
Autophagy dark genes: Can we find them with 
machine learning?

Tudor I. Oprea,1,2,3,4,5 Jeremy J. Yang,1 Daniel R. Byrd,1 and Vojo Deretic3

1. Department of Internal Medicine, University of New Mexico School of Medicine, 
Albuquerque, NM, USA.

2. UNM Comprehensive Cancer Center, Albuquerque, NM, USA.
3. Autophagy Inflammation and Metabolism Center of Biomedical Research Excellence, 

University of New Mexico Health Sciences Center, Albuquerque, NM, USA
4. Department of Rheumatology and Inflammation Research, Institute of Medicine, 

Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden.
5. Novo Nordisk Foundation Center for Protein Research, Faculty of Health and Medical 

Sciences, University of Copenhagen, Copenhagen, Denmark.

Abstract
Identifying novel genes associated with autophagy (ATG) in man remains an important task for gaining 
complete understanding on this fundamental physiological process. A machine-learning guided approach 
can highlight potentially “missing pieces” linking core autophagy genes with understudied, “dark” genes 
that can help us gain deeper insight into these processes. In this study, we used a set of 103 (out of 288 
genes from the Autophagy Database, ATGdb), based on the presence of ATG-associated terms 
annotated from 3 secondary sources: GO (gene ontology), KEGG pathway and UniProt keywords, 
respectively. We regarded these as additional confirmation for their importance in ATG. As negative 
labels, we used the OMIM list of genes associated with monogenic diseases (after excluding the 288 
ATG-associated genes). Data associated with these genes from 17 different public sources were 
compiled and used to derive a Meta Path/XGBoost (MPxgb) machine learning model trained to 
distinguish ATG and non-ATG genes (10-fold cross-validated, 100-times randomized models, median 
AUC = 0.994 +/- 0.0084).  Sixteen ATG-relevant variables explain 64% of the total model gain, and 23% 
of the top 251 predicted genes are annotated in ATGdb.  Another 15 genes have potential ATG 
associations, whereas 193 do not. We suggest that some of these 193 genes may represent “autophagy 
dark genes”, and argue that machine learning can be used to guide autophagy research in order to gain a 
more complete functional and pathway annotation of this complex process.
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Introduction
Autophagy (ATG) is a cytoplasmic homeostatic process defined by a suite of ATG genes conserved from 
yeast to man [1]. Autophagy keeps a cellular complement of organelles in a functional state and removes 
protein aggregates, invading pathogens, and other cargo, by capturing them and delivering them to 
lysosomes for degradation [1].  Autophagy is consequential for a wide array of physiological and 
pathological states including neurodegenerative and other degenerative disorders, cancer, chronic 
inflammatory illnesses and infectious diseases [2]. Mechanistically, the process of autophagy is governed 
by ATG genes, encoding the core autophagy machinery with most components conserved from fungi to 
humans  [1].  However, recent studies have increasingly emphasized the existence of systems controlling 
and executing autophagy in mammalian cells that are quite different from those in yeast [3]. Among well-
accepted examples, are several autophagy factors absent in yeast that have been identified in organisms 
from C. elegans to H. sapiens, including ATG101 [4], FIP200 [5], VMP1 [6], EPG5 [7], Stx17 [8,9], and 
TMEM41B  [10–12].  

Completing the autophagy puzzle requires the systematic identification of all genes associated with 
autophagy.  This on-going endeavor is boosted in part by the growing interest in the role of autophagy in 
ageing regulation [13,14] and lifespan extension [15].  ATG genes have been used in supervised machine 
learning models applied to ageing research [16] and are among the top features in models for predicting 
lifespan-extending chemicals [17]. Numerous studies have used machine learning (ML) methods to infer 
gene-disease associations [18–21].  However, the use of ML models to guide further autophagy research 
has not been previously discussed. Here we report the development of a specific ML model to predict 
“autophagy dark genes”, i.e., understudied proteins [22] that may play a significant role in autophagy. 

Materials and Methods

Building Knowledge Graphs

Seventeen different data sources, totaling over 262.3 million data points, summarized in Table 1, are 
used to build Knowledge Graphs (KGs). These 17 protein- and gene- centric data sources are integrated 
into formal data representation systems based on KGs, with typed nodes and edges, which enable the 
use of network-based analytical algorithms. Whereas most of the data in Table 1 refer to human proteins, 
we use gene orthology relationships from eggNOG [23] and InParanoid [24]  to fuse rat (RGD) and 
mouse (IMPC, International Mouse Phenotype Consortium) model organism data into a single “pseudo-
protein” that enables network-based inferences for function and phenotype across organisms.  The KGs 
are implemented as a PostgreSQL db for performance, convenience, and integration with existing tools. 
Metapaths are rigorously defined via schema and templated SQL. The initial prototype was primarily 
coded in R, which was migrated to Python for enhanced functionality and integration options, e.g., 
visualization tools. The code and documentation are publicly accessible at 
https://github.com/unmtransinfo/ProteinGraphML  (new Python package) and 
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https://github.com/unmtransinfo/metap  (R code). A snapshot of the currently used dataset for building 
KGs is available at http://pasilla.health.unm.edu/x/metap-pgdump.sql.gz.  

Table 1. Data resources used to inform the development of ML-ready knowledge graphs

Data Source Data Type Data Points

CCLE[25] Gene expression 19,006,134

GTEx[26] Gene expression 2,612,227

HPA[27] Gene & Protein expression 949,199

Reactome[28] Biological pathways 303,681

KEGG[29] Biological pathways 27,683

STRING[30] Protein-Protein interactions 5,080,023

GO[31] Biological pathways & Gene function 434,317

InterPro[32] Protein structure and function 467,163

ClinVar[33] Human Gene - Disease/Phenotype associations 881,357

GWAS Catalog[34] Gene - Disease/Phenotype associations 54,360

OMIM[35] Human Gene - Disease/Phenotype associations 25,557

UniProt[36] Disease Human Gene - Disease/Phenotype associations 5,365

DISEASES[37] Gene - Disease associations from text mining 44,829

NCBI Homology  [38] Homology mapping of human/mouse/rat genes 70,922

IMPC[39] Mouse Gene - Phenotype associations 2,153,999

RGD[40] Rat Gene - Phenotype associations 117,606

LINCS[41] Drug induced gene signatures 230,111,315
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Meta Path/XGBoost using Knowledge Graphs

The majority of biological system networks (BSN) are heterogeneous with multiple node and edge types, 
as illustrated by the Data Types in Table 1. Recent developments in heterogeneous[42,43] and BSN [44] 
relationship predictions introduced and formalized a new framework that takes into account BSN 
heterogeneity by defining type specific node-edge paths or Meta Paths[45].  A meta path [42,46] is a path 
consisting of a sequence of relations defined between different object types (i.e., structural paths at the 
meta level). In biology, the Meta Path approach can be used to seek different network paths that connect 
proteins / genes to specific properties such as phenotype or disease [45]. In this paper, we distinguish 
Meta Path (the method) from “meta paths”, used to evaluate network topology. The objects in question 
are graph Nodes, which can be genes or proteins; diseases or phenotypes; chemical structures or drugs; 
and other entities relevant to modeling biomedical processes. “Structural paths” reflect relationships 
between the different entities, i.e., Nodes.  “Paths”, or Edges in topological terms, can be expression 
data; pathways; LINCS genomic signatures; protein-protein interactions (PPIs); or other relationships of 
biological relevance.  Enumeration of all network paths along a defined meta path are used to compute 
graph topological features such as path counts by counting all path instances along that meta path. 
Degree weighted path counts (DWPCs – see Eq. 1) [44] use the number of Edges connecting each Node 
along a meta path to assign different weights to each path instance. Specifically, DWPCs quantify meta 
path prevalence using a dampening exponent (w, set to 0.4) to down weight paths through high-degree 
nodes when computing DWPCs:

𝐷𝑊𝑃𝐶 = ∑
𝑝𝑎𝑡ℎ ∈  𝑃𝑎𝑡ℎ𝑠

 ( ∏
𝑑  ∈   𝐷𝑝𝑎𝑡ℎ

𝑑 ‒ 𝑊)

where ∏ is the path-degree product calculated by: 1) extracting all edge-specific degrees along the path 
Dpath, where each edge contributes two degrees; 2) raising each degree d to the −w power, where w  is 
the dampening exponent; 3) multiplying all exponentiated degrees to yield ∏. DWPC is the sum of path 
degree products ∏ (the DWPC section was adapted from [44]). The Meta Path formalism enables the 
transformation of the heterogeneous KG data types into an ML-ready input.  The algorithmic workflow of 
applying ML to the Meta Path methodology is depicted in Fig. 1. 

Insert Figure 1

Figure 1. Analytical algorithms workflow for ranking target gene lists.

To better understand and predict "function" or "role in disease/phenotype", we selected XGBoost [47], an 
award-winning ML algorithm that can be directly deployed onto typed meta paths.  XGBoost classifiers 
have certain advantages compared to other ML algorithms: i) very fast model training and prediction, and 
high scalability to very large datasets; ii) variable selection is driven by model performance as opposed to 
random, such as that used in comparable ML algorithms; iii) built-in model interpretability.  XGBoost 
outputs variable importance in projection (VIP) estimates, unlike neural networks and other deep learning 
methods. Using VIP, meta-paths are sorted in decreasing order of importance, which leads to directly 
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interpretable insights into mechanistic processes and Node interactions that contribute to protein/gene 
"function" or "role in disease." The combination of Meta Path/XGBoost (herein referred to as “MPxgb”) 
processes assertions/evidence chains of heterogeneous biological data types and identifies similar 
assertions. These determine the strength of the evidence linking a gene/protein to a disease or 
phenotype or, in this instance, autophagy.  

Development of an ATG-specific MPxgb Model

We extracted data from 17 protein-centric datasets available collected the TargetCentral relational 
database, TCRD [48], and summarized in Table 1.  Specifically for this study, we started with 288 human 
genes from a specialized resource, the Autophagy database, ATGdb [49], which were processed and 
sorted for uniqueness. These genes were further queried for further confirmation of their ATG association 
using the “hsa04140” keyword in the Kyoto Encyclopedia of Genes and Genomes, KEGG[29] Pathway; 
using the gene ontology (GO) [31] term “GO:0061919”; or the UniProt [36] keyword “autophagy”, 
respectively. The secondary query, used to confirm the importance of specific genes in autophagy, 
resulted in N = 103 genes (Supplementary Material). 

We trained the MPxgb model using these 103 genes as  “positive” labels, i.e., known to be associated 
with ATG. A separate set of N = 3,468 OMIM genes, which are associated with a variety of monogenic 
diseases and are not present in the ATGdb, were assumed to lack ATG involvement.  We generated 100 
randomized MPxgb models, using 10-fold cross-validation; the median area under the curve (AUC) for 
these models was 0.994 ± 0.008. The model with the highest AUC (0.999932263) was selected to predict 
novel ATG genes, and is discussed here.  The Excel file with the complete training set (3,571 genes, both 
positive and negative labels) is available as Supplementary Material.

Results and Discussion
This paper introduces an autophagy-dedicated machine learning model, which is intended to serve as 
guidance for extending the current autophagy knowledge to gene sets that may have not been previously 
explored. Its main purpose is to combine current levels of evidence, and show how such evidence can be 
captured and modeled using a binary classifier based on the Meta Path (Figure 2) and XGBoost 
approach, built upon 17 different data sources (Table 1). Biologically, this model implicates a set of up to 
193 previously untested genes, some of that may have a functional role in autophagy. 

For this model, data for 103 ATG-associated genes were contrasted with similar data for 3,468 “negative” 
genes, extracted from seven distinct categories of evidence: gene & protein expression (CCLE, the 
cancer cell line encyclopedia [25]; GTEx, Gene Tissue Expression [26]; and the Human Protein Atlas 
[27]); biological pathways and gene function (Reactome [28], KEGG [29] and GO [31]); Protein-Protein 
Interactions (STRING [30]); protein structure and function (InterPro [32]); human gene - 
disease/phenotype associations (ClinVar [33], GWAS Catalog [34], OMIM [35], UniProt Disease [36], and 
DISEASES [37]); animal gene - phenotype associations (mouse data from IMPC [39] and rat data from 
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RGD [40], mapped to human genes via the NCBI Homology [38] resource); and drug-induced gene 
signatures from the Library of Integrated Network-Based Cellular Signatures, LINCS [41], respectively. 

From these resources, meta paths were assembled, such as: {Protein –– (member of) → STRING PPI 
Network ← (member of) –– Protein –– (associated with) → Disease} and {Protein –– (expressed in) → 
Tissue/Cell line ← (associate with) –– GO Term}.  The first BSN application [44] to model novel disease 
associations using meta paths used logistic regression and ridge logistic regression.  We adapted the 
Meta Path framework to XGBoost, a tree-boosting classification algorithm [47] used in 17 of the 29 
winning solutions in Kaggle challenge competitions [50]. Combining XGBoost, a scalable ML algorithm 
capable of handling sparse data with BSN typed meta-paths; we used the MPxgb approach to predict 
novel protein functions given a variety of (unrelated) data sources.  

The methodology introduced in this work has substantial advantages over simply applying ML to an 
existing, static dataset. KG construction is informed by expertise spanning several biomedical domains, 
with automation tools designed for an online learning paradigm to incorporate the latest findings. 
Predictions presented here are not generated ex nihilo but from the rigorously aggregated findings of 
autophagy research to date.  Our methodology uses powerful ML tools to abstract that collective 
intelligence and is subject to change, and improvement as the field continues to advance.

Model Validation through Variable Importance Selection  

The top 40 features (total gain, 0.9) used to derive the best MPxgb ATG model are depicted in Figure 2, 
and available as Supplementary Material. There are 11 protein-protein interactions (PPIs), with a 
cumulative gain of 0.445; 4 interpro domain, IPR terms and one UniProt term (cumulative gain, 0.195); 9 
GO terms (cumulative gain, 0.182); 9 LINCS terms (cumulative gain, 0.044); 3 pathway terms (cumulative 
gain, 0.017); and 3 expression terms (cumulative gain, 0.016), respectively. Using PPIs and structural 
terms provides a 64% contribution to the ATG MPxgb model; by contrast, pathway and expression terms. 
The presence of “autophagy” in 6 GO terms and one UniProt term provides a cumulative gain of 0.154. 
The related terms, “autophagy of mitochondrion”; “autophagy of nucleus”; and “autophagosome 
membrane”, respectively, are not present in the top 60 descriptors and, with a cumulative gain of 0.003, 
are not contributing to the model.  This, most likely, has to do with lack of association between these 
terms and the 103 ATG-positive genes. LINCS-associated terms do not provide a significant contribution 
to the model. This is not surprising, since the LINCS descriptors used here are derived from measuring 
cancer cell genomic response to drug perturbation, which is perhaps less relevant in the context of 
autophagy. Among the top 40 descriptors are 11 PPI nodes: ATG12, MAPK1, ATG4B, BECN1, SQSTM1, 
PIK3CD, MARK2, MAPK15, AKT2, GABARAPL2, and TSC1, respectively, with the top 4 (ATG12, 
MAPK1, ATG4B, and BECN1) accounting for 40% of the total gain. Except for MARK2 and MAPK15, 
these form a complex network of protein interactions (https://bit.ly/2JHygyq). The vast majority of the 
STRING [30] analysis enrichment terms point to autophagy (including macroautophagy, autophagy of 
mitochondrion, autophagosome assembly); phosphotransferase and kinase activity; as well as five 
publications related to autophagy [51–55]. 
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Insert Figure 2

Figure 2. Top 40 variables, selected by the ATG MPxgb model, in decreasing order of importance. PPI: 
protein-protein interaction nodes; IPR: InterPro domain; GO: Gene Ontology term; HPA: Human Protein 
Atlas.  See text for additional details.

Of the two outlier PPI nodes, MARK2 and MAPK15, MAPK15 is part of the ULK complex [56] and 
stimulates autophagy by interacting with ATG8 family proteins [57]. The involvement of MARK2 in 
autophagy is less clear [58]. When combined with the 103 ATG-model input genes, a complex regulatory 
network enriched in the same autophagy terms is observed (https://bit.ly/2Z2SF60), with 3 additional 
KEGG pathways: “hsa04211: Longevity regulating pathway”, “hsa04150: mTOR signaling pathway” and 
“hsa04068: FoxO signaling pathway”, respectively. The top five publications are also related to autophagy 
[52,59–62].  Based on the STRING analysis of MPxgb selected PPI nodes, we conclude that these 
descriptors are relevant for autophagy.  The MPxgb variable selection of IPR domains, as well as GO 
terms, is also related to genes that play a relevant role in autophagy (see also Supplementary Material).  
We conclude that the ATG MPxgb model discussed herein is significantly enriched in autophagy related 
terms and PPI nodes, and bears relevance for guiding future autophagy research with respect to 
potentially novel gene annotation for ATG involvement.

Model Output:  Quantifying Knowledge  

We examined the top 251 predicted genes, as ranked by the predicted probability of association with 
ATG. Among these, 9 were present in the initial set of 288 ATGdb genes; another 34 genes are 
annotated in the ATGdb expanded set (see Supplementary Material). A total of 43 genes predicted by the 
ATG MPxgb model were retrieved from ATGdb. Another set of 15 genes could be found by performing 
additional queries, such as “Autophagy Pathway” in PathCards [63]. Thus, 58 of the top 251 genes, or 
23.1%, appear to have confirmed (or strongly suspected) association with autophagy. However, 193 of 
these top 251 genes do not appear to be associated with autophagy, despite efforts to consult a variety of 
literature-based resources and online databases (which include ATGdb, PathCards, KEGG, GO, UniProt 
and TCRD). 

Given that most of the top 40 ATG MPxgb variables and 23% of the top 251 genes (including the gene 
ranked 246, ARFGEF1 - present in ATGdb), we posit that this machine learning model bears relevance in 
the study of autophagy, and suggest that some of these 193 genes may represent autophagy “dark 
genes”. We also examined the “Target development level” (TDL), a knowledge-based classification for 
human proteins [22] that can be used to explore the dark genome [64].  In brief, Tclin are proteins via 
which approved drugs act (i.e., mode-of-action drug targets); Tchem are proteins known to bind small 
molecules with high potency; Tbio are proteins with well-studied biology, having a fractional publication 
count above 5 [65] or well-annotated OMIM (disease) phenotypes; and Tdark are understudied proteins 
that do not meet criteria for the above 3 categories, respectively.  The TDL count for the training set (103 
ATG-associated genes), the test set (top 251 predicted genes) and the “ATG dark genes?” subset (193 
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genes) is summarized in Table 2.  As estimated by this knowledge classification system, it can be 
concluded that the majority of the predicted genes, specifically for the ATG dark genes, are either Tbio or 
Tdark. Indeed, nearly 30.6% of the “ATG dark genes” are classified as Tdark. which suggests that a 
significant portion of these genes are understudied. 

Table 2. Target development level distribution for the ATG MPxgb model sets

Set Tclin Tchem Tbio Tdark
Training 10 32 60 1
Test 0 52 137 62
ATG dark gene? 0 37 97 59

Model Output:  Newly Predicted Genes  

For the sake of brevity, we focus the remainder of this discussion on the top 40 predicted genes, which 
are outlined in Table 3.  Of these, 15 genes are already in ATGdb (GABARAPL3, ULK3, EIF2AK2, 
RRAGD, RAB1A, VPS39, CSNK1G2, SNX1, CSNK2A2, PRKAB1, RAB9A, PRKCI, MAP3K14, EXOC4, 
CALCOCO2).  RMDN1, interacts with Beclin 1, a known regulator of autophagy [66]; another gene, SLK, 
escorts VPS4B which itself is involved in autophagy [67]; OXSR1 is upstream of AMPK, a known 
autophagy regulator [68]; whereas MTMR3 and BNIP3L are ATG-annotated in PathCards.  

Twenty of the top 40 genes may represent, however, novel assertions with respect to autophagy: 
MAP1LC3B2, TAOK3, NEK6, CLK1, STK35, NLK, VPS4A, RNF41, CLK3, VTI1A, RAB24, UBALD1, 
S100A6, PRKD2, NRBP1, CSNK1A1, RBM18, IKBKE, GRK5, and TMEM167A, respectively. With six 
exceptions (TAOK3, CLK1, CLK3, UBALD1, RBM18, and TMEM167A), the remaining 14 genes form a 
complex network when combined with the 11 PPI nodes discussed in the Variable Importance section 
(https://bit.ly/2Yc5EoZ). As previously mentioned, the STRING analysis enrichment terms point to 
autophagy (including autophagy, macroautophagy, and autophagosome assembly); protein 
serine/threonine kinase activity activity; KEGG Pathway terms “hsa04140: Autophagy - animal”, 
“hsa05167: Kaposi's sarcoma-associated herpesvirus infection”, “hsa05160: Hepatitis C” and “hsa04152: 
AMPK signaling pathway” as well as multiple publications related to autophagy [52,53,55,60,69–72]. 

Since many of the potentially novel 20 genes out of the top 40 are kinases, we used X2K Web 
(eXpression2Kinases) [73] to perform a Transcription Factor Enrichment Analysis (TFEA) [74].  This type 
of analysis predicts which transcription factors (TFs) are most likely to regulate the expression of these 20 
genes.  The ranked list of predicted TFs is visually summarized in Figure 3.  The top ranked 13 
transcription factors, selected to ensure that each of the top 20 predicted autophagy genes is represented 
at least once, are as follows: RUNX1, TCF7L2, ELF1, TAF1, GATA1, FOXP2, FOXA1, SPI1, CHD1, SRF, 
FOXA2, ZNF384, and BRCA1, respectively. 

When combining the 11 PPI node genes selected by the ATG MPxgb model with the 13 genes TFEA-
selected genes, the top potentially novel ATG genes form a complex STRING-based network 
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(https://bit.ly/2YeOffr) that leaves six genes out (NRBP1, CLK1, CLK3, UBALD1, RBM18, and 
TMEM167A).  In addition to GO terms related to autophagy, the STRING analysis enrichment terms 
include “transcription factor binding”  and “membrane-bounded organelle”; the UniProt keyword 
“Phosphoprotein”; the KEGG Pathway terms “hsa03022: Basal transcription factors”, “hsa04137: 
Mitophagy - animal” and “hsa05168: Herpes simplex infection”, as well as several publications related to 
autophagy [51,52,55,69,75–77].  While the TFEA step does appear to include STRING enrichment terms 
associated to TFs, it also provides additional data elements supporting the role of some proteins left out 
of the STRING-based PPI network: UBALD1 might be regulated by 10 of the 13 TFs, TAOK3 and CLK1 
by 5, and TMEM167A by 4 TFs, whereas NRBP1 and RBM18 are regulated by 2.  Both this and the prior 
STRING network highlight the relationship between some ATG-related genes and viral (H. simplex , 
Hepatitis C) infection.  This is not surprising, since autophagy is an antiviral defense mechanism.

Insert Figure 3

Figure 3. Visual summary of the transcription factor enrichment analysis for the top 20 predicted genes 
autophagy dark genes. Thirteen transcription factors are shown in reverse order of P-value ranking.  See 
text for additional details.
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Table 3.  List of top 40 genes from the ATG MPxgb model.  HUGO Gene Nomenclature Committee.  Pred.prob – predicted probability, as derived 
from the model. 
 
UniProt 
Accession

HGCN 
symbol

Protein name pred.prob TDL Autophagy Information

Q9BY60 GABARAPL3 Gamma-aminobutyric acid receptor-associated 
protein-like 3

0.967 Tdark Present in ATGdb (288 set)

Q6PHR2 ULK3 Serine/threonine-protein kinase ULK3 0.927 Tchem Present in ATGdb (expanded set)
Q96DB5 RMDN1 Regulator of microtubule dynamics protein 1 0.917 Tdark Beclin interacting / STRING-DB
P19525 EIF2AK2 Interferon-induced, double-stranded RNA-

activated protein kinase
0.910 Tchem Present in ATGdb (expanded set)

Q9NQL2 RRAGD Ras-related GTP-binding protein D 0.841 Tbio Present in ATGdb (expanded set)
O95747 OXSR1 Serine/threonine-protein kinase OSR1 0.818 Tbio Upstream of AMPK
Q9H2G2 SLK STE20-like serine/threonine-protein kinase 0.770 Tchem escort VPS4B
Q13615 MTMR3 Myotubularin-related protein 3 0.749 Tbio Autophagy Pathway PathCards|Autophagy 

animal PathCards
P62820 RAB1A Ras-related protein Rab-1A 0.731 Tbio Present in ATGdb (expanded set)
A6NCE7 MAP1LC3B2 Microtubule-associated proteins 1A/1B light 

chain 3 beta 2
0.713 Tdark ATG dark gene?

Q9H2K8 TAOK3 Serine/threonine-protein kinase TAO3 0.709 Tchem ATG dark gene?
Q9HC98 NEK6 Serine/threonine-protein kinase Nek6 0.703 Tchem ATG dark gene?
Q96JC1 VPS39 Vam6/Vps39-like protein 0.695 Tbio Present in ATGdb (expanded set)
P49759 CLK1 Dual specificity protein kinase CLK1 0.686 Tchem ATG dark gene?
O60238 BNIP3L BCL2/adenovirus E1B 19 kDa protein-

interacting protein 3-like
0.683 Tbio Autophagy Pathway PathCards

Q8TDR2 STK35 Serine/threonine-protein kinase 35 0.676 Tchem ATG dark gene?
P78368 CSNK1G2 Casein kinase I isoform gamma-2 0.675 Tchem Present in ATGdb (expanded set)
Q9UBE8 NLK Serine/threonine-protein kinase NLK 0.652 Tchem ATG dark gene?
Q9UN37 VPS4A Vacuolar protein sorting-associated protein 4A 0.651 Tbio ATG dark gene?
Q9H4P4 RNF41 E3 ubiquitin-protein ligase NRDP1 0.630 Tbio ATG dark gene?
Q13596 SNX1 Sorting nexin-1 0.619 Tbio Present in ATGdb (288 set)
P49761 CLK3 Dual specificity protein kinase CLK3 0.585 Tchem ATG dark gene?
Q96AJ9 VTI1A Vesicle transport through interaction with t-

SNAREs homolog 1A
0.585 Tbio ATG dark gene?
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P19784 CSNK2A2 Casein kinase II subunit alpha' 0.577 Tchem Present in ATGdb (expanded set)
Q9Y478 PRKAB1 5'-AMP-activated protein kinase subunit beta-1 0.576 Tchem Present in ATGdb (expanded set)
P51151 RAB9A Ras-related protein Rab-9A 0.518 Tbio Present in ATGdb (expanded set)
Q969Q5 RAB24 Ras-related protein Rab-24 0.517 Tbio ATG dark gene?
P41743 PRKCI Protein kinase C iota type 0.512 Tchem Present in ATGdb (expanded set)
Q8TB05 UBALD1 UBA-like domain-containing protein 1 0.496 Tdark ATG dark gene?
P06703 S100A6 Protein S100-A6 0.468 Tbio ATG dark gene?
Q9BZL6 PRKD2 Serine/threonine-protein kinase D2 0.462 Tchem ATG dark gene?
Q99558 MAP3K14 Mitogen-activated protein kinase kinase kinase 

14
0.453 Tchem Present in ATGdb (expanded set)

Q9UHY1 NRBP1 Nuclear receptor-binding protein 0.437 Tbio ATG dark gene?
P48729 CSNK1A1 Casein kinase I isoform alpha 0.436 Tchem ATG dark gene?
Q96H35 RBM18 Probable RNA-binding protein 18 0.430 Tdark ATG dark gene?
Q96A65 EXOC4 Exocyst complex component 4 0.415 Tbio Present in ATGdb (expanded set)
Q14164 IKBKE Inhibitor of nuclear factor kappa-B kinase 

subunit epsilon
0.402 Tchem ATG dark gene?

P34947 GRK5 G protein-coupled receptor kinase 5 0.395 Tchem ATG dark gene?
Q8TBQ9 TMEM167A Protein kish-A 0.394 Tdark ATG dark gene?
Q13137 CALCOCO2 Calcium-binding and coiled-coil domain-

containing protein 2
0.394 Tbio Present in ATGdb (expanded set)
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Conclusions 
In this paper we introduced an ATG-dedicated machine learning model, which we intended to provide as 
guidance for extending current autophagy knowledge, in order to explore gene that previously have not 
been evaluated for their role in autophagy. In developing this ATG-specific MPxgb model, we started with 
288 genes associated with autophagy from the Autophagy database, ATGdb [49], upon which we set 
additional filters (association with GO, KEGG and UniProt terms), to increase confidence in the remaining 
103 positive label genes.  As negative labels, we used N = 3,468 genes associated with monogenic 
diseases in OMIM, which were not present in ATGdb, as genes lacking the ATG association.  This 
assumption, which is necessary for many machine learning methods, specifically for binary classifiers, 
may represent a significant flaw since we lack absolute certainty that negative examples are not genes 
playing a role in autophagy. However, just as any other ML models, the ATG-specific MPxgb model 
requires extensive validation, perhaps via several iterations.  Reflecting current levels of evidence, we 
used XGBoost, a binary classifier combined with the Metapath (Figure 2) approach, which was deployed 
upon 17 sources of data representing seven distinct categories (Table 1). The ATG MPxgb model 
implicates up to 193 previously untested genes that may have a functional role in autophagy. This was, in 
fact, our primary motivation: to provide the scientific community with a ML-ready list of autophagy genes, 
as summarized by the training set, combined with a truly blind prediction set (N = 193).  By disclosing this 
list of putative genes, we aim to encourage further experimental testing.  All gene sets mentioned 
throughout this paper are available in the Supplementary Material.  Future validation steps may include 
integration of chemical–protein annotation resources, using Pharos [48] and Chem-Prot [78], the use of a 
semantic model to evaluate druggability via the drug target ontology [79].
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