylation. In light of CDPK1’s known function in egress, 

we next explored whether CDPK1 myristoylation might regulate the parasite’s ability to leave its host 

cell. In the absence of auxin, cWT, cMut, and the phenotypic control line (iKD), egressed within 2 min 

of ionophore treatment (Figure S4B). While the cWT line maintained similar egress kinetics upon 

addition of IAA, the cMut line showed a significant delay after 2 min of treatment (Figure 4G). This 

egress delay was overcome at the 6 min time point (Figure 4G), suggesting that CDPK1 myristoylation 

is important for ionophore-induced egress, but not essential. Collectively, our results demonstrate an 

important role for CDPK1 myristoylation in the lytic cycle, which may be in part mediated by a defect in 

egress.  
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Figure 4. Myristoylation of CDPK1 is functionally important. (A) Complementation strategy used to 

evaluate the functional importance of CDPK1 myristoylation. Red hexagon represents STOP codon, 

rec – recodonized. (B) Western blot analysis demonstrating the IAA-dependent depletion of the 

endogenous copy of CDPK1 in the iKD, cWT and cMut lines (α-Myc) as well as equivalent and IAA-

independent expression of the complements (α-HA). α-Toxoplasma (Toxo) antibody was used as 

loading control. (C) Biochemical validation of complemented lines by YnMyr-dependent pull down. 

Enrichment of WT and Mut copy of CDPK1 was evaluated by Western blotting with anti-HA antibody. 

The inducible copy of CDPK1 (anti-Myc) and Gra29 were used as enrichment and loading controls, 

respectively. (D) Localization of the complemented versions of CDPK1 within cWT and cMut by 

immunofluorescence analysis. Scale bar: 4 µm. (E) Myristoylation-dependent subcellular partitioning of 

CDPK1. (Left) Localization of YnMyr-enriched CDPK1 was evaluated using differential centrifugation. 

The partitioning into pellet [P] and cytosolic [C] fractions was revealed by Western blot (α-CDPK1) and 

compared to a doubly acylated GAP45. GFP and SAG1 were used as C and P controls, respectively. 

As only half of the cytosolic fraction was removed from the high speed pellet, the GFP signal is present 

in the latter. (Right) Complemented WT and Mut versions of CDPK1 were fractionated using exclusively 

high speed centrifugation and their partitioning between the P and C fractions revealed by Western 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 30, 2019. ; https://doi.org/10.1101/719062doi: bioRxiv preprint 

https://doi.org/10.1101/719062
http://creativecommons.org/licenses/by/4.0/


12 

 

blotting (α-HA). α-Toxoplasma (Toxo) antibody was used as P control whereas α-GFP and α-mCherry 

were used as C controls. (F) Plaquing assays demonstrating that myristoylation of CDPK1 is important 

in the intracellular growth of Toxoplasma. Assay performed in three biological replicates, each in 

technical triplicate, representative images are shown. (G) The lack of CDPK1 myristoylation delays 

ionophore-induced egress from host cells. Intracellular parasites were treated with IAA for 2 h and 

egress was initiated by addition of 8 µM A23187. The number of intact vacuoles was monitored over 

the course of 6 min. Each data point is an average of three biological replicates, each in technical 

triplicate, error bars represent standard deviation. Significance calculated using 1-way ANOVA with 

Tukey’s multiple comparison test, **p = 0.004, ****p < 0.0001. See also Figure S4. 

 

MIC7 is myristoylated and is important for T. gondii lytic cycle  

Within our high confidence target pool, we also identified the microneme protein MIC7. MIC7 has been 

reported to be a putative type-I-transmembrane protein, comprising an N-terminal signal peptide, five 

EGF-like domains, a membrane-spanning region, and a short cytoplasmic tail (Meissner et al., 2002). 

As MIC signal peptides are typically co-translationally cleaved upon entry into the ER (Soldati et al., 

2001), the presence of a myristate within the classical signal sequence of MIC7 was unusual. In 

addition, MIC7 has been shown to be predominantly expressed in bradyzoites (Meissner et al., 2002), 

the lifecycle stage responsible for the chronic phase of T. gondii infection. As our experiments were 

performed exclusively in tachyzoites, the stage responsible for acute infection, the presence of MIC7 

within our dataset could represent a potential false positive identification. To address this inconsistency, 

we performed MS-based quantification of bradyzoite and tachyzoite proteomes (unpublished dataset). 

The log2 fold changes in protein abundance for MIC7 and the bradyzoite-specific marker, MAG1 ((Tu 

et al., 2019); Figure 5A, Table S4) revealed that in contrast to MAG1, MIC7 is expressed in tachyzoites, 

supporting the MS and transcriptional evidence in ToxoDB. We next aimed to validate the protein’s 

myristoylation as our MS screen did not identify a myristoylated peptide for MIC7. We ectopically 

expressed HA-tagged WT and myristoylation mutant (Mut, G2G3>KA) copies of MIC7 under control of 

either the endogenous or tubulin promoter, metabolically labelled cultures with YnMyr and performed a 

myristoylation-dependent pull down on lysates. Only WT but not the Mut was enriched in this manner 

(Figure 5B), showing that MIC7 is indeed myristoylated.  

To investigate the functional relevance of MIC7 and its myristoylation, we created an inducible knock-

out (iKO) line using the DiCre/loxP system (Andenmatten et al., 2013) that we recently optimised in 

RHΔku80 parasites (Hunt, 2019). The mic7 coding sequence was replaced with a floxed, HA-tagged 

copy of the gene that could be excised upon rapamycin (RAPA) treatment (Figure 5C). We verified 

correct integration at the endogenous locus (Figure S5A) and confirmed RAPA-induced excision (Figure 

S5B) by PCR. At the protein level, MIC7 was efficiently depleted 24 h post RAPA treatment (Figure 5D). 

Correct trafficking of MIC7 to micronemes was verified by the co-localization with the micronemal 

marker MIC2 (Figure 5E). Upon deletion of mic7, parasites no longer formed detectable plaques in host 

cell monolayers after 5 days in culture, but we could observe very small plaques emerging after 7 days 

(Figure 5F). Collectively these results demonstrate an important, but non-essential, role for MIC7 in the 

lytic cycle. 
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Figure 5. MIC7 is myristoylated and is important for T. gondii lytic cycle. (A) MS-based 

quantification of MIC7 and MAG1 abundance in tachyzoites [T] and bradyzoites [B] of T. gondii. 

Significance calculated using two-tailed Student’s t-test, ***p = 0.0002, N=3. (B) MIC7 is myristoylated 

as shown by YnMyr-dependent pull down and Western blotting with α-HA antibody. CDPK1 and SFP1 

(TGGT1_289540) are used as enrichment and loading controls, respectively. (C) Schematic 

representation of the DiCre/loxP-based iKO strategy used for the conditional depletion of mic7. Red 

hexagon represents STOP codon, rec - recodonized. (D) Validation of RAPA-dependent depletion of 

MIC7 in the iKO line illustrated by Western blotting with α-HA antibody. Gra29 was used as loading 

control. (E) Co-localization of the inducible version of MIC7 (green) with the micronemal marker MIC2 

(red) in the iKO line by immunofluorescence analysis. Scale bar: 3 µm. (F) Plaquing assays illustrating 

that MIC7 is important, but not essential for the intracellular growth of Toxoplasma. Assay was 

performed for 5 days (where not indicated) in three biological replicates, each in technical triplicate, 

representative images are shown. See also Figure S5. 
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Myristoylation of MIC7 plays a role in the invasion of host cells 

To investigate where in the lytic cycle MIC7 plays a role, and test the functional relevance of N-terminal 

myristoylation, we introduced cWT and cMut copies of mic7 into the uprt locus of the iKO line (Figure 

6A). Inserts coding for Ty1-tagged cWT or cMut MIC7 were correctly integrated (Figure S6A) and both 

complemented lines retained efficient RAPA-induced mic7 excision (Figure S6B) and depletion of the 

endogenous protein (Figure 6B). After confirming equivalent and RAPA-insensitive expression of cWT 

and cMut (Figure 6B), we validated both lines in terms of their myristoylation-dependent enrichment 

and showed that only the cWT MIC7 was selectively pulled down after metabolic tagging with YnMyr 

(Figure 6C). 

We next evaluated the role of MIC7 myristoylation in the parasite lytic cycle. While complementation 

with WT MIC7 rescued the iKO phenotype upon RAPA treatment, cMut parasites formed substantially 

smaller plaques under equivalent conditions (Figure 6D). This demonstrates that myristoylation plays a 

key role in regulating MIC7 function. To shed further light on the nature of this myristoylation-dependent 

phenotype, we investigated the co-localization of endogenous MIC7 with Ty1-tagged cWT and cMut 

(Figure 6E). Both complementation isoforms localized to the micronemes, indicating that the myristate 

is not required for the trafficking of MIC7 to this organelle. 

Given the well-established role of microneme proteins in facilitating host cell penetration we explored 

whether myristoylation of MIC7 may be important for invasion. We treated iKO, cWT and cMut parasites 

with RAPA and performed a red/green assay (Huynh et al., 2003) which can distinguish invaded from 

attached parasites. As shown in Figure 6F, we observed efficient invasion of host cells by the cWT 

parasites. This was not the case in the iKO and cMut lines, where invasion was reduced by 57% and 

32%, respectively. Compared to the cWT line, we also observed a consistent 61% drop in the total 

number of iKO parasites, which suggests a defect in the attachment to host cells. A modest but non-

significant reduction of 15% in attachment was observed in the cMut strain.  Collectively, these results 

indicate that MIC7 plays an important role in Toxoplasma propagation by facilitating parasite attachment 

and subsequent entry into host cells. Furthermore, myristoylation is not required for sorting MIC7 to the 

micronemes but appears to be important for the protein’s function in invasion of host cells. 
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Figure 6. Myristoylation of MIC7 plays a role in the invasion of host cells. (A) Complementation 

strategy used to evaluate the functional importance of MIC7 myristoylation. Red hexagon represents 

STOP codon, rec – recodonized. (B) Western blot analysis demonstrating the RAPA-dependent 

depletion of the endogenous copy of MIC7 in the iKO, cWT and cMut lines (α-HA) as well as equivalent 

and RAPA-independent expression of the complements (α-Ty1). Gra29 was used as loading control. 

(C) Biochemical validation of complemented lines by YnMyr-dependent pull down. Enrichment of WT 

and Mut copy of MIC7 was evaluated by Western blotting with α-Ty1 antibody. The inducible copy of 

MIC7 (α-HA) and Gra29 were used as enrichment and loading controls, respectively. (D) Plaquing 

assay demonstrating that myristoylation of MIC7 is important in the intracellular growth of Toxoplasma. 

Assay performed for 5 days in three biological replicates, each in technical triplicate, representative 

images are shown. (E) Co-localization of the inducible version of MIC7 (red) with the complemented 

WT and Mut (green) by immunofluorescence analysis. Scale bar: 5 µm. (F) Quantification of invasion 

efficiency in the RAPA-treated cWT, iKO and cMut lines. Figure shows the average of three biological 

replicates, each in technical duplicate, error bars represent standard deviation. Significance calculated 
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using 1-way ANOVA with Dunnett’s multiple comparison test, **p = 0.001, *p = 0.018. (G) Quantification 

of attachment efficiency in the RAPA-treated cWT, iKO and cMut lines. Figure shows the average of 

three biological replicates, each in technical duplicate, error bars represent standard deviation. 

Significance calculated using 1-way ANOVA with Dunnett’s multiple comparison test, **p = 0.004, ns = 

not significant. See also Figure S6. 

 

Discussion 

Our understanding of myristoylation and its functional consequences in Toxoplasma is hampered by 

the limited knowledge of NMT substrates. Utilizing an MS-approach which allows for increased target 

coverage and provides direct evidence for target modification, we describe here the first experimentally 

validated myristoylated proteome in T. gondii. Despite the complex nature of our samples, consisting 

of both human and parasite proteins, our discovery includes all proteins previously reported to be 

myristoylated in Toxoplasma as well as novel TgNMT substrates. The fact that these proteins are 

functionally diverse, and involved in all steps of the lytic cycle highlights the importance of myristoylation 

in Toxoplasma biology. In light of this, we predict that NMT inhibition would exert severe pleiotropic 

effects on the Toxoplasma lytic cycle. Although potent and selective TgNMT inhibitors are yet to be 

reported, extensive work in other protozoan parasites (Schlott et al., 2019; Wright et al., 2014; Wright 

et al., 2016; Wright et al., 2015) demonstrates that selective NMT inhibition could provide an attractive 

strategy to combat infection. 

Despite the frequent coincidence of myristoylation with palmitoylation, our target pool overlapped only 

moderately with published palmitoylome datasets (Caballero et al., 2016; Foe et al., 2015).  A lack of 

cysteine enrichment within the 20 N-terminal residues of half our targets indicates they may be 

myristoylated only, suggesting that their myristoylation can serve more discrete functions than just a 

priming site for the palmitate. Such alternate functions could include reversible membrane binding by 

the conformation regulated exposure of the myristate as shown for mammalian ARF1 (Goldberg, 1998) 

or involvement in PPIs, as demonstrated for the picornavirus capsid assembly (Chow et al., 1987). To 

further investigate the importance of myristoylation in Toxoplasma and validate our study, we selected 

two targets, CDPK1 and MIC7, for analysis. 

We have shown that CDPK1 is myristoylated, and that this modification subtly regulates its localization. 

Contrary to previous reports, which described the protein as cytosolic or even nuclear (Ojo et al., 2010; 

Pomel et al., 2008), our findings indicate that myristoylated CDPK1 is associated with structures that 

can be fractionated from the cytoplasmic protein pool by differential centrifugation. We predict that these 

are membranous structures, visualised as puncta within the cytoplasm, but cannot exclude the 

possibility that they are protein complexes. Irrespective of their nature, their association with CDPK1 is 

lost upon removal of myristoylation. This phenomenon could have major impact on the CDPK1’s ability 

to access its targets and it would be interesting to test in the future whether there are subsets of CDPK1 

substrates that depend on its myristoylation state. The elegant use of engineered parasites to identify 

direct targets of CDPK1 (Lourido et al., 2013) may allow such analysis.  
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CDPK1 has been shown to be essential for Toxoplasma fitness, including egress (Lourido et al., 2010). 

The importance of CDPK1 in these processes was also confirmed here. Mutating the myristoylation 

site, however, had only a modest effect in ionophore-induced egress assays, while in plaque assays 

this modification appears very important. It is possible that myristoylation of CDPK1 could be required 

for processes that are not egress related, e.g. host cell invasion. In line with that, a function of CDPK1 

to control the actomyosin system and extrusion of the conoid was recently suggested (Tosetti et al., 

2019). Alternatively, the forced nature of induced egress could lead to compensatory effects, potentially 

by other kinases. The plausible candidates could be CDPK3 (Treeck et al., 2014), PKG (Brown et al., 

2017), or CDPK2a, which we found robustly YnMyr-enriched in all our experiments, but since it lacks 

the N-terminal MG motif, it was excluded from our high confidence dataset.  

Microneme proteins are key factors in Toxoplasma propagation, as they are involved in parasite egress, 

motility and host cell invasion (Soldati et al., 2001). Here we show that MIC7 is indeed an important 

protein required for completion of the lytic cycle. How MIC7 functions in this process requires further 

work, but our data indicate that attachment and invasion of host cells are severely impacted upon its 

deletion. As is the case for all known microneme proteins, also MIC7 was reported to possess a signal 

peptide (Meissner et al., 2002). Here we show that the presence of a signal sequence within MIC7 is 

unlikely, instead the protein is N-terminally myristoylated. The fact that myristoylation is not required for 

sorting MIC7 to the micronemes and appears to be important in invasion of host cells opens up many 

questions regarding the precise function of this modification at the MIC7 N-terminus. While it is known 

that proteins can be sorted to secretory pathway by virtue of recessed signal or leader peptides, this 

has not been reported for microneme proteins. If the myristate is not important for trafficking, it could 

facilitate PPIs with other microneme proteins. It is also plausible that the myristate could contribute to 

invasion through direct insertion into the host cell membrane. While the experimental evidence for these 

hypotheses is still pending, it has been shown that certain viruses can use myristoylation to promote 

PPIs required for capsid assembly (Simons et al., 1993) as well as to enter host cells (Maurer-Stroh 

and Eisenhaber, 2004). Interestingly, blast analysis of the MIC7 sequence against the Toxoplasma 

proteome identifies a paralogue in bradyzoites (TGME49_315520). This protein also contains an MG 

motif, a predicted transmembrane domain with a short cytoplasmic tail and no predicted signal peptide, 

hinting at the presence of a stage-specific MIC7-like invasion ligand, as has been observed for AMA1 

(Lamarque et al., 2014).  

In conclusion, we have performed the first high throughput screening of protein myristoylation in 

Toxoplasma gondii providing a useful resource of experimentally validated myristoylated as well as 

GPI-anchored proteins. Furthermore, we have shown the functional relevance of myristoylation, that is 

unrelated to priming for palmitoylation, on two proteins important in Toxoplasma lytic cycle. This 

demonstrates how our discovery can serve as a tool in target-specific investigations that can ultimately 

help to unravel the exciting biology of the parasite.  
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Materials and Methods  

General 

Reagents: CuSO4, TCEP, TBTA, buffer salts, DTT, iodoacetamide, DMSO, BSA, Triton-X100 and 

Tween-20 were from Sigma Aldrich. Azide-PEG3-biotin was from Sigma Aldrich. Peptide synthesis 

coupling reagents HATU and HCTU were from Fluorochem and Merck, respectively. MS-grade water, 

acetonitrile, methanol, TFA and formic acid were from Thermo Scientific.  

 

Plasmid generation 

Primers used throughout this study are listed in Table S5. Plasmid sequences were confirmed by 

Sanger sequencing (Eurofins Genomics). 

To generate the Mic7 iKO plasmid, pG140_MIC7_HA_iKO_loxP100, the Mic7 5’UTR with a loxP site 

inserted 100 bp upstream of the Mic7 start codon, and a recodonised Mic7 cDNA-HA sequence, were 

synthesized (GeneArt strings, Life Technologies). These DNA fragments were Gibson cloned into the 

ApaI/PacI digested parental vector p5RT70loxPKillerRedloxPYFP-HX (Andenmatten et al., 2013) to 

generate an intermediate plasmid. The Mic7 3’UTR was subsequently amplified from genomic DNA 

using primers 1 and 2, while mCherry flanked by Gra gene UTRs was amplified from pTKO2C (Caffaro 

et al., 2013) using primer pair 3/4. The resulting fragments were Gibson cloned into the SacI-digested 

intermediate plasmid to generate pG140_MIC7_HA_iKO_loxP100.  

To generate the complementation construct pUPRT_MIC7_Ty1, the Mic7 sequence flanked by its 

5’UTR was amplified from genomic DNA using primer pair 5/6.  In parallel, the Uprt targeting vector 

pUPRT_HA (Reese et al., 2011) was amplified by inverse PCR using primers 7 and 8. The resulting 
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PCR amplicons were Gibson cloned to generate pUPRT_MIC7_Ty1. Primers 5 and 8 comprise 

overhangs to facilitate introduction of a Ty1 tag 3’ of the Mic7 sequence. 

To generate the complementation construct pUPRT_MIC7(G2K/G3A)_Ty1, the Mic7 5’UTR and Mic7 

endogenous sequence were amplified using primer pairs 9/10 and 5/11, respectively. In parallel, the 

Uprt targeting vector pUPRT_HA (Reese et al., 2011) was amplified by inverse PCR using primers 7 

and 8. The resulting PCR amplicons were Gibson cloned to generate pUPRT_MIC7(G2K/G3A) _Ty1. 

Primers 9 and 11 comprise overhangs that introduce point mutations G2K and G3A, while primers 5 

and 8 introduce a Ty1 tag 3’ of the Mic7 sequence. 

To generate pSag1_Cas9-U6_sgMIC7, the pSag1_Cas9-U6_sgUPRT ((Shen et al., 2014); Addgene 

plasmid # 54467) vector was amplified by inverse PCR using primers 12 and 13. Primer 13 comprises 

a sequence extension that replaces the Uprt-targeting sgRNA with a sgRNA sequence targeting Mic7. 

The resulting linear fragment was circularized using KLD reaction buffer (NEB) as per manufacturer’s 

instructions. 

To generate pGra_5’UTRMIC7_MIC7_HA, the 5’UTR of Mic7 was amplified from gDNA using primer 

pair 53/54, and recodonised Mic7 sequence was amplified from pG140_MIC7_HA_iKO_loxP100 using 

primers 55 and 56. In parallel, the vector pGra_ApiAT5-3_HA (Wallbank et al., 2019) was amplified by 

inverse PCR using primer pair 57/58. The 3 resulting PCR amplicons were Gibson assembled to 

generate pGra_5’UTRMIC7_MIC7_HA. 

To generate pGra_5’UTRMIC7_MIC7(G2K/G3A) _HA, the 5’UTR of Mic7 was amplified from gDNA 

using primer pair 53/54, and recodonised Mic7(G2K/G3A) sequence was amplified from 

pG140_MIC7_HA_iKO_loxP100 using primers 59 and 56. Primer 59 was used to introduce the point 

mutations G2K and G3A into the Mic7 recodonised sequence. In parallel, the vector pGra_ApiAT5-

3_HA (Wallbank et al., 2019) was amplified by inverse PCR using primer pair 57/58. The 3 resulting 

PCR amplicons were Gibson assembled to generate pGra_5’UTRMIC7_MIC7(G2K/G3A)_HA. 

To generate pGra_5’UTRTUB_MIC7 _HA, the Tub 5’UTR was amplified from gDNA using primer pair 

60/61, and recodonised Mic7 sequence was amplified from pG140_MIC7_HA_iKO_loxP100 using 

primers 62 and 56. In parallel, the vector pGra_ApiAT5-3_HA (Wallbank et al., 2019) sequence was 

amplified by inverse PCR using primer pair 57/63. The 3 resulting PCR amplicons were Gibson 

assembled to generate pGra_5’UTRTUB_MIC7 _HA. 

To generate pGra_5’UTRTUB_MIC7(G2K/G3A)_HA, the Tub 5’UTR was amplified from gDNA using 

primer pair 60/61, and recodonised Mic7(G2K/G3A) sequence was amplified from 

pG140_MIC7_HA_iKO_loxP100 using primers 64 and 56. Primer 64 was used to introduce the point 

mutations G2K and G3A into the Mic7 recodonised sequence. In parallel, the vector pGra_ApiAT5-

3_HA (Wallbank et al., 2019) was amplified by inverse PCR using primer pair 57/63. The 3 resulting 

PCR amplicons were Gibson assembled to generate pGra_5’UTRTUB_MIC7(G2K/G3A) _HA. 
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To generate pTUB1_YFP_mAID_Myc, the pTUB1_YFP_mAID_3HA ((Brown et al., 2017); Addgene 

plasmid #87259) vector was amplified by inverse PCR using primer pair 14/15 to substitute the 3HA tag 

sequence for a Myc tag encoding sequence. The resulting linear fragment was circularized using KLD 

reaction buffer (NEB) as per manufacturer’s instructions. 

To generate pSag1_Cas9-U6_sg3’UTRCDPK1, the pSag1_Cas9-U6_sgUPRT ((Shen et al., 2014); 

Addgene plasmid # 54467) vector was amplified by inverse PCR using primers 12 and 16. Primer 16 

comprises a sequence extension that replaces the Uprt-targeting sgRNA with a sgRNA sequence 

targeting the 3’UTR of CDPK1. The resulting linear fragment was circularized using KLD reaction buffer 

(NEB) as per manufacturer’s instructions. 

To generate the complementation construct pUPRT_CDPK1_ HA_T2A_GFP, the CDPK1 5’UTR was 

amplified from genomic DNA using primer pair 17/18. In parallel, recodonised CDPK1 cDNA-HA 

sequence was synthesised (GeneArt strings, Life Technologies) and amplified with appropriate 

overhangs using primers 19 and 20. Sequence encoding T2A-GFP was amplified from an in-house 

unpublished plasmid using primer pair 21/22. The three resulting fragments were Gibson cloned into 

the PacI-linearised pUPRT_HA (Reese et al., 2011) vector.  

To generate the complementation construct pUPRT_CDPK1(G2A)_HA_T2A_mCherry, CDPK1 5’UTR 

was amplified from genomic DNA using primer pair 23/18. Recodonised CDPK1-HA was amplified from 

pUPRT_CDPK1_ HA_T2A_GFP with appropriate overhangs using primers 24 and 25. Primers 23 and 

25 were used to introduce a G2A point mutation within CDPK1. Sequence encoding T2A-mCherry was 

amplified from an in-house unpublished plasmid using primer pair 21/26. The three resulting PCR 

amplicons were Gibson cloned into the PacI-linearized pUPRT_HA (Reese et al., 2011) vector.  

Parasite strain generation  

Freshly harvested parasites were transfected by electroporation (1500 V) using the Gene Pulser Xcell 

system (Bio-Rad) as previously described (Soldati and Boothroyd, 1993). 

To generate the inducible MIC7 knock-out strain (RH DiCre∆ku80∆hxgprt_loxPMIC7_HA, referred to 

here as iKO MIC7), the plasmid pG140_MIC7_HA_iKO_loxP100 was linearized using PciI and co-

transfected with pSag1_Cas9-U6_sgMIC7 into the RH DiCre∆ku80∆hxgprt strain (Andenmatten et al., 

2013). Recombinant parasites were selected 24 h post transfection by addition of mycophenolic acid 

(MPA; 25µg/mL) and xanthine (XAN; 50 µg/mL) to culture medium. Resistant non-fluorescent parasites 

were cloned, and successful 5’ and 3’ integration at the Mic7 locus was confirmed using primer pairs 

27/28 and 29/30, respectively. Absence of the endogenous Mic7 locus was confirmed using primers 43 

and 44. Rapamycin-induced excision of the loxPMic7 sequence was confirmed using primer pair 45/46. 

To complement the iKO strain with MIC7-expressing constructs, pUPRT_MIC7_Ty1 and 

pUPRT_MIC7(G2K/G3A)_Ty1 plasmids were linearized with ScaI and individually co-transfected with 

pSAG1_Cas9-U6_sgUPRT. Transgenic parasites were subjected to 5'-fluo-2'-deoxyuridine (FUDR) 

selection (5 µM) 24 h post transfection. Resistant parasites were cloned, and successful 5’ and 3’ 
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integration was confirmed using primer pairs 31/32 and 33/34. Disruption of the endogenous Uprt locus 

was confirmed using primer pair 47/48. 

To generate lines that express WT and myristoylation mutant (G2K/G3A) MIC7 ectopically, plasmids 

pGra_5’UTRMIC7_MIC7_HA, pGra_5’UTRMIC7_MIC7(G2K/G3A)_HA, pGra_5’UTRTUB_MIC7_HA, 

and pGra_5’UTRTUB_MIC7(G2K/G3A)_HA were linearized using NotI and individually transfected into 

the RH ∆hxgprt strain. Recombinant parasites were selected 24 h post transfection by addition of 

mycophenolic acid (MPA; 25µg/mL) and xanthine (XAN; 50 µg/mL) to culture medium.  

To generate the inducible CDPK1 knock-down strain (RH TIR-1-3FLAG_CDPK1_mAID_Myc, referred 

to here as iKD CDPK1), the sequence encoding mAID_Myc_HXGPRT was PCR amplified from 

pTUB1_YFP_mAID_Myc using primer pair 35/36, and co-transfected into the RH TIR1-3FLAG (Brown 

et al., 2018) strain with pSag1_Cas9-U6_sg3’UTRCDPK1. Recombinant parasites were selected 24 h 

post transfection by addition of mycophenolic acid (MPA; 25µg/mL) and xanthine (XAN; 50 µg/mL) to 

culture medium. Lines were cloned, and successful 5’ and 3’ integration of the mAID_Myc_HXGPRT 

cassette was confirmed using primer pairs 37/38 and 39/40, respectively. Absence of WT was 

confirmed using primers 41 and 42. 

To complement iKD CDPK1 strain with CDPK1-expressing constructs, pUPRT_CDPK1_ HA_T2A_GFP 

and pUPRT_CDPK1(G2A)_HA_T2A_mCherry plasmids were linearized with AclI and individually co-

transfected with pSAG1_Cas9-U6_sgUPRT. Transgenic parasites were subjected to 5'-fluo-2'-

deoxyuridine (FUDR) selection (5 µM) 24 h post transfection. Resistant parasites were cloned and 

successful 5’ and 3’ integration of was confirmed using primer pairs 49/50 and 51/52, respectively. 

Disruption of the endogenous Uprt locus was confirmed using primer pair 47/48. 

Cell culture 

Parasites were cultured in Human foreskin fibroblasts (HFFs) monolayers in Dulbecco's Modified Eagle 

Medium (DMEM), GlutaMAX (Thermo Fisher) supplemented with 10% heat-inactivated foetal bovine 

serum (FBS; Life technologies), at 37°C and 5% CO2. All strains and host cell lines tested negative for 

the presence of mycoplasma. 

Metabolic tagging and cell lysis 

Upon infection of HFF monolayers the medium was removed and replaced by fresh culture media 

supplemented with 25 µM YnMyr (Iris Biotech) or Myr (Tokyo Chemical Industry). The parasites were 

then incubated for 16 h, washed with PBS (2x) and lysed on ice using a lysis buffer (PBS, 0.1% SDS, 

1% Triton X-100, EDTA-free complete protease inhibitor (Roche Diagnostics)). Lysates were kept on 

ice for 20 min and centrifuged at 17,000 × g for 20 min to remove insoluble material. Supernatants were 

collected and protein concentration was determined using a BCA protein assay kit (Pierce). 

Click reaction and pull down 

Lysates were thawed on ice. Proteins (100-300 µg) were taken and diluted to 1 mg/mL using the lysis 

buffer. A click mixture was prepared by adding reagents in the following order and by vortexing between 

the addition of each reagent: a capture reagent (stock solution 10 mM in water, final concentration 
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0.1 mM), CuSO4 (stock solution 50 mM in water, final concentration 1 mM), TCEP (stock solution 50 mM 

in water, final concentration 1 mM), TBTA (stock solution 10 mM in DMSO, final concentration 0.1 mM). 

Following the addition of the click mixture the samples were vortexed (room temperature, 1 h), and the 

reaction was stopped by addition of EDTA (final concentration 10 mM). Subsequently, proteins were 

precipitated (chloroform/methanol, 0.25:1, relative to the sample volume), the precipitates isolated by 

centrifugation (17,000 x g, 10 min), washed with methanol (1 x 400 µL) and air dried (10 min). The 

pellets were then resuspended (final concentration 1 mg/mL, PBS, 0.4 % SDS) and the precipitation 

step was repeated to remove excess of the capture reagent. Next, samples were added to 15 µL of pre-

washed (0.2 % SDS in PBS (3 x 500 µL)) Dynabeads® MyOne™ Streptavidin C1 (Invitrogen) and 

gently vortexed for 90 min. The supernatant was removed and the beads were washed with 0.2 % SDS 

in PBS (3 x 500 µL).  

 

SDS-PAGE, in gel fluorescence and Western blotting (WB) 

Beads were supplemented with 2% SDS in PBS (20 µL) and 4x SLB (Invitrogen), boiled (95°C, 10 min), 

centrifuged (1,000 x g, 2 min) and loaded on 10% or 4-20% SDS-PAGE gel (Bio-Rad). Following 

electrophoresis (60 min, 160V), gels were washed with water (3x). In-gel fluorescence was detected 

using a Pharos FX Plus Imager (Bio-Rad) and the protein loading was checked by Coomassie staining. 

For WB proteins were transferred (25 V, 1.3 A, 7 min) onto nitrocellulose membranes (Bio-Rad) using 

Bio-Rad Trans Blot Turbo Transfer system. After brief wash with PBS-T (PBS, 0.1% Tween-20) 

membranes were blocked (5% milk, TBS-T, 1h) and incubated with primary antibodies (5% milk, TBS-

T, overnight, 4°C) at the following dilutions: rat anti-HA (1:1000; Roche Diagnostics), mouse anti-Myc 

(1:1000; Millipore), mouse anti-Ty1 (1:2000; Thermo Fisher), rabbit anti-Gra29 (1:1000; Moritz Treeck 

Lab), rabbit anti-SFP1 (1:1000; Moritz Treeck Lab), mouse anti-Toxoplasma [TP3] (1:1000; Abcam), 

mouse anti-CDPK1 (1:3000; John Boothroyd Lab), rabbit anti-SAG1 (1:10,000; John Boothroyd Lab), 

rabbit anti-GAP45 (1:1000; Peter Bradley Lab), mouse anti-GFP (1:1000, Roche Diagnostics) and 

rabbit anti-mCherry (1:1000, Abcam). Following washing (TBS-T, 3x) membranes were incubated with 

IR dye-conjugated secondary antibodies (1:10,000, 5% milk, TBS-T, 1 h) and after a final washing step 

imaged on a LiCOR  Odyssey imaging system (LI-COR Biosciences). In case of biotin WB, membranes 

were blocked with 3% BSA and incubated with Streptavidin-HRP (1:4000; Thermo Scientific) in 0.3% 

BSA, PBS-T for 1 h. ECL Western Blotting Detection Reagent (GE Healthcare) was then used for 

chemiluminescence imaging on a ChemiDoc MP Imaging System (Bio-Rad). 

 

Synthesis of capture reagents 

TEV reagent: Solid phase synthesis took place on a CF peptide synthesizer (Intavis) using a Rink Amide 

LL resin (100 µmol; Merck) and N(α)-Fmoc amino acids, including Fmoc-Lys(N3)-OH (Fluorochem) and 

Fmoc-Gly-(Dmb)Gly-OH (Merck).  HCTU was used as the coupling reagent with 5-fold excess of amino 

acids. Fmoc-Lys(Biotin)-OH (4 eq; Merck) in 6 ml DMSO:NMP (1:1) was coupled manually after 

automated assembly of the rest of the chain. DIPEA (4 eq) was added, followed by HOBt (1 M, 4 eq) in 

NMP. After 3 min DIC (4 eq) was added, then after 30 min the solution was added to the resin and 

allowed to react overnight. The resin was washed with DCM and DMF prior to manual Fmoc removal 
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and acetylation. The peptide was cleaved from the resin and protecting groups removed by addition of 

a cleavage solution (95% TFA, 2.5% H2O, 2.5% TIS). After 2 h, the resin was removed by filtration and 

peptides were precipitated with diethyl ether on ice. The peptide was isolated by centrifugation, then 

dissolved in H2O and freeze dried overnight. After dissolving in methanol, portions of the peptide were 

purified on a C8 reverse phase HPLC column (Agilent PrepHT Zorbax 300SB-C8, 21.2x250 mm, 7 m) 

using a linear solvent gradient of 13-50% MeCN (0.08% TFA) in H2O (0.08% TFA) over 40 min at a flow 

rate of 8 mL/min. The peak fraction was analyzed by LC–MS on an Agilent 1100 LC-MSD. The 

calculated molecular weight of the peptide was in agreement with the mass found.  Calculated MW: 

1804.08, actual mass: 1803.87. 

Trypsin reagent: Solid phase synthesis took place on a CF peptide synthesizer (Intavis) using a Fmoc-

PEG-Biotin NovaTag TM resin (100 µmol; Merck), 2-Azidoacetic acid (Fluorochem) and N(α)-Fmoc 

amino acids, including Fmoc-Lys(MMT)-OH (Merck). HATU was used as the coupling reagent with 5-

fold excess of amino acids. Following chain assembly, the MMT protecting group was removed from 

the peptidyl-resin by treatment with 1% TFA in DCM (10 mL for 2 min x 8) and the resin washed with 

DCM and DMF. Next 5-TAMRA (4eq; Anaspec) was dissolved in 1 ml DMSO:NMP (1:1).  DIPEA (4 eq) 

was added, followed by HOBt (1 M, 4 eq) in NMP. After 3 min DIC (4 eq) was added, then after 30 min 

the solution was added to the resin and allowed to react overnight. After washing the resin with DMF 

and DCM, the peptide was cleaved from the resin and protecting groups removed by addition of a 

cleavage solution (95% TFA, 2.5% H2O, 2.5% TIS). After 2 h, the resin was removed by filtration and 

peptides were precipitated with diethyl ether on ice. The peptide was isolated by centrifugation, then 

dissolved in H2O and freeze dried overnight. After dissolving in MeCN:H2O (1:1), portions of the peptide 

were purified on a C8 reverse phase HPLC column (Agilent PrepHT Zorbax 300SB-C8, 21.2x250 mm, 

7 m) using a linear solvent gradient of 10-50% MeCN (0.08% TFA) in H2O (0.08% TFA) over 40 min at 

a flow rate of 8 mL/min. The peak fraction was analyzed by LC–MS on an Agilent 1100 LC-MSD. The 

calculated molecular weight of the peptide was in agreement with the mass found.  Calculated MW: 

1396.31, actual mass: 1395.60. 

Sample preparation for MS-based proteomics 

Click reaction - Reagent 1 and 2: lysates were thawed on ice and the click reaction was carried out with 

1 mg of proteins at 2 mg/mL. Proteins were captured by adding a mixture of respective capture reagent 

(final concentration 0.1 mM), CuSO4 (final concentration 1 mM), TCEP (final concentration 1 mM) and 

TBTA (final concentration 0.1 mM). The samples were vortex-mixed (room temperature, 1 h) before the 

addition of EDTA (final concentration 10 mM), methanol (4 volumes), chloroform (1 volume), and water 

(3 volumes). The samples were vortex-mixed briefly, centrifuged (10,000 × g, 20 min) and the resulting 

pellets were either washed with methanol (4 volumes) and dried (reagent 1) or resuspended (at 2 

mg/mL, 1% SDS in PBS) after which the precipitation step was repeated and the resulting pellets 

washed with methanol (4 volumes) and dried (reagent 2). Reagent 3: lysates were thawed on ice and 

the click reaction was carried out with 1 mg of proteins at 2 mg/mL. Proteins were captured by sequential 

addition of the capture reagent (final concentration 0.1 mM), TCEP (final concentration 1 mM), TBTA 

(stock in DMSO:t-Butanol 1:4, final concentration 0.1 mM) and CuSO4 (final concentration 1 mM) with 
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mixing between each step. The samples were incubated at room temperature for 1 h before the addition 

of EDTA (final concentration 10 mM), methanol (4 volumes), chloroform (1 volume), and water (3 

volumes). The samples were vortex-mixed briefly, centrifuged (10,000 × g, 20 min) and the resulting 

pellets were washed with methanol (4 volumes) and dried. Subsequently, the dried pellets were 

resuspended in 2% SDS in PBS and, once completely dissolved, PBS was added (final concentration 

0.8% SDS, 2 mg/mL). For samples treated with base, NaOH was added (final concentration 0.2 M, 1 

h) followed by neutralization with equivalent amount of HCl. Base treated and untreated samples were 

then diluted (1 mg/mL, 0.4% SDS, 100 mM DTT) before pull down.  

Pull down, reduction and alkylation - NeutrAvidin agarose resin (Thermo Scientific) was washed with 

0.2% SDS in PBS (3x). Typically, 50 µL of bead slurry was used for 1 mg of lysate. The samples were 

added to beads and the enrichment was carried out with gentle mixing (2 h, room temperature). 

Following the removal of supernatants, the beads were sequentially washed with 1% SDS in PBS (3x), 

4 M urea in PBS (2x) and 50 mM ammonium bicarbonate (3x). The samples were reduced (5 mM DTT, 

55°C, 30 min) and cysteines alkylated (10 mM iodoacetamide, room temperature, 30 min) in the dark 

with washing the beads (2x, 50 mM ammonium bicarbonate) after each step.  

Protein digestion - for samples processed with reagent 1 and 2 as well as for supernatants (proteomes) 

MS grade trypsin (Promega) was used at 1:1000 w/w protease:protein, and samples were incubated 

overnight at 37°C. For reagent 3 two digestion strategies were used. TEV I: beads were washed (2x) 

with water followed by TEV buffer (50 mM TrisHCl, 0.5 mM EDTA, 1 mM DTT, pH 8.0) and the TEV 

protease (50 units, Invitrogen) was added. Samples were incubated overnight at 30°C. Supernatant 

was then removed and beads washed with TEV buffer (1x, 50 µL). The wash fraction was combined 

with the supernatant and stored at 4°C. A fresh portion of TEV protease (20 units) was then added to 

beads which were incubated for additional 6 h at 30°C. The supernatant and wash were combined with 

the first TEV elution. MS grade Trypsin was subsequently added at 1:1000 w/w protease:protein, and 

samples were incubated overnight at 37°C. TEV II: samples were incubated overnight at 37 °C with MS 

grade Trypsin at 1:1000 w/w protease:protein. The supernatant was removed (fraction 1) and beads 

washed with water and TEV buffer (2x each). The TEV protease was then added (50 units) and beads 

incubated overnight at 30°C (fraction 2). 

Stage tip - samples were desalted prior to LC-MS/MS using Empore C18 discs (3M). Each stage tip 

was packed with one C18 disc, conditioned with 100 µL of 100% methanol, followed by 200 µL of 1% 

TFA. The samples were loaded in 1% TFA, washed 3 times with 200 µL of 1% TFA and eluted with 50 

µL of 50% acetonitrile, 5% TFA.  Desalted peptides were vacuum dried in preparation for LC-MS/MS 

analysis. 

LC-MS/MS 

Samples were resuspended in 0.1% TFA and loaded on a 50 cm Easy Spray PepMap column (75 μm 

inner diameter, 2 μm particle size, Thermo Fisher Scientific) equipped with an integrated electrospray 

emitter. Reverse phase chromatography was performed using the RSLC nano U3000 (Thermo Fisher 

Scientific) with a binary buffer system (solvent A: 0.1% formic acid, 5% DMSO; solvent B: 80% 
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acetonitrile, 0.1% formic acid, 5% DMSO) at a flow rate of 250 nL/min. Samples processed with reagent 

1 were run on a linear gradient of 2-35% in 90 min with a total run time of 120 min including column 

conditioning. Samples processed with reagents 2 and 3 were run on a linear gradient of 2-40% B or 2-

55% B (TEV II myristoylated peptide fraction) in 155 min with a total run time of 180 min including 

column conditioning. The nanoLC was coupled to a QExactive mass spectrometer using an EasySpray 

nano source (Thermo Fisher Scientific). The Q-Exactive was operated in data-dependent mode, 

acquiring HCD MS/MS scans (R=17,500) after an MS1 survey scan (R=70, 000) on the 10 most 

abundant ions using MS1 target of 1E6 ions, and MS2 target of 5E4 ions. The maximum ion injection 

time utilized for MS2 scans was 120 ms, the HCD normalized collision energy was set at 28 and the 

dynamic exclusion was set at 30 seconds. The peptide match and isotope exclusion functions were 

enabled. 

 

Data analysis 

Acquired raw files were processed with MaxQuant, version 1.5.2.8 (Cox and Mann, 2008) and peptides 

were identified from the MS/MS spectra searched against Toxoplasma gondii (ToxoDB) and Homo 

sapiens (UniProt) proteomes using Andromeda (Cox et al., 2011) search engine. Cysteine 

carbamidomethylation was selected as a fixed modification and methionine oxidation was selected as 

a variable modification. The enzyme specificity was set to trypsin with a maximum of 2 missed 

cleavages. The precursor mass tolerance was set to 20 ppm for the first search (used for mass re-

calibration) and to 4.5 ppm for the main search. The datasets were filtered on posterior error probability 

(PEP) to achieve a 1% false discovery rate on protein, peptide and site level. Other parameters were 

used as pre-set in the software. “Unique and razor peptides” mode was selected to allow identification 

and quantification of proteins in groups (razor peptides are uniquely assigned to protein groups and not 

to individual proteins). Label-free quantification (LFQ) in MaxQuant was performed using a built-in label-

free quantification algorithm (Cox and Mann, 2008) enabling the ‘Match between runs’ option (time 

window 0.7 minutes) within replicates. Each experiment comprised of replicates treated with YnMyr and 

the same number of replicates treated with Myr control. The LFQ is based on intensities of proteins 

calculated by MaxQuant from peak intensities and based on the ion currents carried by peptides whose 

sequences match a specific protein or a protein group to provide an approximation of abundance. 

Myristoylated peptide search in MaxQuant was performed as described above applying the following 

variable modifications: cysteine carbamidomethylation, +463.2907 (reagent 2) and +491.3220 (reagent 

3) at any peptide N-terminus and cysteine residues. In addition, the minimum peptide length was 

reduced to 6 amino acids and the ‘Match between runs’ option was disabled. MaxQuant utilizes a 

scoring algorithm when matching experimental MS/MS spectra with a library of theoretical spectra 

generated from the in silico digestion of proteins within databases selected for the search. The algorithm 

is used to evaluate the quality of peptide-spectrum matches (PSMs). To each PSM, MaxQuant also 

attributes a delta score, which is a difference between scores associated with the match to the best 

peptide candidate and the second best match within the database. The higher the score and the delta 

score, the more reliable the identification. In order to reduce a possibility for a false peptide sequence 
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assignment even further, we applied relatively high delta score thresholds (20 vs 6 pre-set as default) 

for all myristoylated peptides in our analysis. 

MaxQuant output files were processed with Perseus, version 1.5.0.9 (Tyanova et al., 2016) as 

described in the Results section and in Tables S1-S4. 

Depletion of mAID tagged CDPK1 

Parasites were treated with 500 µM IAA or an equivalent volume of vehicle (ethanol) for at least 2 h 

prior to WB analysis. 

 

Depletion of Mic7 

Parasites were treated with 50 nM rapamycin or an equivalent volume of vehicle (DMSO) for 4 h. The 

media was then replaced and the parasites allowed to grow for at least 24 h prior to PCR and WB 

analysis. 

 

Plaque formation 

CDPK1 lines: Parasites were harvested by syringe lysis, counted, and 200 parasites were seeded on 

confluent HFF monolayers grown in 24-well plates (Falcon). Wells were treated with 500 µM IAA or 

vehicle (ethanol) and plaques were allowed to form for 5 days. MIC7 lines: Parasites were harvested 

by syringe lysis, counted, and 400 parasites were seeded on confluent HFF monolayers grown in 24-

well plates (Falcon). Parasites were allowed to invade overnight prior to treatment with 50 nM rapamycin 

or vehicle (DMSO) for 4 h. Following media replacement to standard culture media, plaques were 

allowed to form for 5 days. iKO MIC7 line: Parasites were harvested by syringe lysis, counted, and 100 

parasites were seeded on confluent HFF monolayers grown in 24-well plates (Falcon). Parasites were 

allowed to invade overnight prior to treatment with vehicle (DMSO) for 4 h. Following media replacement 

to standard culture media, plaques were allowed to form for 7 days. Plaque formation was assessed by 

inspecting the methanol fixed and 0.1% crystal violet stained HFF monolayers. 

 

Fractionation 

RH ∆ku80∆hxgprt YFP expressing parasites were metabolically tagged with 25 µM Myr or YnMyr for 

16 h.  Following a PBS wash, the parasites were syringe lysed in Endo buffer (44.7 mM K2SO4, 10 mM 

MgSO4, 106 mM sucrose, 5 mM glucose, 20 mM Tris–H2SO4, 3.5 mg/ml BSA, pH 8.2) and collected by 

centrifugation (512 x g, 10 min). The parasites were then lysed in 300 µL of cold hypotonic buffer (10 

mM HEPES, pH 7.5) supplemented with protease inhibitors (Roche), passed through 25G needle (5x) 

and left on ice for 40 min. Next, lysates were pelleted by centrifugation (16,000 x g, 20 min, 4 °C) and 

the resulting cytosolic fraction was subjected to an additional high speed (100,000 x g, 1 h, 4 °C) 

centrifugation step. To avoid the loss of the high speed pellet, only half of the cytosolic fraction was 

removed at this point. Each fraction was then taken up in 0.4% (final) SDS HEPES, clicked to a capture 

reagent and pulled down as described above. Myristoylation-dependent partitioning was revealed by 

SDS-PAGE and Western blotting.  
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Myristoylation-dependent fractionation for CDPK1 complemented WT and Mut lines: parasites were 

seeded 24 h prior experiment. Following a PBS wash, the parasites were syringe lysed in Endo buffer 

(44.7 mM K2SO4, 10 mM MgSO4, 106 mM sucrose, 5 mM glucose, 20 mM Tris–H2SO4, 3.5 mg/ml BSA, 

pH 8.2) and collected by centrifugation (512 x g, 10 min). The parasites were then lysed in 300 µL of 

cold hypotonic buffer (10 mM HEPES, pH 7.5) supplemented with protease inhibitors (Roche), passed 

through 25G needle (5x) and left on ice for 40 min. Next, lysates were pelleted by centrifugation 

(100,000 x g, 1h, 4 °C), the cytosolic fraction removed and cytosolic proteins precipitated with 

methanol/chloroform. Both pellet and cytosolic fractions were dissolved in 2% (final) SDS PBS and 

myristoylation-dependent partitioning was revealed by SDS-PAGE and Western blotting. 

 

Egress Assay 

Parasites were added to HFF monolayer and grown for 24 h in a 96 well µplate. The wells were then 

treated with 500 µM IAA or an equivalent volume of vehicle (ethanol) for 2 h and then washed with PBS 

(2x). The media was exchanged for 100 µl Ringers solution (155 mM NaCl, 3 mM KCl, 2 mM CaCl2, 1 

mM MgCl2, 3 mM NaH2PO4, 10 mM HEPES, 10 mM glucose) and the plate was placed on a heating 

block to maintain the temperature at 37°C. To artificially induce egress, 50 µl of Ringer’s solution 

containing 24 µM ionophore (8 µM final, Thermo) was added to each well. At specified time points the 

cells were fixed by adding 33 µl 16% formaldehyde (3% final) for 15 min. Cells were washed in PBS 

(3x) and stained with rabbit anti-TgCAP 1:2000 (Hunt et al., bioRxiv) followed by goat anti-rabbit Alexa 

Fluor 488 (1:2000) and DAPI (5 µg/ml). Automated image acquisition of 25 fields per well was performed 

on a Cellomics Array Scan VTI HCS reader (Thermo Scientific) using a 20x objective. Image analysis 

was performed using the Compartmental Analysis BioApplication on HCS Studio (Thermo Scientific). 

Egress levels were determined in triplicate for three independent assays. Vacuole counts 

were normalized to t = 0 to determine how many intact vacuoles had remained after egress. The results 

were statistically tested using one-way ANOVA with Tukey’s multiple comparison test in GraphPad 

Prism® 7. The data are presented as mean ± s.d. 

 

Invasion assay 

Parasites were treated with 50 nM rapamycin for 4 h and after replacing the media allowed to grow for 

24 h. Red/green invasion assays were then performed. Parasites were lysed in an invasion non-

permissive buffer, Endo buffer (44.7 mM K2SO4, 10 mM MgSO4, 106 mM sucrose, 5 mM glucose, 20 

mM Tris–H2SO4, 3.5 mg/ml BSA, pH 8.2). 250 µl of 8x105 parasites/ml in Endo buffer were added to 

each well of a 24-well flat-bottom plate (Falcon) containing a coverslip with a confluent HFF monolayer. 

The plates were spun at 129 x g for 1 min at 37 C to deposit parasites onto the monolayer. The Endo 

buffer was gently removed and replaced with invasion permissive medium (1% FBS/DMEM). Parasites 

were allowed to invade for 15 min at 37 C, after which the monolayer was gently washed with PBS and 

fixed with 3% formaldehyde for 15 min at room temperature. Extracellular (attached) parasites were 

stained with mouse anti-Toxoplasma [TP3] (Abcam) 1:1000 and goat anti-mouse Alexa Fluor 488 

before permeabilization (0.2% Triton X-100/PBS) and detection of intracellular (invaded) parasites with 

rabbit anti-TgCAP 1:2000 (Hunt et al., bioRxiv) and goat anti-rabbit Alexa Fluor 594. For each replicate, 
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at least 5 random fields were imaged with a 40x objective. Three independent experiments were 

performed in duplicate. The number of intracellular (594+/488-) and extracellular (594+/488+) parasites 

was determined by counting, in a blinded fashion, at least 275 parasites per strain. The parasite counts 

in the MIC7 iKO and cMut lines were normalized to the cWT, and results were statistically tested with a 

one-way ANOVA with Dunnett’s multiple comparison test in GraphPad Prism® 7. The data are 

presented as mean  s.d. For estimation of the parasite attachment efficiency, the number of all (594+) 

parasites was used and the results were statistically tested as above.  

 

Immunofluorescence analysis 

Parasite-infected HFF monolayers grown on glass coverslips were fixed with 3% formaldehyde for 15 

min prior to washing with PBS. Fixed cells were then permeabilised (PBS, 0.1% Triton X-100, 10 min), 

blocked (3% BSA in PBS, 1 h) and labeled with primary antibodies at the following dilutions: rat anti-HA 

(1:1000; Roche), mouse anti-Myc (1:1000; Millipore), mouse anti-Ty1 (1:500; Thermo Fisher), rabbit 

anti-MIC2 (1:5000; Vernon Carruthers Lab). Labeled proteins were visualized with Alexa Fluor-

conjugated secondary goat antibodies (1:2000, Life Technologies). Nuclei were visualized with the DNA 

stain (DAPI; Sigma) added at 5 µg/ml with the secondary antibody. Stained coverslips were mounted 

on glass slides with Slowfade (Life Technologies) and imaged on a Nikon Eclipse Ti-U inverted 

fluorescent microscope using 100x oil objective. Images were analysed using Nikon NIS-Elements 

imaging software. 

 

MIC7 expression in tachyzoites and bradyzoites 

HFF monolayers were infected with Pru ∆hxgprt parasites in triplicate. For tachyzoite samples an MOI 

of 1 was used for a 27 h infection. For bradyzoite samples monolayers were infected at an MOI of 0.8 

for 3.5 h, washed and grown in switch conditions (RPMI, 1% FBS, pH 8.1, ambient CO2) for 3 days. 

Triplicate samples were lysed in 2 mL ice cold lysis buffer (50 mM Tris-HCl, 75 mM NaCl, 8 M Urea pH 

8.2), supplemented with protease (Roche Diagnostics) and phosphatase (Phos Stop, Roche 

Diagnostics) inhibitors. Lysis was followed by sonication to reduce sample viscosity (30% duty cycle, 3 

x 30 seconds bursts, on ice). Protein concentration was measured using a BCA protein assay kit 

(Thermo Fisher Scientific). Lysates (1 mg per condition) were subsequently processed for mass 

spectrometry as described (Yang et al., 2019) and data analysis performed as explained in Table S4. 
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Supplemental figure titles and legends 

 

Figure S1, related to Figure 1. Metabolic tagging optimization. (A) In gel fluorescence imaging of 

protein tagging with increasing concentrations of YnMyr over a 16 h period in RH parasites. (B) In gel 

fluorescence visualization of protein tagging with YnMyr in intracellular (IN) and extracellular (Ex) RH 

parasites as well as in uninfected human foreskin fibroblasts (HFFs). Parasite-specific bands are 

indicated by arrows. Tagging with YnMyr is outcompeted by excess myristate (50 µM = ++). (C) In gel 

fluorescence analysis of YnMyr-dependent pull down efficiency, Sup = supernatant after enrichment. 

All bottom panels show loading control by Coomassie staining. 
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Figure S2, related to Figure 2. Identification of the myristoylated proteome in T. gondii. (A) Label 

free quantification of YnMyr enrichment in base-treated vs untreated samples. Proteins with log2 fold 

change < -1 are assigned as base sensitive (YnMyr incorporation through ester bonds) and are 

highlighted in red. See also Table S1. (B) Label free quantification of change in total protein abundance 

between YnMyr and Myr samples. See also Table S1. (C) Evaluation of YnMyr-dependent enrichment 

efficiency for capture reagents used in this study. Visualization performed by Western blotting with α-

streptavidin HRP, SFP1 (TGGT1_289540) was used as loading control. (D) Venn diagram illustrating 

the overlap between myristoylated peptides identified with reagent 3 used in TEV I vs TEV II strategy. 

The number of peptides per strategy and in total is given in parenthesis.  (E) Sequence logo illustrating 

the amino acid distribution within the 20 N-terminal residues of all targets. Amino acids at each position 

(1-20) are ordered by the frequency of occurrence. Sequence logo was created using the build-in tool 
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within the Perseus software. (F) Venn diagram illustrating the overlap of the myristoylated proteome 

identified in this study with that of P. falciparum. 

 

 

 

Figure S3, related to Figure 3. Inducible knock-down of CDPK1. PCR analysis confirming correct 

integration of the mAID cassette at the C-terminus of endogenous cdpk1 in the iKD line. Primers are 

indicated by arrows. Red hexagon represents STOP codon. bp – base pairs.  

 

 

 

 

Figure S4, related to Figure 4. Complementation of the CDPK1 iKD line. (A) PCR analysis 

confirming correct integration of the complementation constructs encoding the WT and myristoylation 

mutant (Mut) copies of cdpk1 at the uprt locus of the iKD line. Primers are indicated by arrows. bp – 

base pairs. (B) Both complemented lines egress from host cells within 2 min post ionophore treatment 

in the absence of IAA. Intracellular parasites were treated with EtOH for 2 h and egress was initiated 

by addition of 8 µM A23187. The number of intact vacuoles was monitored over the course of 6 min. 

Each data point is an average of three biological replicates, each in technical triplicate, error bars 

represent standard deviation. 
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Figure S5, related to Figure 5. Inducible knock-out of MIC7. (A) PCR analysis confirming correct 

integration of the floxed and recodonized version of mic7 in the iKO line. Primers are indicated by 

arrows. Red hexagon represents STOP codon. bp – base pairs. (B) PCR analysis demonstrating that 

addition of rapamycin (RAPA) leads to correct excision of the floxed mic7. Primers are indicated by 

arrows. Red hexagon represents STOP codon. bp – base pairs. 
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Figure S6, related to Figure 6. Complementation of the MIC7 iKO line. A) PCR analysis confirming 

correct integration of the complementation constructs encoding the WT and myristoylation mutant (Mut) 

copies of mic7 at the uprt locus of the iKO line. Primers are indicated by arrows. bp – base pairs. (B) 

PCR analysis demonstrating that correct excision of the floxed mic7 upon addition of rapamycin (RAPA) 

is retained in the cWT and cMut lines. Primers are indicated by arrows. Red hexagon represents STOP 

codon. bp – base pairs. 

 

Supplemental table titles and legends 

Table S1, related to Figure 2 and Figure S2. Identification of base-dependent YnMyr enrichment 

in T. gondii. 

Sheet 1: Toxoplasma proteins with YnMyr intensities quantified irrespective of base treatment 

Sheet 2: Proteins with base-sensitive enrichment  

Sheet 3: MG proteins insensitive to base treatment and robustly enriched in a YnMyr-dependent manner 

with N3-biotin reagent (1) 

Sheet 4: Analysis of proteomes (supernatants post enrichment) 

Table S2, related to Figure 2 and Figure S2. Identification of myristoylated proteins and 

myristoylated peptides in T. gondii. 

Sheet 1: Toxoplasma proteins bearing the MG myristoylation motif 

Sheet 2: Targets significantly enriched with Trypsin reagent (2) 

Sheet 3: Targets selected based on fold change in YnMyr/Myr enrichment with TEV reagent (3) 

Sheet 4: Myristoylated peptides found with Trypsin reagent (2) 

Sheet 5: Myristoylated peptides found with TEV reagent (3) 

 
Table S3, related to Figure 2 and Figure S2.  Myristoylated proteome of T. gondii. 
 
Sheet 1: Target annotation 
Sheet 2: Myristoylated proteins in P. falciparum and their orthologs in Toxoplasma 
Sheet 3: Target orthologs in P. falciparum 
 
Table S4, related to Figure 5. MIC7 expression in tachyzoites and bradyzoites. 

Table S5. Primers used for plasmid and parasite strain generation. 
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