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Abstract  

Background 

The accuracy of gene expression as measured by RNA sequencing (RNA-Seq) is dependent on 

the amount of sequencing performed. However, some types of reads are not informative for 

determining this accuracy. Unmapped and non-exonic reads do not contribute to gene 

expression quantification. Duplicate reads can be the product of high gene expression or 

technical errors.  

Findings 

We surveyed bulk RNA-Seq datasets from 2179 tumors in 48 cohorts to determine the fractions 

of uninformative reads. Total sequence depth was 0.2-668 million reads (median (med.) 61 
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million; interquartile range (IQR) 53 million). Unmapped reads constitute 1-77% of all reads 

(med. 3%; IQR 3%); duplicate reads constitute 3-100% of mapped reads (med. 27%; IQR 30%); 

and non-exonic reads constitute 4-97% of mapped, non-duplicate reads (med. 25%; IQR 21%). 

Informative reads--Mapped, Exonic, Non-duplicate (MEND) reads--constitute 0-79% of total 

reads (med. 50%; IQR 31%). Further, we find that MEND read counts have a 0.22 Pearson 

correlation to the number of genes expressed above 1 Transcript Per Million, while total reads 

have a correlation of -0.05. 

Conclusions 

Since the fraction of uninformative reads vary, we propose using only definitively informative 

reads, MEND reads, for the purposes of asserting the accuracy of gene expression measured in 

a bulk RNA-Seq experiment. We provide a Docker image containing 1) the existing required 

tools (RSeQC, sambamba and samblaster) and 2) a custom script. We recommend that all 

results, sensitivity studies and depth recommendations use MEND units. 

 

Keywords 

RNA-Seq "sequencing depth" duplicate unmapped exonic quality 
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Background 

Assessing the accuracy and reproducibility of gene expression results obtained from the 

analysis of RNA-Seq data has been a priority since the development of the assay. Seminal 

studies showed the relationship between the amount of sequence data generated during an 

experiment (depth of sequencing) and the reproducibility of the resulting gene expression 

measurements ​[1,2]​. However, RNA-Seq data is not homogenous. Of the tens of millions of 

sequences (reads) in a typical RNA-Seq dataset (the data generated from one biological 

sample), some reads cannot be mapped back to the reference transcriptome. Others map to 

genome regions outside of exons or have been duplicated during the library construction 

process or sequencing. Nearly all methods for quantifying gene expression in bulk RNA-Seq 

data count reads that align to exons in a gene; thus, unmapped and non-exonic reads do not 

contribute to measurements and are uninformative regarding the accuracy of the experiment 

[3,4]​. ​Therefore, considering the total number of reads as a proxy for RNA-Seq gene expression 

accuracy can result in inflated accuracy estimates. 

 

Duplicate reads may be due to either highly abundant transcripts or technical error. The process 

of preparing RNA-Seq libraries involves PCR amplification. This step can generate duplicated 

identical or nearly identical reads. While the original read represents gene expression in the 

experimental system, the artifactual duplicate reads do not. However, duplicate reads are also 

generated by very highly expressed genes since each gene has a finite number of unique read 

sequences that can be generated from it ​[5]​. 
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Here we analyze 2179 bulk, paired end, polyA-selected RNA-Seq datasets to characterize the 

read types present in the datasets and evaluate what fraction of commonly reported data is 

unequivocally relevant to the accuracy of gene expression measurements. We compare the 

correlation of total reads and MEND reads to the number of measured genes.  

 

Methods 

MEND read counting method 

Quantification of Mapped, Exonic, Non-Duplicate (MEND) reads was previously described ​[6]​. 

Briefly, input is a genome-aligned bam file containing RNA-Seq read data. Duplicates are 

marked with Samblaster v0.1.22 ​[7]​, and the RSeQC v2.7.10 ​[8]​ script read_distribution.py 

quantifies exonic read and tag counts, excluding QC fail and duplicate reads as well as 

secondary alignments. The script parseReadDist.R, which we wrote, estimates the number of 

MEND reads based on RSeQC output by summing the tag counts in CDS exons, 5' UTR exons 

and 3' UTR exons and multiplying by reads per tag. Since a pair of reads provides information 

about two nearby sequences in a single transcript, read counts are reported in pairs. For 

example, 20 reads means that there are 20 pairs of reads. The process for estimating MEND 

read counts is available as a stand-alone docker image ​[9]​ and can be executed on CodeOcean 

[10]​. The source code is freely available on GitHub ​[11]​. 
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Data description 

Here we discuss 2179 publicly available, bulk RNA-Seq datasets we gathered for the RNA-Seq 

compendium ​[12]​ used for comparative single-patient analysis ​[6]​. Accession numbers, clinical 

data and read counts for each dataset are in Table S1. Repositories and cohort information is 

aggregated in Tables S2 and S3.  

 

Of the 2179 datasets, 2018 were from pediatric/adolescent/young adult cancer tumors, 66 were 

from adult cancer tumors, and 95 were from cancer tumors of individuals with unknown ages, 

where adults are defined as being over 30 years of age. Of the 1692 datasets with reported 

gender of the patient, 42% were female and 58% were male. Of the 602 datasets with reported 

race of the patient, 27 patients were Asian, 70 were Black/African American, 3 were Native 

Hawaiian or Other Pacific Islander, 494 were White and 7 were Other without further definition. 

None were American Indian or Alaskan Native. Of 861 datasets with reported results of the 

patient's Hispanic or Latino identity, 128 were Hispanic or Latino. The source tumors represent 

a variety of hematologic and solid malignancies (Table 1).  

 

Table 1: Diseases present in studied datasets 

Disease n percent 

Acute lymphoblastic leukemia 680 31.2% 

Acute myeloid leukemia 221 10.1% 

Medulloblastoma 201 9.2% 

Glioma 193 8.9% 
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Osteosarcoma 157 7.2% 

Acute megakaryoblastic leukemia 103 4.7% 

Ependymoma 98 4.5% 

Ewing sarcoma 70 3.2% 

Rhabdoid tumor 65 3.0% 

Rhabdomyosarcoma 53 2.4% 

Lymphoma 49 2.2% 

Embryonal rhabdomyosarcoma 42 1.9% 

Alveolar rhabdomyosarcoma 40 1.8% 

Glioblastoma multiforme 29 1.3% 

Choroid plexus carcinoma 25 1.1% 

Synovial sarcoma 22 1.0% 

Other 131 6.0% 

 

The datasets came from five repositories (Table S2). Each was assigned to a cohort based on 

1) project accession (for EGA and SRA datasets), 2) disease sub-study for NCI Therapeutically 

Applicable Research to Generate Effective Treatments (TARGET), or 3) disease for datasets in 

the St Jude Cloud. Cohorts were assigned IDs in descending order of size. Cohort assignments 

were intended to approximate a typical sequencing project performed by one research group at 

one sequencing center. The cohorts range in size from 3 to 337 datasets (Figure 1A); the 

median number of datasets in a cohort is 24.5. 

 

All libraries were prepared with polyA selection. All data were generated via paired-end Illumina 

sequencing technology. The median sequence length is 101 bases (Figure 1B).  
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Figure 1 

 

Caption for Figure 1: RNA-Seq datasets from 48 cohorts with a variety of read lengths were 

analyzed. A. Distribution of number of datasets per cohort. B. Distribution of length of paired end 

reads in this study. 

Data analysis  

RNA-Seq read data was aligned to the genome with the TOIL RNA-Seq pipeline previously 

described ​[13]​. Briefly, adapters were removed with CutAdapt v1.9. Reads were then aligned 

with STAR v2.4.2a with indices based on GRCh38 and gencode v23. RSEM v1.2.25 was used 

to quantify gene expression. The source code of the pipeline is available ​[14]​. MEND read 

counts were calculated with MEND qc release v1.1.1.  
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Read count and gene expression analysis was conducted with the R programming language, 

using the following packages: tidyverse, janitor, knitr, corr, cowplot, RColorBrewer, pander, 

kableExtra, and snakecase ​[15–24]​.  

 

Results 

Read types in RNA-Seq data 

 

We interrogated the read types present in our RNA-Seq datasets in our gene expression 

quantification pipeline (Fig 1A). We obtained the number of total and mapped reads from the 

aligner log. We marked duplicates in the aligned BAM file, and counted them, along with exonic 

reads, using RSeQC. Duplicate reads are reported as a fraction of mapped reads, and exonic 

reads are reported as a fraction of non-duplicate reads.  
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Figure 2 

 

Caption for Figure2: RNA-Seq datasets consist of 4 main types of sequencing reads. A. Simplified 

schematic illustrating read types. The X axis (blue) is a genomic sequence containing an exon. 

The other boxes each represent one sequencing read. Two of five reads are MEND reads. Other 

reads do not map to the genome (Unmapped; orange border), map to a non-exonic region of the 

genome (Non-exonic; green border), or are duplicates of other reads (Duplicate; red border). The 

MEND reads (black) fit none of these categories and are considered informative for determining 

the accuracy of gene expression quantification. B. Schematic illustrating read type quantification. 
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Bars representing uninformative reads are white with a colored border. For each informative 

fraction, the range and median (med.) are ​reported.  

 

Most RNA-Seq datasets contain a small percentage of unmapped reads (Fig 2B). In the data 

from 2179 datasets, 75% of datasets have fewer than 6% unmapped reads (Fig 3A). The 

distribution is left-skewed with a long right tail. The value of excluding these from read counts is 

apparent, as these reads do not correspond to any known expressed gene; in 77 datasets, 

more than 25% of reads are unmapped. Including those reads in any measure of the sensitivity 

of gene expression measurement would misguide the researcher.  

 

The percentage of mapped reads that are duplicate reads ("percent duplicates") is more varied. 

426 datasets have more than 50% duplicates (Fig 3A). Some cohorts are characterized by high 

duplicate fractions (Fig 3B). For example, 72 of the 127 datasets in Cohort 4 have more than 

98% duplicates. All 72 have a total sequencing depth above 170 million reads. 

However, even cohorts with generally low duplicate fractions can contain anomalous datasets; 

of the 41 cohorts with a median of less than 50% duplicates, 26 contain at least one dataset 

with more than 50% duplicates.  

 

If duplicate reads were only a function of genes being especially deeply sequenced, we would 

expect sequencing depth to explain most of the variability in the fraction of duplicate reads. The 

total sequencing depth has a 0.58 Pearson correlation with the fraction of duplicate reads, 

explaining 34% of the variability (Supplemental Figure 1). The majority of the variability in the 

fraction of duplicate reads is independent of read depth. Consequently, the fraction of duplicate 

reads cannot be inferred from the total read depth. 
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Like percent of duplicates, the percent of non-exonic reads among all mapped, non-duplicate 

reads ("percent non-exonic") has a broad distribution compared to other read type fractions, with 

an IQR of 21%. 330 datasets have a fraction of non-exonic reads above 50%. 

 

 

 

Figure 3 

Caption for Figure 3: Read type fractions vary within and between cohorts, and MEND counts 

correlate best with measured gene counts. A. The percent distribution of different uninformative 
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read types observed in 2179 datasets. B. The percentage of read types observed in cohorts, 

annotated with the number of datasets in the cohort. C: Relationships between the number of 

genes expressed in a dataset to the number of reads of different types. Only the 1996 datasets 

with more than 100 measured genes and fewer than 250 million total reads were included. 

Correlations to the number of genes expressed above 1, 2 and 3 TPM are shown.  

 

 

Correlation of read counts with the number of genes measured 

 

If total or all mapped read counts were informative about the sensitivity of gene expression 

measurements, we would expect them to correlate with the number of expressed genes. When 

calculated using all 2179 datasets, total and mapped reads were inversely correlated (Pearson 

r=-0.4 for both) with the number of genes with expression above 1 Transcripts Per Million (TPM) 

(Supplemental Figure 2). We recalculated the correlations after excluding 1) the 78 datasets 

with fewer than 100 measured genes (all of which had more than 170 million total reads) and 2) 

the 105 datasets sequenced to more than 250 million total reads (such deep sequencing is 

usually intended for detecting rare events rather than measuring gene-level expression).​ ​In the 

resulting data from 1996 datasets, total and mapped reads are not correlated with the number of 

genes with expression above 1 TPM (Pearson r = -0.05 and -.0.04, respectively; Figure 2C). 

MND and MEND read counts are correlated at Pearson r = 0.22 and 0.23, respectively. When 

genes with higher expression are counted, the correlation of MEND counts to measured genes 

increases, while the correlation for MND decreases.  
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Conclusion 

Researchers want to know that their data is sufficient for the measurements they're making. 

Here we show that, for the purpose of determining whether an RNA-Seq dataset is sufficient for 

accurately measuring expression of known genes, the fraction of relevant content of an 

RNA-Seq dataset (percent of MEND reads) varies substantially within and between cohorts. We 

confirm the relevance of MEND read counts to gene expression measurements by 

demonstrating that MEND read counts are correlated to the number of measured genes and 

total read counts are not.  

 

This work was performed in pediatric samples as part of the development of our comparative 

RNA-Seq assay for pediatric cancer patients ​[6,12]​. Since the factors that reduce the quality of 

RNA-Seq datasets (e.g. degradation, low sample volume, contamination, low base quality) are 

not specific to pediatric cancer samples, we predict that other kinds of RNA-Seq datasets would 

also show compositional variability. The MEND read counting tool is independent of species and 

genome version; it can be used on any bulk RNA-Seq dataset.  

 

There are several reasons why a survey of this breadth has not been previously performed. 

Obtaining and processing clinical datasets from multiple sources is an intensive effort. Tumor 

datasets are usually controlled access, and obtaining the 48 cohorts we report on here required 

multiple legal agreements ​[25]​. Analyzing read types requires genome-aligned reads; the files 

containing genome-aligned reads are large and are not generated when using the much faster 
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pipelines that quantify gene expression via pseudoalignment. Large RNA-Seq cohorts such as 

GTEX and TCGA use consistent methods and exclude datasets that fail their stringent and 

consistent quality control ​[26,27]​. They lack the kind of heterogeneity observed in our cohorts. In 

short, generating this data for more than 2000 datasets is time-consuming, expensive, and 

requires staff with a variety of expertises.  

 

Measuring the number of MEND reads in a dataset is specific to the alignment parameters and 

gene model. We use Gencode v23, which is inclusive, defining more than 60,000 genes. By 

default, the aligner we use, STAR, defines reads that map to as many as 20 positions as 

mappable. If we changed our pipeline, asking STAR to exclude reads mapping to more than 2 

positions and using a more conservative gene model with 30,000 genes, the same dataset 

would have fewer MEND reads due to the loss of reads that map too much or map only to 

regions newly defined as non-exonic.  

 

People planning RNA-Seq experiments look for guidance on how much sequencing their 

experiment requires. For comparing gene expression measurements between datasets, 

ENCODE recommends a minimum of 30 million mapped reads ​[28]​; the GEUVADIS consortium 

study had a minimum goal of 20 million reads ​[29]​. However, of the 2078 datasets in this study 

with more than 30 million mapped reads, 16% contain fewer than 25% informative (MEND) 

reads. We speculate that these guidelines were not intended to include those datasets, some of 

which measure fewer than 100 genes.  

 

Based on these results, we recommend that 1) publications reporting the results of an RNA-Seq 

study should report the number of MEND reads present in each dataset; 2) sensitivity studies 
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should include read type fractions and report on the relationship between MEND reads and the 

measured outcome; and 3) sequencing depth recommendations should be based on MEND 

reads. 

 

Availability of supporting source code and requirements 

Project name: MEND QC 

Project home page: ​https://github.com/UCSC-Treehouse/mend_qc 

Operating system(s): Platform independent 

Programming language: Bash and R 

Other requirements: Docker 

License: MIT 

RRID: if applicable, e.g. RRID: SCR_014986 
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Supplemental figures 

 

 

 

 

 

Supplemental Figure 1 

Caption for Figure S1. The percent of duplicate reads increases with the total number of reads 

in a dataset, but accounts for less than half of the variability. The Pearson correlation (r) 

between the values is 0.58 and explains 34% of the variability in the data (r​2​=0.336); n = 2179. 
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Supplemental Figure 2 

Caption for Figure S2. Of the four read types, MEND reads have the highest correlation to 

genes expressed above 1 TPM. The number of genes expressed (Y axis) above the threshold 

value (0, 1, 2, 3, 4, and 5 TPM, grouped by columns) are plotted against read counts (X axis). 

The type of reads counted (Total, Mapped, MND and MEND) are grouped by rows. The 

Pearson correlation (r) is shown for each combination of read type and gene threshold. All 2179 

datasets are included in each plot. 
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Supplemental Table 1 

https://docs.google.com/spreadsheets/d/1awKt5e3wYMWiliMwida1-8HLYrhUaOWP1GK26uV5a

gs/edit?usp=sharing 

 

The accession numbers in Table S1 are the definitive sources of the RNA sequencing data. The 

DOI links to citations are provided for convenience. They may reflect the citation provided by the 

data provider, a citation we identified referring to the RNA sequencing data, or a citation we 

identified referring to the patient whose tumor was sequenced.  

Supplemental Table 2 

 

Name Abbreviation URL 

Short Read Archive SRA https://www.ncbi.nlm.nih.gov/sra 

European Genome-phenome Archive EGA https://www.ebi.ac.uk/ega/home 

St. Jude Cloud SJC https://www.stjude.cloud/ 

Database of Genotypes and 
Phenotypes dbGaP https://www.ncbi.nlm.nih.gov/gap/ 

Cavatica Cavatica https://cavatica.squarespace.com/ 

Supplemental Table 3 

 

Cohort code Cohort name Source repository 
Repository cohort 
accession N in cohort 

Cohort_1 TARGET-10 dbGaP phs000218 337 

Cohort_2 SJC_BALL SJC SJC-DS-1001 141 
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Cohort_3 TARGET-20 dbGaP phs000218 137 

Cohort_4 EGAD00001003279 EGA EGAD00001003279 127 

Cohort_5 SJC_AMLM SJC SJC-DS-1001 103 

Cohort_6 phs000673 dbGaP phs000673 89 

Cohort_7 TARGET-40 dbGaP phs000218 88 

Cohort_8 phs000720 dbGaP phs000720 84 

Cohort_9 SJC_HGG SJC SJC-DS-1001 82 

Cohort_10 SJC_EPD SJC SJC-DS-1001 78 

Cohort_11 TARGET-52 dbGaP phs000218 65 

Cohort_12 EGAD00001001098 EGA EGAD00001001098 63 

Cohort_13 phs000768 dbGaP phs000768 62 

Cohort_14 SJC_ETV SJC SJC-DS-1001 56 

Cohort_15 SJC_LGG SJC SJC-DS-1001 54 

Cohort_16 SJC_CBF SJC SJC-DS-1001 44 

Cohort_17 SJC_RHB SJC SJC-DS-1001 43 

Cohort_18 EGAD00001001620 EGA EGAD00001001620 39 

Cohort_19 phs000699 dbGaP phs000699 35 

Cohort_20 CBTTC Cavatica CBTTC 31 

Cohort_21 SJC_ERG SJC SJC-DS-1001 31 

Cohort_22 SJC_PHALL SJC SJC-DS-1001 26 

Cohort_23 EGAD00001001666 EGA EGAD00001001666 25 

Cohort_24 SJC_CPC SJC SJC-DS-1001 25 

Cohort_26 phs000900 dbGaP phs000900 24 

Cohort_25 EGAD00001000648 EGA EGAD00001000648 24 

Cohort_30 TARGET-21 dbGaP phs000218 23 

Cohort_27 EGAD00001000356 EGA EGAD00001000356 23 
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Cohort_28 EGAD00001000617 EGA EGAD00001000617 23 

Cohort_29 SJC_OS SJC SJC-DS-1001 23 

Cohort_31 EGAD00001001927 EGA EGAD00001001927 22 

Cohort_32 EGAD00001002680 EGA EGAD00001002680 19 

Cohort_33 SRP126664 SRA SRP126664 19 

Cohort_34 EGAD00001000158 EGA EGAD00001000158 17 

Cohort_35 SRP092501 SRA SRP092501 15 

Cohort_36 EGAD00001000826 EGA EGAD00001000826 10 

Cohort_37 SJC_E SJC SJC-DS-1001 8 

Cohort_38 SJC_MB SJC SJC-DS-1001 8 

Cohort_41 TARGET-30 dbGaP phs000218 7 

Cohort_39 SJC_HYPO SJC SJC-DS-1001 7 

Cohort_40 SJC_MEL SJC SJC-DS-1001 7 

Cohort_42 EGAD00001000328 EGA EGAD00001000328 6 

Cohort_44 SJC_Other SJC SJC-DS-1001 6 

Cohort_43 SJC_INF SJC SJC-DS-1001 6 

Cohort_45 SJC_WLM SJC SJC-DS-1001 6 

Cohort_47 TARGET-50 dbGaP phs000218 4 

Cohort_46 SRP006575 SRA SRP006575 4 

Cohort_48 SRP040454 SRA SRP040454 3 

Bibliography 

1. Marioni JC, Mason CE, Mane SM, Stephens M, Gilad Y. RNA-seq: an assessment of 
technical reproducibility and comparison with gene expression arrays. Genome Res. 
2008;18:1509–17.  
2. Mortazavi A, Williams BA, McCue K, Schaeffer L, Wold B. Mapping and quantifying 
mammalian transcriptomes by RNA-Seq. Nat Methods. 2008;5:621–8.  
3. Bray NL, Pimentel H, Melsted P, Pachter L. Near-optimal probabilistic RNA-seq 
quantification. Nat Biotechnol. 2016;34:525–7.  
4. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA-Seq data with or without 

21 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 26, 2020. ; https://doi.org/10.1101/716829doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://doi.org/10.1101/716829
http://creativecommons.org/licenses/by-nc-nd/4.0/


a reference genome. BMC Bioinformatics. 2011;12:323.  
5. Klepikova AV, Kasianov AS, Chesnokov MS, Lazarevich NL, Penin AA, Logacheva M. Effect 
of method of deduplication on estimation of differential gene expression using RNA-seq. PeerJ. 
2017;5:e3091.  
6. Vaske OM, Bjork I, Salama SR, Beale H, Shah AT, Sanders L, et al. Comparative Tumor 
RNA Sequencing Analysis for Difficult-to-Treat Pediatric and Young Adult Patients With Cancer. 
JAMA Netw Open. 2019;2:e1913968–e1913968.  
7. Faust GG, Hall IM. SAMBLASTER: fast duplicate marking and structural variant read 
extraction. Bioinformatics. 2014;30:2503–2505.  
8. Wang L, Wang S, Li W. RSeQC: quality control of RNA-seq experiments. Bioinformatics. 
2012;28:2184–2185.  
9. hbeale/treehouse_bam_qc - Docker Hub [Internet]. [cited 2020 Aug 21]. Available from: 
https://hub.docker.com/r/hbeale/treehouse_bam_qc/ 
10. Count Mapped, Exonic, Non-duplicate (MEND) reads in RNA-Seq data [Internet]. [cited 
2020 Aug 21]. Available from: doi.org/10.24433/CO.3151742.v1 
11. GitHub repository UCSC-Treehouse mend_qc [Internet]. [cited 2020 Aug 21]. Available 
from: https://github.com/UCSC-Treehouse/mend_qc 
12. Treehouse Public Data [Internet]. [cited 2020 Aug 10]. Available from: 
https://treehousegenomics.soe.ucsc.edu/public-data/ 
13. Vivian J, Rao AA, Nothaft FA, Ketchum C, Armstrong J, Novak A, et al. Toil enables 
reproducible, open source, big biomedical data analyses. Nat Biotechnol. 2017;35:314.  
14. UCSC-Treehouse/pipelines [Internet]. UCSC Treehouse Childhood Cancer Initiative; 2020 
[cited 2020 Aug 11]. Available from: https://github.com/UCSC-Treehouse/pipelines 
15. Daróczi G, Tsegelskyi R. pander: An R “Pandoc” Writer [Internet]. 2018. Available from: 
https://CRAN.R-project.org/package=pander 
16. Firke S. janitor: Simple Tools for Examining and Cleaning Dirty Data [Internet]. 2019. 
Available from: https://CRAN.R-project.org/package=janitor 
17. Grosser M. snakecase: Convert Strings into any Case [Internet]. 2019. Available from: 
https://CRAN.R-project.org/package=snakecase 
18. Neuwirth E. RColorBrewer: ColorBrewer Palettes [Internet]. 2014. Available from: 
https://CRAN.R-project.org/package=RColorBrewer 
19. R Core Team. R: A Language and Environment for Statistical Computing [Internet]. Vienna, 
Austria: R Foundation for Statistical Computing; 2019. Available from: https://www.R-project.org/ 
20. Ruiz E, Jackson S, Cimentada J. corrr: Correlations in R [Internet]. 2019. Available from: 
https://CRAN.R-project.org/package=corrr 
21. Wickham H. tidyverse: Easily Install and Load the “Tidyverse” [Internet]. 2017. Available 
from: https://CRAN.R-project.org/package=tidyverse 
22. Wilke CO. cowplot: Streamlined Plot Theme and Plot Annotations for “ggplot2” [Internet]. 
2019. Available from: https://CRAN.R-project.org/package=cowplot 
23. Xie Y. knitr: A General-Purpose Package for Dynamic Report Generation in R [Internet]. 
2019. Available from: https://CRAN.R-project.org/package=knitr 
24. Zhu H. kableExtra: Construct Complex Table with “kable” and Pipe Syntax [Internet]. 2019. 
Available from: https://CRAN.R-project.org/package=kableExtra 
25. Learned K, Durbin A, Currie R, Kephart ET, Beale HC, Sanders LM, et al. Barriers to 
accessing public cancer genomic data. Sci Data. 2019;6:98.  
26. GTEx Consortium. Genetic effects on gene expression across human tissues. Nature. 
2017;550:204–13.  
27. Hoadley KA, Yau C, Hinoue T, Wolf DM, Lazar AJ, Drill E, et al. Cell-of-Origin Patterns 

22 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 26, 2020. ; https://doi.org/10.1101/716829doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://doi.org/10.1101/716829
http://creativecommons.org/licenses/by-nc-nd/4.0/


Dominate the Molecular Classification of 10,000 Tumors from 33 Types of Cancer. Cell. 
2018;173:291-304.e6.  
28. ENCODE Project Consortium. Encode Standards, Guidelines and Best Practices for 
RNA-Seq. 2011;  
29. ’t Hoen PAC, Friedländer MR, Almlöf J, Sammeth M, Pulyakhina I, Anvar SY, et al. 
Reproducibility of high-throughput mRNA and small RNA sequencing across laboratories. Nat 
Biotechnol. 2013;31:1015–22.  
30. Treehouse Repository Data Acknowledgments [Internet]. [cited 2020 Aug 10]. Available 
from: https://treehousegenomics.soe.ucsc.edu/public-data/acknowledgments.html 

23 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted August 26, 2020. ; https://doi.org/10.1101/716829doi: bioRxiv preprint 

https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://www.zotero.org/google-docs/?eWm1dY
https://doi.org/10.1101/716829
http://creativecommons.org/licenses/by-nc-nd/4.0/

