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Abstract   28 

Introduction. Hospital-acquired pneumonia (HAP) is the one that presents clinically two or more 29 

days after admission into the hospital. Rapid identification of the causative agent of HAP will allow 30 

an earlier administration of a more appropriate antibiotic therapy and could lead to an improved 31 

outcome of patients with HAP. 32 

Methods. First of all, a rapid procedure (< 30 min) to extract the DNA from bronchoalveolar lavage 33 

(BAL), endotracheal aspirate (EA) or bronchoaspirate (BAS) was set up. A loop-mediated 34 

isothermal amplification reaction (LAMP) specific for Staphylococcus aureus, Escherichia coli, 35 

Klebsiella pneumoniae, Pseudomonas aeruginosa, Stenotrophomonas maltophilia and 36 

Acinetobacter baumannii was carried out with the extracted solution. The reaction was performed 37 

at 65ºC for 30-40 min. LAMP was compared with bacterial culture method. 38 

Results. Overall, 58 positive BAL and 83 EA/BAS samples were tested. The limits of detection 39 

varied according to the microorganism detected and to the respiratory sample analyzed. 40 

Validation of the LAMP assay with BAL samples showed that the assay was 100% specific and 41 

86.3% sensitive (positive predictive value of 100% and a negative predictive value of 50%). 42 

Meanwhile for BAS/EA samples, the assay rendered the following statistical parameters: 100% 43 

specificity, 94.6% sensitivity, 100% positive predictive value and 69.2% negative predictive value. 44 

These scores were obtained including minor errors as correct. The turnaround time including 45 

preparation of the sample and LAMP was circa 1 hour. 46 

Conclusions. LAMP method may be used to detect the most frequent bacteria causing HAP. It is a 47 

simple, cheap, sensitive, specific and rapid assay.   48 
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Introduction 49 

 Hospital-acquired pneumonia (HAP) is the one that presents clinically two or more days 50 

after hospitalization and includes ventilator-associated pneumonia (VAP), which is defined as 51 

pneumonia that presents after 48 hours with endotracheal intubation (1). Patients with VAP 52 

present longer periods with mechanical ventilation, as well as longer stay in the ICU and in the 53 

hospital (2). It is estimated that approximately 10-40% of the patients undergoing mechanical 54 

ventilation for more than two days will develop VAP (2), with great differences among countries, 55 

type of patient, and type of intensive care unit (ICU). The implementation of different preventive 56 

strategies enabled a decrease in VAP cases, but it is still a very important problem among 57 

ventilated patients (3).  58 

 VAP is frequently caused by Gram-negative aerobic bacteria (4–6), such as Pseudomonas 59 

aeruginosa, Klebsiella pneumoniae and Acinetobacter spp; while Staphylococcus aureus is the 60 

most frequent Gram-positive pathogen (7). In addition, the VAP can be polymicrobial, which 61 

complicates diagnosis and treatment. Regarding viruses, virus herpes simplex (HSV) (8) and 62 

cytomegalovirus (CMV) (9) can be reactivated in critical care patients and cause VAP. It should be 63 

noted that many of the pathogens causing VAP may present high levels of antibiotic resistance (2, 64 

7). 65 

 Unfortunately, the diagnosis of VAP is complicated and there is no a reliable reference test 66 

(10). The signs and symptoms of pneumonia, such as fever, tachycardia, leukocytosis and purulent 67 

secretions, are frequent in patients with mechanical ventilation and are not specific to VAP. 68 

Moreover, radiographic changes are difficult to interpret in this group of patients. Therefore, it is 69 

necessary to confirm the clinical suspicion of VAP through the microbiological culture of 70 

pulmonary secretions. However, the microbiological diagnosis also has several limitations: 1) 71 

difficulty to differentiate between colonization and infection; 2) non-homogeneous distribution of 72 
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the infection in the lung; and 3) negative cultures due to previous empirical antibiotic treatment. 73 

Empirical treatment is usually initiated in patients with suspected VAP before having the definitive 74 

diagnosis (11), since early and adequate treatment decreases the mortality (12). However, the 75 

indiscriminate administration of antibiotics exposes patients to unnecessary side effects, increases 76 

health care costs and favors the appearance of antibiotic resistance. Hence, the importance of 77 

knowing if there is an infection or not and the identification of the etiological agent (2).  78 

 The application of rapid diagnostic techniques to identify microbial pathogens seems to 79 

have a huge impact in the treatment of VAP, reducing inappropriate or unnecessary antimicrobial 80 

treatments and mortality in these patients (13, 14). Molecular biology techniques have allowed a 81 

faster diagnosis of VAP, especially in viral infections. They have the advantage of being faster than 82 

culture, allowing the detection of the causative agents even though the patient is receiving 83 

antibiotics and being able to quantify the bacterial concentration in the sample. On the other 84 

hand, in general they are relatively expensive techniques and detect a limited number of 85 

microorganisms.  86 

 The reaction based on the loop-mediated isothermal amplification (LAMP), developed in 87 

2000 by Notomi et al. (15), is a rapid, simple, cheap and constant temperature nucleic acid 88 

amplification method. This method is very sensitive and specific, and there are numerous 89 

publications regarding its use in a wide range of applications (16). LAMP has been used to identify 90 

respiratory pathogens, with promising results (17, 18). The purpose of this study was to develop 91 

and evaluate a rapid protocol to identify the main microorganisms involved in HAP by LAMP 92 

directly from respiratory samples.  93 
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Material and Methods 94 

Study design  95 

 We developed a rapid protocol to identify by LAMP six different bacteria (P. aeruginosa, 96 

Acinetobacter baumannii, K. pneumoniae, Escherichia coli, S. aureus and Stenotrophomonas 97 

maltophilia) and evaluated its performance compared to culture. We used three different types of 98 

samples: bronchoalveolar lavage (BAL), endotracheal aspirate (EA) and bronchoaspirate (BAS). 99 

Two different protocols were optimized and used to deal with the different consistencies of the 100 

samples processed (aspirates being more difficult to work with due to sample thickness).  101 

Collection of samples 102 

 Positive and negative BAL, EA and BAS samples were collected from the Clinical 103 

Microbiology Laboratory at the Hospital Clinic of Barcelona (Spain), after being processed for 104 

routine techniques. The microbiological result was collected, including Gram stain and culture 105 

result. BAL collected during two-year period (2016/17) and EA/BAS during six months (January to 106 

June 2018) were stored at -80ºC until use. To standardize the protocol, negative samples were 107 

mixed to obtain a homogeneous matrix. Aliquots of this homogeneous negative sample was 108 

spiked with different microorganisms and used to determine the limits of detection for each 109 

microorganism. 110 

Routine microbiological methods 111 

 Respiratory samples were collected in sterile containers and transported to the laboratory 112 

in less than two hours. Gram staining of the samples in the area of maximal purulence was 113 

examined for leukocytes and epithelial cells. Only respiratory samples with Murray–Washington 114 

classification degrees of IV (10–25 epithelial cells and >25 leukocytes per field using a low 115 

magnification lens (x100)), V (≤10 epithelial cells and >25 leukocytes) or VI (≤10 epithelial cells and 116 
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≤10 leukocytes) were processed for culture. Specimens not fulfilling these criteria were not 117 

considered to be representative of distal airways and were not processed for culture.  118 

 Good-quality respiratory specimens were quantitatively plated on blood and chocolate 119 

agar. Isolated bacteria were identified by matrix-assisted laser desorption/ionization time-of-flight 120 

mass spectrometry (MALDI-TOF MS) (Bruker Daltonics, Bremen, Germany). Susceptibility testing 121 

was performed according to EUCAST guidelines (www.eucast.org). Potential pathogenic bacteria 122 

included Haemophilus influenzae, Streptococcus pneumoniae, Moraxella catarrhalis, Gram-123 

negative bacilli, Pseudomonas aeruginosa and Staphylococcus aureus. Non-potential pathogenic 124 

microorganisms included Viridans group streptococci, Neisseria spp, Candida spp, 125 

Corynebacterium spp, H. parainfluenzae and coagulase-negative staphylococci and were not 126 

considered as clinically significant. These samples were informed as having normal or mixed flora.  127 

Extraction of DNA 128 

 Two protocols depending on the type of sample were performed, and they are described in 129 

Figure 1. Briefly, samples were concentrated by centrifugation and boiled in DireCtQuant 100W 130 

buffer (FrontexBioMed, Ltd. / DireCtQuant, Lleida, Spain) to obtain extracted DNA. This extract 131 

was later on used for the LAMP test. 132 

LAMP protocol 133 

 Previously described primers (17) were used for P. aeruginosa, A. baumannii, K. 134 

pneumoniae, E. coli, S. maltophilia, and S. aureus. The LAMP was performed in 25 μL of reaction 135 

mixture: 5 μL primers (0.2μM outer, 1.6μM inner and 0.4μM loop primers), 15 μL Isothermal 136 

Master Mix (Optigene) and 5.0μL of extraction product. Once the reaction mix is ready, gentle 137 

vortex and centrifugation must be performed. The reaction was conducted in a Versant kPCR 138 

(Siemens) at 65°C for 40 minutes for BAL samples and in a Lightcycler (Roche) at 65ºC for 30 139 
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minutes for EA/BAS. Both protocols can be implemented independently of the thermocycler, but 140 

we performed them in two different machines because they were done in different times and 141 

changes in laboratory equipment occurred.  142 

Determination of the limits of detection 143 

 Each microorganism was inoculated into negative BAL samples to a final concentration 144 

ranging from 107 to 102 CFU/mL. For EA/BAS it was not possible to perform the same study for 145 

sensitivity due to the consistency of the samples and the physical impossibility of obtaining 146 

homogeneous matrix for all the dilutions. Instead, positive samples were used to perform serial 147 

10-fold dilutions in saline buffer. Final concentration for each dilution was based on the 148 

approximate initial concentration determined by culture. 149 

Statistical analysis 150 

 Concordance between culture and LAMP results was studied. Major errors were defined as 151 

result discrepancies where the microorganism identified by LAMP was completely different from 152 

that identified in culture or the detection of a pathogen when the culture had none. Minor errors 153 

were defined as concordant results for the major pathogen identification but LAMP identified 154 

additional microorganisms. 155 

Diagnostic performance was based on sensitivity, specificity, negative- and positive-156 

predictive values, and accuracy defined as described elsewhere (19, 20). Accuracy was calculated 157 

as concordant results over total number analyzed. Cohen's kappa coefficient was also calculated. 158 

Statistical analyses were performed using Stata version 15 (Texas, USA). 159 

Ethical aspects. 160 

 The Ethical Committee of the Hospital Clinic of Barcelona, Spain approved the study 161 

protocol. The study is registered as HCB/2016/0294.                                   162 
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Results 163 

BAL samples. 164 

 The limit of detection of LAMP for the different pathogens tested in BAL was 102 CFU/mL 165 

for S. aureus, E. coli, P. aeruginosa and K. pneumoniae, and 104 CFU/mL for S. maltophilia and A. 166 

baumannii. No cross-reaction was identified using these primers while testing spiked samples with 167 

the other microorganisms included in the study. Regarding the evaluation with clinical samples, 168 

the concordance between culture and LAMP results is shown in Table 1. A total of 58 positive BAL 169 

samples were tested. All major errors happened due to a low concentration of bacterial in the 170 

sample, except for one case in which A. baumannii was not detected although with high 171 

concentration, and even after repeating the technique. The accuracy of the LAMP assay was of 172 

77.6% or 87.9% if the minor errors were considered as a non-true or true result, respectively 173 

(Table 2). In addition, calculation of the clinical sensitivity and specificity yielded 100% (95%CI; 174 

59% to 100%) specificity, a sensitivity of 86.3% (95%CI; 73.7% to 94.3%), a PPV of 100% and a NPV 175 

of 50% (95%CI; 33.5% to 66.6%) when minor errors where treated as a true positive sample. The 176 

statistical data considering minor errors as a false positive sample is shown in Table 2.  177 

BAS/EA samples. 178 

 The estimated limit of detection of the LAMP assay to detect pathogens directly from BAS 179 

or EA samples was 102 CFU/mL for P. aeruginosa, K. pneumoniae and A. baumannii, 103 CFU/mL 180 

for E. coli, and 104 CFU/mL for S. aureus and S. maltophilia. No cross-reaction was identified using 181 

these primers while testing spiked samples with the other microorganisms included in the study. 182 

Regarding the evaluation with clinical samples, a total of 83 samples were tested. The accuracy 183 

between culture and LAMP results is shown in Table 2 and it was of 95.2% or 72.3%, respectively 184 

when the minor errors where considered as true positives or not. In Table 3, the concordance 185 
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between the LAMP assay and bacterial culture is shown. All major errors happened due to a low 186 

concentration of bacterial in the sample, except for two cases: S. aureus with more than 10,000 187 

CFU/mL in culture and A. baumannii with 300,000 CFU/mL in culture.  188 

 Regarding possible amplification inhibitors, a mix of lipidic, hematic, viscous and mucous 189 

samples were used and inoculated with the different microorganisms. No evidence of interference 190 

was observed in any of these prepared samples.  191 

Most positive results appeared before 30 minutes, and together with the sample handling 192 

time, the results could be obtained within one-hour time. 193 

 The sensitivity, specificity, negative and positive predictive values of the LAMP assay to 194 

detect pathogens directly from BAS/EA samples are shown in Table 2. When minor errors were 195 

considered as false positive results, the sensitivity was 68.9% (95%CI; 57.1% to 79.2%), the 196 

specificity was 100% (95%CI; 66.4% to 100%), and the PPV and NPV were of 100% and 28.1%, 197 

respectively. However, when minor errors were considered as true positive the statistical 198 

indicators were: 94.6% (95%CI; 86.7% to 98.5%) sensitivity, 100% (95%CI; 66.4% to 100%) 199 

specificity, 100% PPV and 69.2% (95%CI; 46.5% to 85.4%) NPV (Table 2). 200 

 The time to positivity of the LAMP test was strongly correlated with the number of 201 

bacterial CFU/ml in culture in EA/BAS samples (r= - 0.71, P<0.01) but not in BAL samples (Figure 2). 202 

These results suggest that, at least in EA/BAS samples, the time to positivity of LAMP could be 203 

used as a semi-quantitative measure.   204 
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Discussion 205 

 Although new preventive measures have led to a reduction of HAP incidence, it remains 206 

associated with important morbi-mortality (21). Therefore, it is necessary to introduce new 207 

methods to improve an early diagnosis. Here, we have evaluated the use of LAMP as a rapid 208 

diagnostic tool to identify the main pathogens involved in HAP with promising results.  209 

 We found an overall accuracy between LAMP and culture of 88% for BAL samples and 95% 210 

for BAS/EA samples. Almost all syndromic tests available to identify pathogens causing respiratory 211 

tract infections include virus and atypical bacteria (22), but not many include the major bacterial 212 

pathogens causing HAP. Furthermore, rapid identification of the pathogen causing VAP is crucial to 213 

improve the patient outcome. In this sense, a multiplex PCR-based syndromic panel including 16 214 

bacterial and one fungal target as well as 22 antimicrobial resistance markers has been evaluated 215 

(23, 24, 25), showing a sensitivity from 60 % to 90% and a turnaround time of circa 4 hours. In our 216 

case, as LAMP is much less affected than PCR by possible inhibitors in the sample (26), in the 217 

condition of high bacteria concentration, no automatic nucleic acid extraction is required, and 218 

therefore we can reduce turnaround including preparation of the sample and LAMP to around 1 219 

hour. 220 

Kang et al. (17) performed a nationwide study in China in which the qLAMP assay was 221 

compared with culture to detect eight respiratory bacterial pathogens from sputum, detecting 222 

pathogens in 1047 (69.28%) patients from 1533 qualified patients. They used a kit for the nucleic 223 

acid extraction.  224 

Cost is also important. We have calculated that the LAMP assay (counting both reagents for 225 

nucleic acid extraction and LAMP together with plastic material) to detect the six pathogens 226 

causing HAP in this study will cost 12€.  227 
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LAMP may be useful then as a complementary tool to culture, allowing rapid identification 228 

of the microorganism causing the infection. In addition, a semi-quantitative approach can be used 229 

extrapolating the time to result with the CFU/ml in BAS and EA. In BAL the data that we had was 230 

not sufficient to get a significant result (data not shown). If the quantification is under 10²-10³ 231 

CFU/ml the LAMP will probably not provide a positive result, but in general culture result will be 232 

considered as colonization in these cases. Therefore, every positive LAMP result should be taken 233 

into consideration, always taking into account the Gram stain, quality of samples and clinical 234 

situation of the patient. Culture should not be avoided in any case and LAMP could be 235 

implemented as a complement to accelerate the diagnosis of HAP. 236 

Furthermore, it also seems promising for the detection of resistance genes (27, 28). 237 

Pathogen identification and potential antibiotic resistance is possible with LAMP, both more 238 

rapidly identified (1 hour) than with a time consuming (16 to 24 hours) classical phenotypic 239 

method. And, it could be even faster when applied directly to samples (29). 240 

 LAMP method may be used to detect the most frequent bacteria causing HAP. It is a 241 

simple, cheap, sensitive, specific and rapid (circa one hour) assay. Multiplexing targets may 242 

facilitate the implementation of this technique in routine laboratories. Each laboratory must adapt 243 

the targets according to its epidemiology.   244 
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Figure legends. 348 

 349 

Figure 1. Sample preparation workflow for bronchoalveolar lavage (BAL) and 350 

bronchoaspirate/endotracheal aspirate (BAS/EA).   351 

 352 

Figure 2. Correlation of time to positivity and bacterial load in culture. Scatter plot shows time to 353 

result (in minutes) against number of CFU/mL (log10). Trend line displays best fit of all data points 354 

and the 95% CI for the prediction. Vertical reference lines indicate time points. BAS/EA:  355 

bronchoaspirate/endotracheal aspirate.  356 
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Tables 357 

Table 1. LAMP results from BAL samples according to the result obtained by culture. 358 

Microorganisms 
identified by 
culture 

N 
Concordance 

 

Minor 
errors 

 

Major 
errors 

 

Comments 
 

S. aureus 19 15 2A,B 2C,D ALAMP: SAUR+SMAL detected 
BLAMP: SAUR+PAER detected 
(GNB in gram stain) 
C,DCulture: Few CFU of SAUR 

P. aeruginosa 11 9 - 2E,F ECulture: < 1000 CFU of PAER, 
LAMP: SAUR detected 
FCulture: <1000 CFU of PAER, 
LAMP negative 

S. maltophilia 6 6 - - - 

K. pneumoniae 4 2 - 2G GCulture: <1000 CFU of KPNE 
(two cases) 

E. coli 3 3 - -  

A. baumannii 2 1 - 1H
 

HCulture: 100,000 CFU of ABAU 

Negative 7 6 1I
 - ILAMP: KPNE detected (GNB in 

gram stain) 

Mixed flora 6 3 3J,K,L
 - JLAMP:PAER detected 

KLAMP:SAUR detected 
LLAMP:KPNE detected 

TOTAL 58 45 6 7  

 359 

N: number of samples tested by culture and LAMP; SAUR: S. aureus; SMAL: S. maltophilia; PAER: P. 360 

aeruginosa; KPNE: K pneumoniae; ECOL: E. coli; ABAU: A. baumannii; GNB: Gram-negative bacilli.  361 
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Table 2. Statistics of the use of LAMP to detect pathogens directly from BAL and BAS/EA 362 

samples. 363 

 364 

 Minor error as wrong Minor error as right 

BAL Value (%) 95%CI Value (%) 95%CI 

Sensitivity 76.5 62.5-87.2 86.3 73.7-94.3 

Specificity 85.7 42.1-99.6 100 59-100 

PPV 97.5 86.3-99.6 100  

NPV 33.3 21.9-47.2 50 33.5-66.6 

Accuracy 77.6 64.7-87.5 87.9 76.7-95 

Kappa coefficient 43.3  17.9-68.8 70.9  51.5-90.2 

BAS/EA     

Sensitivity 68.9 57.1-79.2 94.6 86.7-98.5 

Specificity 100 66.3-100 100 66.4-100 

PPV 100  100  

NPV 28.1 21.8-35.5 69.2 46.5-85.4 

Accuracy 72.3 61.4-81.6 95.2 88.1-98.7 

Kappa coefficient 46.3 29.2-63.5 89.7 80-99.5 

 365 

BAL: bronchoalveolar lavage; BAS: bronchoaspirate; EA: endotraqueal aspirate; PPV: positive 366 

predictive value; NPV: negative predictive value; CI: confidence interval.   367 
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Table 3. LAMP results from BAS/EA samples according to the result obtained by culture. 368 

Microorganisms 
identified by 
culture 

N 
Concordance 

 

Minor 
errors 

 

Major 
errors 

 

Comments 
 

K. pneumoniae 13 10 3A,B - ALAMP: KPNE and ECOL detected 
(two cases) 
BLAMP: KPNE and PAER detected 

S. aureus 10 7 2C,D 1E CLAMP: SAUR and KPNE detected 
DLAMP: SAUR and ECOL detected 
ECulture: <1000 CFU of SAUR 

P. aeruginosa 11 9 2F
 - FLAMP: PAER and ECOL detected  

(two cases) 

E. coli 8 3 5G,H,I,J
 - GLAMP: ECOL and PAER  detected 

HLAMP: ECOL, PAER, SAUR and 
SMAL detected 
ILAMP: ECOL and KPNE detected 
JLAMP: ECOL, PAER and SMAL  
detected (two cases) 

S. maltophilia 2 2 - - - 

Polymicrobial 10 3 4 3 See table in supplementary 
material. 

Other 10 7 3K,L,M
 - KLAMP: ECOL and KPNE detected 

LLAMP: PAER detected 
MLAMP: PAER, SAUR and SMAL 
detected 

Mixed flora 10 10 - - - 

Negative 9 9 - - - 

TOTAL 83 60 19 4  

 369 

N: number of samples tested by culture and LAMP; KPNE: K pneumoniae; ECOL: E. coli; PAER: P. 370 

aeruginosa; SAUR: S. aureus; SMAL: S. maltophilia. 371 
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