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Abstract 21 

Autism typically presents with a highly heterogeneous set of features, including frequent 22 

comorbidity with intellectual disability (ID). The overlap between these two phenotypes has 23 

confounded the accurate diagnosis and discovery of genetic factors associated with autism. We 24 

analyzed genetic variants in 2,290 individuals with autism from the Simons Simplex Collection 25 

(SSC) who have either ID or normal cognitive function to determine whether genes associated 26 

with autism also contribute towards ID comorbidity. We found that individuals who carried 27 

variants in a set of 173 reported autism-associated genes showed decreased IQ (p=5.49×10-6) and 28 

increased autism severity (p=0.013) compared with individuals without such variants. A subset 29 

of autism-associated genes also showed strong evidence for ID comorbidity in published case 30 

reports. We also found that individuals with high-functioning autism (IQ>100) had lower 31 

frequencies of CNVs (p=0.065) and LGD variants (p=0.021) compared with individuals who 32 

manifested both autism and ID (IQ<70). These data indicated that de novo LGD variants 33 

conferred a 1.53-fold higher risk (p=0.035) towards comorbid ID, while LGD mutations 34 

specifically disrupting autism-associated genes conferred a 4.85-fold increased risk (p=0.011) for 35 

comorbid ID. Furthermore, de novo LGD variants in individuals with high-functioning autism 36 

were more likely to disrupt genes with little functional relevance towards neurodevelopment, as 37 

demonstrated by evidence from pathogenicity metrics, expression patterns in the developing 38 

brain, and mouse model phenotypes. Overall, our data suggest that de novo pathogenic variants 39 

disrupting genes associated with autism contribute towards autism and ID comorbidity, while 40 

other genetic factors are likely to be causal for high-functioning autism.  41 
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Autism spectrum disorder, which presents in children with social communication difficulties, 43 

repetitive behavior, and restricted interests1, is a highly heterogeneous neurodevelopmental 44 

disorder characterized by complex genetic etiology and strong comorbidity with other 45 

developmental disorders2. For example, approximately 30% of individuals with autism also 46 

manifest with intellectual disability (ID)3, defined1 by IQ scores <70. The high degree of co-47 

occurrence of autism with ID has been shown to confound accurate diagnosis of autism. In fact, 48 

we recently showed that 69% of individuals diagnosed with ID are likely to be recategorized and 49 

diagnosed with autism4. The diagnostic overlap between autism and ID suggests that de novo 50 

gene disruptive variants and copy-number variants (CNVs) identified in individuals ascertained 51 

for autism in large-scale studies could also be confounded by ID comorbidity. Here, using 52 

genetic and phenotypic data from 2,290 individuals with autism from the Simons Simplex 53 

Collection (SSC)5, we show that gene discoveries in autism are biased towards genes that 54 

contribute towards both autism and comorbid ID.  55 

We analyzed rare de novo likely-gene disruptive (LGD) variants from exome sequencing 56 

data6,7, disease-associated copy-number variants (CNVs) from microarrays8, and Full-scale IQ 57 

and Social Responsiveness Scale (SRS) T-scores for SSC probands that were obtained from the 58 

Simons Foundation Autism Research Initiative5. As these data were de-identified, they were 59 

exempt from IRB review and conformed to the Helsinki Declaration. We first compared the 60 

phenotypes of 288 individuals with de novo LGD variants and 81 individuals with pathogenic 61 

CNVs to 1,921 individuals without such variants obtained from the SSC cohort. Similar to 62 

previous autism studies that identified correlations between de novo variants and IQ scores9–12, 63 

we found that individuals with de novo LGD variants (IQ=77.7, p=0.031, two-tailed Mann-64 

Whitney test) or pathogenic CNVs (IQ=76.3, p=0.002) had a significant decrease in IQ scores 65 

compared with individuals without such variants (IQ=82.3) (Figure 1A). However, no 66 

differences in autism severity, measured using SRS T-scores, were observed between groups of 67 

individuals with and without pathogenic variants (p=0.104 for LGD variants and 0.963 for 68 

CNVs) (Figure 1A). This suggests that pathogenic variants in general contribute to ID 69 

independent of autism severity, although this could also be due to an ascertainment bias in the 70 

SSC cohort towards individuals with severe autism.  71 

We further identified individuals carrying de novo LGD variants in 173 autism-associated 72 

genes, defined as genes with recurrent de novo variants reported in multiple databases of 73 
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sequencing studies (Table S1). These genes included tier 1 genes (>2 de novo LGD variants) 74 

from the Developing Brain Disorders Gene Database13, genes with >5 non-SSC de novo LGD 75 

variants from denovo-db14, and SFARI Gene tiers 1 and 2 (https://gene.sfari.org/). We found that 76 

individuals carrying de novo LGD variants in autism-associated genes had decreased IQ (n=74, 77 

IQ=69.1, p=5.49×10-6, two-tailed Mann-Whitney test) and increased SRS T-scores (SRS=82.4, 78 

p=0.013) compared with individuals without LGD variants (n=2,216, IQ=81.9, SRS=79.6), 79 

implying that candidate autism genes contribute to both autism and ID phenotypes (Figure 1B). 80 

To validate this finding, we examined 76 published case reports of affected individuals with 81 

pathogenic variants in a subset of 22 autism genes that appeared in all three autism gene 82 

databases (Table 1, Table S2). For example, recent case studies have identified autism co-83 

occurring with ID in 21 individuals with de novo SHANK3 variants15, 19 individuals with 84 

NRXN1 variants16, and 18 individuals with TCF20 variants17. Overall, 460/497 (92.6%) 85 

individuals with autism described in these studies had ID features, emphasizing that variants in 86 

these genes contribute to a severe form of autism with comorbid ID (Table 1).  87 

 We next compared genetic data from 397 SSC individuals (17.3% of the SSC cohort) 88 

with “high-functioning autism”, defined as having severe autism and average or above-average 89 

IQ scores (SRS>75 and IQ>100), to 562 individuals (24.5%) with both autism and ID (SRS>75 90 

and IQ<70). Individuals with high-functioning autism had a significantly lower (p=0.021, one-91 

tailed Fisher’s Exact test) frequency of de novo LGD variants (42/397, 10.6%) than individuals 92 

with autism and ID (86/562, 15.3%). Similarly, individuals with high-functioning autism were 93 

less likely (p=0.065) to carry pathogenic CNVs (9/397, 2.3%) than individuals with autism and 94 

ID (24/562, 4.3%). In fact, de novo LGD variants conferred a 1.53-fold higher likelihood of 95 

manifesting ID among individuals with autism (p=0.035, 95% confidence interval 1.03-2.26), 96 

and pathogenic CNVs similarly conferred a 1.92-fold increased risk for co-occurrence of ID 97 

among individuals with autism (p=0.099, 95% CI 0.88-4.18). We replicated these observations 98 

by analyzing an additional combined cohort of 2,357 individuals from both the SSC and the 99 

Autism Sequencing Collection18. Here, individuals with autism and ID had a significantly higher 100 

rate (p=3.04×10-6, one-tailed Student’s t-test) of de novo variants in genes intolerant to variation, 101 

as measured by probability of Loss-of-function Intolerant (pLI) score >0.9 (70/643, 10.8%), than 102 

individuals manifesting autism but not ID (114/1747, 6.65%). We also found that only 3/397 103 

(0.8%) individuals in the SSC cohort with high-functioning autism carried de novo LGD variants 104 
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in autism-associated genes, including ANK2, HIVEP3, and BAZ2B. This frequency was not 105 

significantly different from the expected frequency of de novo variants in the general population 106 

(p=0.095, one-tailed Student’s T-test), as calculated from gene-specific probabilities of de novo 107 

nonsense and frameshift variants from a sequence context-dependent model9. In contrast, 20/562 108 

(3.6%) individuals with autism comorbid with ID carried de novo LGD variants in autism-109 

associated genes, such as CHD8, SCN2A, and SYNGAP1, representing a 19.2-fold enrichment of 110 

variants compared with the expected rate in the general population (p=9.48×10-6). Thus, de novo 111 

LGD variants in autism genes conferred a 4.85-fold increased risk (p=0.011, 95% CI 1.43-16.42) 112 

towards comorbid ID in individuals with autism. 113 

We further sought to determine the biological relevance of the 42 genes with de novo 114 

LGD variants identified in individuals with high-functioning autism, and found that these genes 115 

in aggregate had less functional relevance towards neurodevelopment than the reported autism-116 

associated genes. For example, genes with de novo LGD variants in individuals with high-117 

functioning autism were less resistant to genetic variation than reported autism-associated genes, 118 

as measured by Residual Variation Intolerance Score (RVIS) (p=4.00×10-4, Mann-Whitney two-119 

tailed test) and pLI percentile (p=9.77×10-7) gene metrics19,20 (Figure 2A). In fact, while the 120 

RVIS and pLI percentiles of the reported autism genes were clustered below the thresholds for 121 

pathogenicity (RVIS <20th percentile and pLI <18th percentile, or raw score >0.9), genes 122 

disrupted among individuals with high-functioning autism were evenly distributed across the 123 

range of percentiles. Additionally, we tested the enrichment of each gene set for specific 124 

expression in brain regions during development, based on expression data derived from the 125 

BrainSpan Atlas21, using the Specific-Expression Analysis (SEA) online tool22. While autism 126 

genes were enriched for specific expression in the cortex (p=3.13×10-4, Fisher’s Exact test with 127 

Benjamini-Hochsberg correction) and cerebellum (p=0.020) during early fetal development22, 128 

genes with de novo LGD variants in high-functioning autism individuals were not enriched for 129 

any specific expression patterns in the developing brain (Figure 2B). Furthermore, mouse 130 

models of genes identified in individuals with high-functioning autism, whose phenotypic data 131 

were obtained from the Mouse Genome Informatics database24, were significantly less likely to 132 

manifest nervous system (p=4.90×10-3, one-tailed Fisher’s Exact test with Benjamini-Hochsberg 133 

correction) and behavioral/neurological (p=0.037) phenotypes than mouse models of reported 134 

autism-associated genes (Figure 2C). These findings suggest that genes with de novo LGD 135 
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variants in individuals with high-functioning autism are less pathogenic in humans and model 136 

organisms, and therefore may not necessarily contribute towards the specific high-functioning 137 

autism phenotype.  138 

Our data indicate that pathogenic variants such as de novo LGD variants and CNVs 139 

contribute to autism phenotypes primarily in individuals with comorbid ID, especially if the 140 

variants disrupt a gene previously associated with autism. Several themes regarding the study of 141 

high-functioning autism have emerged from these findings. First, the consistently high degree of 142 

comorbidity between autism and ID has led to an ascertainment bias towards individuals who 143 

manifest both disorders in large-scale sequencing cohorts, as it is difficult to exclude all 144 

individuals with comorbid disorders and still have adequate power to identify recurrent variants. 145 

Indeed, more than 80% of the SSC cohort had an IQ score less than 100, and the average IQ of 146 

the cohort (81.5) was 18.5 points below the population average. This bias has contributed to the 147 

identification of genes and CNV regions related to both autism and ID, as evidenced by the 148 

decreased IQ among carriers of variants in these genes as well as a high incidence of comorbid 149 

phenotypes reported in published case studies. Large-scale sequencing studies still hold a high 150 

value in uncovering shared biological mechanisms that could underlie both disorders23. 151 

However, understanding the biology of the core autism phenotypes would require concerted 152 

efforts to recruit individuals who specifically manifest high-functioning autism without ID. 153 

Second, individuals with high-functioning autism are less likely to carry de novo LGD 154 

variants in candidate autism genes, and de novo variants in individuals with high-functioning 155 

autism tend to disrupt genes with less functional relevance towards neurodevelopment. These 156 

genes likely carry non-recurrent variants that either confer a small effect size towards autism risk 157 

on their own, or are not associated at all with neurodevelopment. We therefore propose that 158 

multiple genomic factors with varying effect sizes, such as missense variants, common variants, 159 

variants in regulatory and non-coding regions, or the combinatorial effects of inherited variants, 160 

contribute towards autism phenotypes without ID. For example, Schaaf and colleagues 161 

performed targeted sequencing of 21 candidate autism genes in 339 individuals with high-162 

functioning autism25. They found that 2% of individuals carried de novo missense variants in 163 

candidate autism genes, such as PTEN and FOXP2, suggesting that allelic variants of differing 164 

severity within the same gene might contribute to distinct neurodevelopmental trajectories. 165 

Interestingly, the same study also found that 7% of individuals with high-functioning autism 166 
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carried multiple inherited missense variants in candidate autism genes, potentially contributing to 167 

an oligogenic model for high-functioning autism phenotypes. Similarly, common variants have 168 

been found to contribute towards increased autism risk in individuals without ID26,27. For 169 

example, Grove and colleagues recently reported that the heritability attributed to common 170 

variants, including those primarily associated with cognitive ability and educational attainment, 171 

was three times lower in individuals with autism and ID compared with those without ID27. 172 

Finally, variants that may not contribute directly towards autism phenotypes themselves, 173 

including the de novo LGD variants observed in individuals with high-functioning autism, could 174 

still be responsible for subtler modification of the severity of autism or ID phenotypes.  175 

 Overall, our results emphasize the importance of dissecting phenotypic heterogeneity in 176 

family-based sequencing studies of complex diseases, especially those with a high frequency of 177 

comorbid disorders. While a larger cohort of individuals recruited specifically for high-178 

functioning autism could identify associations with recurrent genes or different types of variants, 179 

these findings should be validated using functional studies to more fully differentiate the genetic 180 

causes for high-functioning autism from those for autism with comorbid ID. 181 

  182 
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Supplemental data 183 

Supplemental data include two supplemental tables in Excel file format. 184 
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Figure Legends 320 

Figure 1. Phenotypic comparison of individuals with autism from the SSC cohort with and 321 

without pathogenic variants. (A) Individuals with pathogenic variants (de novo LGD and CNV) 322 

had a significantly lower IQ than individuals without pathogenic variants, but no change in 323 

autism severity (SRS T-score) was observed between the three groups. (B) Individuals with de 324 

novo LGD variants in candidate autism genes had a lower IQ and more severe autism phenotypes 325 

than individuals without such variants. n indicates sample size, p-values were derived from two-326 

tailed Mann-Whitney tests, and dotted lines within each plot indicate the median and first and 327 

third quartiles. All statistics were calculated using R v.3.4.2 (R Foundation for Statistical 328 

Computing, Vienna, Austria).  329 

 330 

Figure 2. Functional analysis of genes with de novo LGD variants in individuals with high-331 

functioning autism. (A) Genes with de novo LGD variants in individuals with high-functioning 332 

autism had lower average RVIS (left) and pLI (right) percentile scores than those for reported 333 

autism-associated genes. Thick dotted lines across the violin plots indicate thresholds for gene 334 

pathogenicity: <20th percentile for RVIS and <18th percentile for pLI (>0.9 raw score). Thin lines 335 

within the violin plots indicate the median and first and third quartiles. p-values were derived 336 

from two-tailed Mann-Whitney tests. (B) Expression of genes with de novo variants in 337 

individuals with high-functioning autism and autism-associated genes in the developing human 338 

brain. Autism-associated genes were enriched for specific expression in the cortex and 339 

cerebellum during early development, while no enrichment was seen in the genes identified in 340 

individuals with high-function autism. Hexagon sizes represent the number of genes 341 

preferentially expressed in each brain tissue and timepoint, while colors of the hexagons 342 

represents p-values for the enrichment of autism genes among each set of preferentially-343 

expressed genes. (C) Frequency of phenotypes observed in mouse knockout models for genes 344 

with de novo LGD variants in individuals with high-functioning autism compared with reported 345 

autism-associated genes. * indicates p<0.05 with Benjamini-Hochsberg correction.  346 
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Table 1. Individuals carrying variants in autism-associated genes with comorbid ID. 348 

Autism-
associated genes 

Cases with ID Autism cases 
with or without 

ID 

Autism cases 
with comorbid 

ID 
ADNP 134/134 114/134 114/114 
ANK2 1/1 1/1 1/1 
ANKRD11 10/10 9/10 9/9 
ARID1B 137/153 80/153 80/80 
ASH1L 14/14 4/14 4/4 
ASXL3 18/19 16/19 15/16 
BCL11A 11/16 4/16 3/4 
CHD2 3/3 3/3 3/3 
CHD8 56/75 61/75 46/61 
CUL3 1/1 1/1 1/1 
DDX3X 97/97 33/97 33/33 
DYRK1A 7/26 9/26 7/9 
KMT2A 76/99 12/99 10/12 
MECP2 1/1 1/1 1/1 
MYT1L 1/1 1/1 1/1 
NRXN1 45/60 34/60 23/34 
POGZ 48/49 29/49 29/29 
SCN2A 19/33 9/33 7/9 
SETD5 15/16 7/16 7/7 
SHANK3 35/37 26/37 24/26 
SYNGAP1 11/23 11/23 11/11 
TCF20 47/48 32/48 31/32 
    
Total 787/916 (85.9%) 497/916 (54.3%) 460/497 (92.6%) 
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A
Phenotypic severity of individuals with autism carrying pathogenic variants

B
Phenotypic severity of individuals carrying variants in autism genes
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