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Abstract 290 

The electrocardiographic PR interval reflects atrioventricular conduction, and is associated with 291 

conduction abnormalities, pacemaker implantation, atrial fibrillation (AF), and cardiovascular 292 

mortality1,2. We performed multi-ancestry (N=293,051) and European only (N=271,570) genome-293 

wide association (GWAS) meta-analyses for the PR interval, discovering 210 loci of which 149 294 

are novel. Variants at all loci nearly doubled the percentage of heritability explained, from 33.5% 295 

to 62.6%. We observed enrichment for genes involved in cardiac muscle development/contraction 296 

and the cytoskeleton highlighting key regulation processes for atrioventricular conduction. 297 

Additionally, 19 novel loci harbour genes underlying inherited monogenic heart diseases 298 

suggesting the role of these genes in cardiovascular pathology in the general population. We 299 

showed that polygenic predisposition to PR interval duration is an endophenotype for 300 

cardiovascular disease risk, including distal conduction disease, AF, atrioventricular pre-301 

excitation, non-ischemic cardiomyopathy, and coronary heart disease. These findings advance our 302 

understanding of the polygenic basis of cardiac conduction, and the genetic relationship between 303 

PR interval duration and cardiovascular disease. 304 

  305 
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Main text 306 

The electrocardiogram is among the most common clinical tests ordered to assess cardiac 307 

abnormalities. Reproducible waveforms indicating discrete electrophysiologic processes were 308 

described over 100 years ago, yet the biological underpinnings of conduction and repolarization 309 

remain incompletely defined. The electrocardiographic PR interval reflects conduction from the 310 

atria to ventricles, across specialised conduction tissues such as the atrioventricular node and the 311 

His-Purkinje system. Pathological variation in the PR interval may indicate heart block or pre-312 

excitation, both of which can lead to sudden death2. The PR interval also serves as a risk factor for 313 

AF and cardiovascular mortality1-3. Prior genetic association studies have identified 64 PR interval 314 

loci4-13. To enhance our understanding of the genetic and biological mechanisms of atrioventricular 315 

conduction, we performed GWAS meta-analyses of autosomal and X chromosome variants 316 

imputed mainly with the 1000 Genomes Project reference panel14 using an additive model and 317 

increased sample size. Our primary meta-analysis included 293,051 individuals of European 318 

(92.6%), African (2.7%), Hispanic (4%), and Brazilian (<1%) ancestries from 40 studies 319 

(Supplementary Tables 1-3). We also performed ancestry-specific meta-analyses (Fig. 1).  320 

We identified a total of 210 genome-wide significant loci (P<5×10-8), of which 149 were not 321 

previously reported (Table 1, Fig. 2). Of the 149 novel loci, 141 were discovered in the multi-322 

ancestry analysis, and 8 additional novel loci were identified in the European ancestry analysis 323 

(Table 1, Fig. 2, Supplementary Tables 4-5, Supplementary Fig. 1-4). We considered only 324 

variants present in >60% of the maximum sample size, a filtering criterion used to ensure 325 

robustness of associated loci (Online Methods). There was strong support for all 64 previously 326 

reported loci (61 at P<5×10-8 and 3 at P<1.1×10-4; Supplementary Tables 6-7). No additional 327 

novel loci were identified in African or Hispanic/Latino ancestry meta-analyses (Supplementary 328 
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Table 8, Supplementary Fig. 1 and 3) or X chromosome meta-analyses (Supplementary Fig. 329 

5). In secondary analyses, we examined the rank-based inverse normal transformed residuals of 330 

PR interval. Results of absolute and transformed trait meta-analyses were highly correlated 331 

(ρ>0.94, Supplementary Tables 5, 9-10, Supplementary Fig. 6-7). 332 

By applying joint and conditional analyses in the European meta-analysis data, we identified 333 

multiple independently associated variants (Pjoint<5×10-8 and r2<0.1) at 12 novel and 25 previously 334 

reported loci (Supplementary Table 11). The overall variant-based heritability (h2
g) for the PR 335 

interval estimated in 59,097 unrelated European participants from the UK Biobank (UKB) with 336 

electrocardiograms was 18.2% (Online Methods). In the UKB, the proportion of h2
g explained by 337 

variation at all loci discovered in our analysis was 62.6%, compared to 33.5% when considering 338 

previously reported loci only.  339 

The majority of the lead variants at the 149 novel loci were common (minor allele frequency, 340 

MAF>5%). We observed 6 low-frequency (MAF 1-5%) variants, and one rare (MAF<1%) 341 

predicted damaging missense variant (rs35816944, p.Ser171Leu) in SPSB3 encoding 342 

SplA/Ryanodine Receptor Domain and SOCS Box-containing 3. SPSB3 is involved in degradation 343 

of SNAIL transcription factor, which regulates the epithelial-mesenchymal transition15, and has 344 

not been previously associated with cardiovascular traits. In total, we identified missense variants 345 

in genes at 12 novel and 6 previously reported loci (Supplementary Table 12). At MYH6, a 346 

previously described locus for PR interval6,10, sick sinus syndrome16, AF and other cardiovascular 347 

traits17, we observed a novel predicted damaging missense variant in MYH6 (rs28711516, 348 

p.Gly56Arg). MYH6 encodes the α-heavy chain subunit of cardiac myosin.  349 
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PR interval lead variants (or best proxy [r2>0.8]) at 39 novel and 23 previously reported loci 350 

were significant cis-eQTLs (at a 5% false discovery rate (FDR) in left ventricle (LV) and right 351 

atrial appendage (RAA) tissue samples from the Genotype-Tissue Expression (GTEx) project18 352 

(Supplementary Table 13). Variants at 21 novel loci were significant eQTLs in both tissues with 353 

consistent directionality of gene expression. We also performed a transcriptome-wide analysis to 354 

evaluate associations between predicted gene expression in LV and RAA with the PR interval. We 355 

identified 120 genes meeting our significance threshold (P<4.4×10-6, after Bonferroni correction); 356 

26 genes were not localised at PR interval loci (≥500kb from a lead variant) representing 357 

potentially novel regions (Supplementary Table 14, Supplementary Fig. 8). Longer PR interval 358 

duration was associated with decreased levels of predicted gene expression for 61 genes, and 359 

increased levels for 59 genes (Fig. 3).  360 

Most PR interval variants were annotated as non-coding. We therefore explored whether 361 

associated variants or proxies were located in transcriptionally active genomic regions. We 362 

observed enrichment for DNase I-hypersensitive sites in fetal heart tissue (P<9.36×10-5, 363 

Supplementary Fig. 9). Analysis of chromatin states indicated variants at 103 novel and 52 364 

previously reported loci were located within regulatory elements that are present in heart tissues 365 

(Supplementary Table 15), providing support for gene regulatory mechanisms in specifying the 366 

PR interval. To identify distal candidate genes at PR interval loci, we assessed the same set of 367 

variants for chromatin interactions in a LV tissue Hi-C dataset19. Forty-eight target genes were 368 

identified (Supplementary Table 16). Variants at 38 novel loci were associated with other traits, 369 

including AF and coronary heart disease (Supplementary Table 17, Supplementary Fig. 10).  370 

Candidate genes indicated by bioinformatics and in silico functional annotations at each novel 371 

locus are summarised in Supplementary Tables 18-19, and include 19 genes known to underlie 372 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted July 30, 2019. ; https://doi.org/10.1101/712398doi: bioRxiv preprint 

https://doi.org/10.1101/712398


18 

 

monogenic cardiovascular diseases. Enrichment analysis of genes at PR interval loci using 373 

DEPICT20 indicated heart development (P=1.87×10-15) and actin cytoskeleton organisation 374 

(P=2.20×10-15) as the most significantly enriched processes (Supplementary Table 20). Ingenuity 375 

Pathway Analysis (IPA) supported heart development, ion channel signaling and cell-376 

junction/cell-signaling amongst the most significant canonical pathways (Supplementary Table 377 

21). 378 

Finally, we evaluated associations between genetic predisposition to PR interval duration and 379 

16 cardiac phenotypes chosen a priori using ~309,000 unrelated UKB European participants not 380 

included in our meta-analyses21. We created a polygenic risk score (PRS) for PR interval using the 381 

multi-ancestry meta-analysis results (Fig. 4, Supplementary Table 22). Genetically determined 382 

PR interval prolongation was associated with higher risk of distal conduction disease 383 

(atrioventricular block; odds ratio [OR] per standard deviation 1.11, P=3.18×10-8) and pacemaker 384 

implantation (OR 1.06, P=0.0005). In contrast, genetically determined PR interval prolongation 385 

was associated with reduced risk of AF (OR 0.94, P=1.30×10-11) and atrioventricular pre-386 

excitation (Wolff-Parkinson-White syndrome; OR 0.83, P=8.36×10-4). Genetically determined PR 387 

interval prolongation was marginally associated with a reduced risk of non-ischemic 388 

cardiomyopathy (OR=0.95, P=0.046) and coronary heart disease (OR 0.99, P=0.035). Results were 389 

similar when using a PRS derived using the European ancestry meta-analysis results 390 

(Supplementary Fig. 11, Supplementary Table 22). 391 

To summarise, in meta-analyses of nearly 300,000 individuals we identified 210 loci, of which 392 

149 were novel, underlying cardiac conduction as manifested by the electrocardiographic PR 393 

interval. Apart from confirming well-established associations in loci harbouring ion-channel 394 

genes, our findings further underscore the central importance of heart development and 395 
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cytoskeletal components in atrioventricular conduction10,12,13. We also highlight the role of 396 

common variation at loci harboring genes underlying monogenic forms of heart disease in cardiac 397 

conduction.  398 

We report signals in/near 13 candidate genes at novel loci with functional roles in cytoskeletal 399 

assembly (DSP, DES, OBSL1, MYH11, PDLIM5, LDB3, FHL2, CEFIP, SSPN, TLN, PTK2, GJA5 400 

and CDH2; Fig. 5). DSP and DES encode components of the cardiac desmosome, a complex 401 

involved in ionic communication between cardiomyocytes and maintenance of cellular integrity. 402 

Mutations in the desmosome are implicated in arrhythmogenic cardiomyopathy (ACM) and dilated 403 

cardiomyopathy (DCM)22-26. Conduction slowing is a major component of the pathophysiology of 404 

arrhythmia in ACM and other cardiomyopathies27,28. OBSL1 encodes obscurin-like 1, which 405 

together with obscurin (OBSCN) is involved in sarcomerogenesis by bridging titin (TTN) and 406 

myomesin at the M-band29. PDLIM5 encodes a scaffold protein that tethers protein kinases to the 407 

Z-disk, and has been associated with DCM in homozygous murine cardiac knockouts30. FHL2 408 

encodes calcineurin-binding protein four and a half LIM domains 2, which is involved in cardiac 409 

development by negatively regulating calcineurin/NFAT signaling in cardiomyocytes31. Missense 410 

mutations in FHL2 have been associated with hypertrophic cardiomyopathy32. CEFIP encodes the 411 

cardiac-enriched FHL2-interacting protein located at the Z-disc, which interacts with FHL2. It is 412 

also involved in calcineurin–NFAT signaling, but its overexpression leads to cardiomyocyte 413 

hypertrophy33.  414 

Common variants in/near genes associated with inherited arrhythmia syndromes were also 415 

observed, suggesting these genes also affect atrioventricular conduction and cardiovascular 416 

pathology in the general population. Apart from DSP, DES, MYH11 and GJA5 listed above, our 417 

analyses indicate 15 additional candidate genes (ADRB1, ALPK3, BMPR1, BMPR2, CRYAB, 418 
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DERL3, DNAH11, DTNA, ETV1, HCN4, MYOZ2, PDE3A, RYR2, SPEG, LDB3) at novel loci 419 

causing Mendelian or other inherited forms of cardiovascular disease. Two genes we highlight are 420 

HCN4 and RYR2. HCN4 encodes a component of the hyperpolarization-activated cyclic 421 

nucleotide-gated potassium channel which specifies the sinoatrial pacemaker “funny” current, and 422 

is implicated in sinus node dysfunction, AF, and left ventricular noncompaction34-36. RYR2 encodes 423 

a calcium channel component in the cardiac sarcoplasmic reticulum and is implicated in 424 

catecholaminergic polymorphic ventricular tachycardia37.  425 

Genes with roles in autonomic signaling in the heart (CHRM2, ADCY5) were indicated from 426 

expression analyses. CHRM2 encodes the M2 muscarinic cholinergic receptors that bind 427 

acetylcholine and are expressed in the heart38. Their stimulation results in inhibition of adenylate 428 

cyclase encoded by ADCY5, which in turn inhibits ion channel function. Ultimately, the signaling 429 

cascade can result in reduced levels of the pacemaker “funny” current in the sinoatrial and 430 

atrioventricular nodes, reduced L-type calcium current in all myocyte populations, and increased 431 

inwardly rectifying IK.Ach potassium current in the conduction tissues and atria causing 432 

cardiomyocyte hyperpolarization39. Stimulation has also been reported to shorten atrial action 433 

potential duration and thereby facilitate re-entry, which may lead to AF40-42.  434 

By constructing PRSs, we also observed that genetically determined PR interval duration is an 435 

endophenotype for several adult-onset complex cardiovascular diseases, the most significant of 436 

which are arrhythmias and conduction disorders. For example, our findings are consistent with 437 

previous epidemiologic data supporting a U-shaped relationship between PR interval duration and 438 

AF risk1. Although aggregate genetic predisposition to PR interval prolongation is associated with 439 

reduced AF risk, top PR interval prolonging alleles are associated with decreased AF risk (e.g., 440 

localized to the SCN5A/SCN10A locus) whereas others are associated with increased AF risk (e.g., 441 
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localized to the TTN locus), consistent with prior reports8. These findings suggest that genetic 442 

determinants of the PR interval may identify distinct pathophysiologic mechanisms leading to AF, 443 

perhaps via specifying differences in tissue excitability, conduction velocity, or refractoriness. 444 

Future efforts are warranted to better understand the relations between genetically determined PR 445 

interval and specific arrhythmia mechanisms. 446 

In conclusion, our study more than triples the reported number of PR interval loci, which 447 

collectively explain ~62% of trait-related heritability. Our findings highlight important biological 448 

processes underlying atrioventricular conduction which include both ion channel function, and 449 

specification of cytoskeletal components. Our study also indicates that common variation in 450 

Mendelian cardiovascular disease genes contributes to population-based variation in the PR 451 

interval. Lastly, we observed that genetic determinants of the PR interval provide novel insights 452 

into the etiology of several complex cardiac diseases, including AF. Collectively, our results 453 

represent a major advance in understanding the polygenic nature of cardiac conduction, and the 454 

genetic relationship between PR interval duration and arrhythmias.  455 

  456 
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Online Methods 457 

Contributing studies 458 

A total of 40 studies (Supplementary Note) comprising 293,051 individuals of European 459 

(N=271,570), African (N=8,173), Hispanic (N=11,686), and Brazilian (N=485) ancestries 460 

contributed GWAS summary statistics for PR interval. All participating institutions and co-461 

ordinating centres approved this project, and informed consent was obtained from all study 462 

participants. Study-specific design, sample quality control and descriptive statistics are provided 463 

in Supplementary Tables 1-3. For the majority of the studies imputation was performed for 464 

autosomal chromosomes and X chromosome using the 1000 Genomes (1000G) project14 reference 465 

panel or a most recently released haplotype version (Supplementary Table 2). 466 

 467 

PR interval phenotype and exclusions 468 

The PR interval was measured in milliseconds from standard 12-lead electrocardiograms (ECGs), 469 

except in the UK-Biobank in which it was obtained from 4-lead ECGs (CAM-USB 6.5, Cardiosoft 470 

v6.51) recorded during a 15 second rest period prior to an exercise test (Supplementary Note). 471 

We excluded individuals with extreme PR interval values (<80ms or >320ms), second/third degree 472 

heart block, AF on the ECG, or a history of myocardial infarction or heart failure, Wolff-473 

Parkinson-White syndrome, pacemakers, receiving class I and class III antiarrhythmic 474 

medications, digoxin, and pregnancy.  475 

 476 
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Study-level association analyses 477 

We regressed the absolute PR interval on each genotype dosage using multiple linear regression 478 

with an additive genetic effect and adjusted for age, sex, height, body mass index, heart rate and 479 

any other study specific covariates. To account for relatedness, linear mixed effects models were 480 

used for family studies. To account for population structure, analyses were also adjusted for 481 

principal components of ancestry derived from genotyped variants after excluding related 482 

individuals. Analyses of autosomal variants were conducted separately for each ancestry group. X 483 

chromosome analyses were performed separately for males and females. Analyses using rank-484 

based inverse normal transformed residuals of PR interval corrected for the aforementioned 485 

covariates were also conducted. Residuals were calculated separately by ancestral group for 486 

autosomal variants, and separately for males and females for X chromosome variants.  487 

 488 

Centralized quality control 489 

We performed quality control centrally for each result file using EasyQC version 11.443. We 490 

removed variants that were monomorphic, had a minor allele count (MAC) <6, imputation quality 491 

metric <0.3 (imputed by MACH) or 0.4 (imputed by IMPUTE2), had invalid or mismatched 492 

alleles, were duplicated, or if they were allele frequency outliers (difference >0.2 from the allele 493 

frequency in 1000G project). We inspected PZ plots, effect allele frequency plots, effect size 494 

distributions, QQ plots, and compared effect sizes in each study to effect sizes from prior reports 495 

for established PR interval loci to identify genotype and study level anomalies. Variants with 496 

effective MAC (=2×N×MAF×imputation quality metric) <10 were omitted from each study prior 497 

to meta-analysis. 498 
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 499 

Meta-analyses 500 

We aggregated summary level associations between genotypes and absolute PR interval from all 501 

individuals (N=293,051), and only from Europeans (N=271,570), African Americans (N=8,173), 502 

and Hispanic/Latinos (N=12,823) using a fixed-effects meta-analysis approach implemented in 503 

METAL (release on 2011/03/25)44. For the X chromosome, meta-analyses were conducted in a 504 

sex-stratified fashion. Genomic control was applied (if inflation factor λGC>1) at the study level. 505 

Quantile–quantile (QQ) plots of observed versus expected –log10(P) did not show substantive 506 

inflation (Supplementary Figs. 1-2).   507 

Given the large sample size we undertook a one-stage discovery study design. To ensure the 508 

robustness of this approach we considered for further investigation only variants reaching genome-509 

wide significance (P<5×10-8) present in at least 60% of the maximum sample size (Nmax). We 510 

declared as novel any variants mapping outside the 64 loci previously reported (Supplementary 511 

Note, Supplementary Table 6). We grouped genome-wide significant variants into independent 512 

loci based on both distance (±500kb) and linkage disequilibrium (LD, r2<0.1) (Supplementary 513 

Note). We assessed heterogeneity in allelic effect sizes among studies contributing to the meta-514 

analysis and among ancestral groups by the I2 inconsistency index45 for the lead variant in each 515 

novel locus. LocusZoom46 was used to create region plots of identified loci. 516 

Meta-analyses (multi-ancestry [N=282,128], European only [N=271,570], and African 517 

[N=8,173]) of rank-based inverse normal transformed residuals of PR interval were also 518 

performed. Because not all studies contributed summary level association statistics of the 519 

transformed PR interval, we considered as primary the meta-analysis of absolute PR interval for 520 
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which we achieved the maximum sample size. Any loci that met our significance criteria in the 521 

meta-analyses of transformed PR interval were not taken forward for downstream analyses.  522 

 523 

Conditional and heritability analysis 524 

Conditional and joint GWAS analyses were implemented in GCTA v1.91.347 using summary level 525 

variant statistics from the European ancestry meta-analysis to identify independent association 526 

signals within PR interval loci. We used 59,097 unrelated (kinship coefficient >0.0884) UK 527 

Biobank participants of European ancestry as the reference sample to model patterns of LD 528 

between variants. We declared as conditionally independent any genome-wide significant variants 529 

in conditional analysis (Pjoint<5×10-8) not in LD (r2<0.1) with the lead variant in the locus.  530 

Using the same set of individuals from UK Biobank, we estimated the aggregate genetic 531 

contributions to PR interval with restricted maximum likelihood as implemented in BOLT-532 

REML48. We calculated the additive overall variant-heritability (ℎ2
g) based on 333,167 LD-pruned 533 

genotyped variants, as well as the ℎ2
g of variants at PR interval associated loci only. Loci windows 534 

were based on both distance (±500kb) and LD (r2>0.1) around novel and previously reported 535 

variants (Supplementary Note). We then calculated the proportion of total h2
g explained at PR 536 

interval loci by dividing the h2
g estimate of PR interval loci by the total h2

g. 537 

 538 
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Bioinformatics and in silico functional analyses 539 

We use Variant Effect Predictor (VEP)49 to obtain functional characterization of variants including 540 

consequence, information on nearest genes and, where applicable, amino acid substitution and 541 

functional impact , based on SIFT50 and PolyPhen-251 prediction tools. For non-coding variants, 542 

we assessed overlap with DNase I–hypersensitive sites (DHS) and chromatin states as determined 543 

by Roadmap Epigenomics Project 52 across all tissues and in cardiac tissues (E083, fetal heart; 544 

E095, LV; E104, right atrium; E105, right ventricle) using HaploReg v453.  545 

We assessed whether any PR interval variants were related to cardiac gene expression using 546 

GTEx18 version 7 cis-eQTL LV (N=272) and RAA (N=264) data. If the variant at a locus was not 547 

available in GTEx, we used proxy variants (r2>0.8). We report results only for associations at a 548 

false discovery rate (FDR) of 5%. We then evaluated the effects of predicted gene expression 549 

levels on PR interval duration using S-PrediXcan54. GTEx18 genotypes (variants with MAF>0.01) 550 

and normalized expression data in LV and RAA provided by the software developers were used 551 

as the training datasets for the prediction models. The prediction models between each gene-tissue 552 

pair were performed by Elastic-Net, and only significant (FDR 5%) models for prediction were 553 

included in our analysis. We used the European meta-analysis summary-level results (variants with 554 

at least 60% of maximum sample size) as the study dataset and then performed the S-PrediXcan 555 

calculator to estimate the expression-PR interval associations. In total, we tested 5,366 and 5,977 556 

associations in LV and RAA, respectively. Significance threshold was set at P=4.4×10-6 557 

(=0.05/(5,977+5,366)) to account for multiple testing corrections. 558 

We applied GARFIELD (GWAS analysis of regulatory or functional information enrichment 559 

with LD correction)55 to analyse the enrichment patterns for functional annotations of the European 560 
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meta-analysis summary statistics, using regulatory maps from the Encyclopedia of DNA Elements 561 

(ENCODE)56 and Roadmap Epigenomics52 projects. This method calculates odds ratios and 562 

enrichment P-values at different GWAS P-value thresholds (denoted T) for each annotation by 563 

using a logistic regression model accounting for LD, matched genotyping variants and local gene 564 

density with the application of logistic regression to derive statistical significance. Threshold for 565 

significant enrichment was set to P=9.36×10-5 (after multiple-testing correction for the number of 566 

effective annotations). 567 

We identified potential target genes of regulatory variants using long-range chromatin 568 

interaction (Hi-C) data from the LV19. Hi-C data was corrected for genomic biases and distance 569 

using the Hi-C Pro and Fit-Hi-C pipelines according to Schmitt et al. (40kb resolution – correction 570 

applied to interactions with 50kb-5Mb span). We identified the promoter interactions for all 571 

potential regulatory variants in LD (r2>0.8) with our lead and conditionally independent PR 572 

interval variants and report the interactors with the variants with the highest regulatory potential 573 

(RegulomeDB≥2) to annotate the loci. 574 

We performed a literature review, and queried the Online Mendelian Inheritance in Man 575 

(OMIM) and the International Mouse Phenotyping Consortium databases for all genes in regions 576 

defined by r2>0.5 from the lead variant at each novel locus. We further expanded the gene listing 577 

with any genes that were indicated by gene expression or chromatin interaction analyses. We 578 

performed look-ups for each lead variant or their proxies (r2>0.8) for associations (P<5×10-8) for 579 

common traits using both GWAS catalog57 and PhenoScanner v258 databases. For AF, we 580 

supplemented the variant listing with a manually curated list of all overlapping variants (r2>0.7) 581 

with PR interval from two recently published GWASs59,60. 582 
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 583 

Gene set enrichment and pathway analyses 584 

We used DEPICT (Data-driven Expression-Prioritized Integration for Complex Traits)20 to 585 

identify enriched pathways and tissues/cell types where genes from associated loci are highly 586 

expressed using all genome-wide significant (P<5×10-8) variants in our multi-ancestry meta-587 

analysis present in at least 60% of Nmax (N=20,076). To identify uncorrelated variants for PR 588 

interval, DEPICT performed LD-clumping (r2=0.1, window size=250kb) using LD estimates 589 

between variants from the 1000G reference data on individuals from all ancestries after excluding 590 

the major histocompatibility complex region on chromosome 6. Gene-set enrichment analysis was 591 

conducted based on 14,461 predefined reconstituted gene sets from various databases and data 592 

types, including Gene ontology, Kyoto encyclopedia of genes and genomes (KEGG), 593 

REACTOME, phenotypic gene sets derived from the Mouse genetics initiative, and protein 594 

molecular pathways derived from protein-protein interaction. Finally, tissue and cell type 595 

enrichment analysis was performed based on expression information in any of the 209 Medical 596 

Subject Heading (MeSH) annotations for the 37,427 human Affymetrix HGU133a2.0 platform 597 

microarray probes.  598 

Ingenuity Pathway Analysis (IPA) was conducted using an extended list comprising 593 genes 599 

located in regions defined by r2>0.5 with the lead or conditionally independent variants for all PR 600 

interval loci, or the nearest gene. We further expanded this list by adding genes indicated by gene 601 

expression analyses. Only molecules and/or relationships for human or mouse or rat and 602 

experimentally verified results were considered. The significance P-value associated with 603 

enrichment of functional processes is calculated using the right-tailed Fisher’s exact test by 604 
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considering the number of query molecules that participate in that function and the total number 605 

of molecules that are known to be associated with that function in the IPA.  606 

 607 

Associations between genetically determined PR interval and cardiovascular conditions  608 

We examined associations between genetic determinants of atrioventricular conduction and 609 

candidate cardiovascular diseases in unrelated individuals of European ancestry from UK Biobank 610 

(N~309,000 not included in our GWAS meta-analyses) by creating PRSs for PR interval based on 611 

our GWAS results. We derived two PRSs. One was derived from the multi-ancestry meta-analysis 612 

results, and the other from the European meta-analysis results. We used the LD-clumping feature 613 

in PLINK v1.9061 (r2=0.1, window size=250kb, P=5×10-8) to select variants for each PRS. Referent 614 

LD structure was based on 1000G all ancestry, and European only data. In total, we selected 743 615 

and 582 variants from multi-ancestry and European only meta-analysis results, respectively. We 616 

calculated the PRSs for PR interval by summing the dosage of PR interval prolonging alleles 617 

weighted by the corresponding effect size from the meta-analysis results. A total of 743 variants 618 

for the PRS derived from multi-ancestry results and 581 variants for the PRS derived from 619 

European results (among the variants with imputation quality >0.6) were included in our PRS 620 

calculations.  621 

We selected candidate cardiovascular conditions a priori, which included various cardiac 622 

conduction and structural traits such as bradyarrhythmia, AF, atrioventricular pre-excitation, heart 623 

failure, cardiomyopathy, and congenital heart disease. We ascertained disease status based on data 624 

from baseline interviews, hospital diagnosis codes (ICD-9 and ICD-10), cause of death codes 625 
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(ICD-10), and operation codes. Details of individual selections and disease definitions are 626 

described in Supplementary Table 23. 627 

We tested the PRSs for association with cardiovascular conditions using logistic regression. 628 

We adjusted for enrolled age, sex, genotyping array, and phenotype-related principal components 629 

of ancestry. Given correlation between traits, we did not establish a pre-specified significance 630 

threshold for the analysis and report nominal associations (P<0.05).  631 

  632 
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Tables 633 

Table 1 Novel genome-wide significant loci associated with PR interval (N = 149). 634 

Locus 

ID 
Nearest gene(s) rsID Chr Position EA/OA EAF N Beta SE P 

Multi-ancestry meta-analysis  

1 HSPG2 rs7529220 1 22282619 C/T 0.84 293050 0.58 0.09 2.1×10-10 

2 AIM1L rs12031946 1 26679041 C/T 0.13 293051 0.59 0.10 2.4×10-9 

3 MAP7D1 rs1475267 1 36620801 G/C 0.16 293050 0.50 0.09 2.1×10-8 

4 EDN2 rs12751675 1 41955714 G/A 0.75 293050 0.56 0.08 1.8×10-13 

5 SSBP3 rs603901 1 54741767 T/C 0.58 293051 0.43 0.06 3.3×10-11 

6 NFIA rs6587924 1 61895257 A/C 0.49 293051 0.35 0.06 2.7×10-8 

7 CDC7 rs13447455 1 91966445 A/G 0.64 293051 0.38 0.07 1.7×10-8 

8 GJA5 rs1692144 1 147281349 C/T 0.79 293051 0.65 0.08 1.7×10-16 

9 DPT rs531706 1 168692137 C/G 0.28 293051 0.39 0.07 3.4×10-8 

10 PRRX1 rs61824886 1 170615660 C/G 0.85 293051 0.67 0.09 6.2×10-13 

11 C1orf98 rs819636 1 200271408 C/T 0.33 293051 0.38 0.07 1.7×10-8 

12 HLX rs6678632 1 221138612 T/C 0.44 293051 0.47 0.06 4.9×10-13 

13 ADCK3 rs3768419 1 227173477 C/G 0.48 291546 0.49 0.06 1.6×10-14 

14 SIPA1L2 rs1285678 1 232712145 A/G 0.47 287628 0.52 0.07 2.6×10-15 

15 RYR2 rs10802580 1 237194922 G/A 0.76 286413 0.45 0.08 6.9×10-9 

16 SMYD3 rs28468565 1 246157144 A/G 0.66 287628 0.49 0.07 8.9×10-13 

17 LINC01249 rs12616546 2 4824622 A/G 0.68 293051 0.53 0.07 9.2×10-15 

18 STRN rs17496249 2 37102249 A/G 0.55 293051 0.64 0.06 1.4×10-23 

19 EML4 rs6728830 2 42537995 C/A 0.96 291132 1.02 0.18 1.9×10-8 

20 EPAS1 rs11894252 2 46533376 T/C 0.42 293047 0.45 0.06 2.3×10-12 

21 FBXO11 rs7588761 2 48150587 T/C 0.07 288153 0.75 0.13 5.3×10-9 

22 SPTBN1 rs4519566 2 54824815 G/A 0.79 293051 0.54 0.08 4.7×10-12 

23 LINC01812/C1D rs7584373 2 68079211 A/G 0.35 293051 0.38 0.07 1.5×10-8 

24 FHL2/LOC285000 rs13006682 2 106104856 C/T 0.34 293051 0.51 0.07 6.7×10-14 

25 NCKAP5 rs17816356 2 134326085 A/C 0.05 289723 0.96 0.16 7.9×10-10 

26 TEX41 rs76909456 2 145453968 G/A 0.24 293051 0.48 0.08 1.8×10-10 

27 LINC01473/ZC3H15 rs138711926 2 187033804 G/A 0.04 280792 0.98 0.18 4.7×10-8 

28 SDPR rs58577564 2 192723128 A/T 0.10 291546 0.78 0.11 7.5×10-13 
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31 TMEM198 rs13023533* 2 220414019 T/C 0.55 293051 0.41 0.06 1.1×10-10 

32 LSM3 rs6442433 3 14275759 C/G 0.79 291836 0.71 0.08 1.9×10-19 

33 THRB rs60325252 3 24465080 C/T 0.71 293051 0.75 0.07 9.1×10-27 

34 TRAK1 rs11921457 3 42103045 T/G 0.81 292301 0.69 0.09 8.0×10-16 

35 LAMB2 rs9865051* 3 49166069 T/C 0.78 293051 0.49 0.08 3.7×10-10 

36 ADCY5 rs1000368 3 123117165 T/C 0.26 293051 0.43 0.07 2.5×10-9 

37 TSC22D2 rs201481721 3 150176904 D/I 0.03 223845 1.32 0.22 1.8×10-9 

38 RAP2B rs4680046 3 153000092 T/C 0.49 293051 0.47 0.06 1.2×10-13 

40 FNDC3B rs4894803 3 171800256 G/A 0.39 293046 0.49 0.07 1.8×10-13 

41 FGF12 rs4687352 3 192373761 A/C 0.41 293051 0.53 0.06 1.3×10-16 

42 DLG1 rs143879787 3 196799232 I/D 0.73 226107 0.51 0.08 1.4×10-9 

43 SRD5A3 rs77422711 4 56123105 A/G 0.02 273824 1.85 0.30 6.4×10-10 

44 LPHN3 rs28540500 4 62409801 C/G 0.38 293051 0.42 0.07 2.4×10-10 

45 FGF5 rs36034102 4 81202048 T/G 0.27 292217 0.43 0.07 3.5×10-9 

46 PDLIM5 rs2172448 4 95506214 A/G 0.55 288153 0.37 0.06 9.4×10-9 

48 SLC12A7 rs4975572 5 1054197 T/C 0.46 293051 0.62 0.07 5.5×10-21 

49 SUB1 rs17441816 5 32629419 G/A 0.29 293051 0.51 0.07 4.7×10-13 

50 HCN1 rs10039283 5 45864843 A/G 0.41 293051 0.64 0.06 3.2×10-23 

51 NR2F1 rs4869412 5 92455655 G/A 0.49 293051 0.40 0.06 2.3×10-10 

53 STARD4 rs67968533 5 111046342 C/T 0.09 293051 0.66 0.11 4.8×10-9 

54 
LOC101927421/ 

ZNF608 
rs12654442 5 124343851 T/C 0.27 293051 0.46 0.07 2.8×10-10 

55 SLC27A6 rs2577531 5 128299279 C/T 0.59 293051 0.38 0.06 3.8×10-09 

56 FGF18 rs78810186 5 170868622 T/C 0.11 290821 0.74 0.10 1.4×10-12 

57 LINC01411 rs4868384 5 173779209 T/A 0.47 290336 0.47 0.06 2.5×10-13 

58 DSP rs72825038 6 7527269 A/G 0.09 293051 0.94 0.11 2.7×10-16 

59 DEK rs214502 6 18227546 A/C 0.58 291546 0.42 0.07 9.9×10-11 

60 HDGFL1 rs6922960 6 22570189 C/T 0.28 291546 0.61 0.07 5.6×10-18 

61 LRRC16A rs139915396 6 25351477 I/D 0.10 226107 0.69 0.13 4.2×10-8 

62 CDKN1A rs730506 6 36645968 C/G 0.20 293051 0.62 0.08 6.5×10-15 

63 TFEB rs1015149 6 41658889 T/C 0.47 293051 0.45 0.06 1.6×10-12 

64 RCAN2 rs871728 6 46452619 C/T 0.42 293051 0.52 0.07 1.3×10-15 
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65 LOC101927686 rs111739590 6 113978255 C/T 0.81 293051 0.50 0.08 1.5×10-9 

66 TCF21 rs12190287 6 134214525 G/C 0.37 290979 0.43 0.07 2.9×10-10 

67 RP1-155D22.1 rs206708 6 164532059 A/T 0.70 293051 0.47 0.07 1.9×10-11 

68 GET4 rs10226357 7 925949 G/A 0.59 293050 0.39 0.07 3.1×10-9 

69 DGKB rs56352403 7 14453835 G/A 0.64 291623 0.56 0.07 1.4×10-16 

70 PRPS1L1 rs6961768 7 18040476 A/C 0.43 293051 0.38 0.06 3.0×10-9 

71 DNAH11 rs62441680* 7 21622494 C/T 0.17 293051 0.62 0.08 2.3×10-13 

72 ELMO1 rs4720244 7 37398113 C/G 0.64 293051 0.42 0.07 3.6×10-10 

73 SEMA3A rs62472627 7 83998676 C/T 0.14 293051 0.61 0.09 6.7×10-11 

74 CHRM2 rs1424569 7 136569416 C/T 0.53 293051 0.36 0.07 4.6×10-8 

75 DLC1 rs1188285 8 13130478 C/T 0.56 293050 0.45 0.06 2.4×10-12 

76 MTUS1 rs4921804 8 17550623 G/A 0.63 289672 0.39 0.07 4.4×10-9 

77 XPO7 rs56317071 8 21775838 C/G 0.12 293050 0.57 0.10 1.2×10-8 

78 RBPMS rs4545054 8 30302465 C/T 0.49 293050 0.36 0.06 2.0×10-8 

80 RP11-1082L8.3 rs35006907 8 125859817 A/C 0.31 293050 0.48 0.07 1.6×10-12 

81 PTK2 rs10106406 8 142006198 C/G 0.45 282729 0.40 0.07 1.4×10-9 

82 TRPM3 rs6560168 9 73482647 T/A 0.45 292407 0.45 0.06 2.2×10-12 

83 
SPATA31D5P/ 

RASEF 
rs7043482 9 85135915 A/C 0.65 293050 0.42 0.07 8.3×10-10 

84 ASTN2 rs1407243 9 119314851 C/T 0.60 293051 0.37 0.06 9.1×10-9 

85 PLPP7 rs4584185 9 134203545 C/T 0.45 278484 0.48 0.07 6.1×10-13 

86 BEND7 rs7916672 10 13534234 T/C 0.58 293051 0.35 0.06 3.8×10-8 

87 CCDC7 rs2947080 10 32847962 G/C 0.64 293051 0.41 0.07 4.6×10-10 

88 CEFIP rs10776558* 10 50510406 C/T 0.53 293050 0.42 0.06 2.8×10-11 

89 TMEM26 rs74813029 10 63194576 A/G 0.17 293051 0.54 0.09 3.3×10-10 

90 COL13A1 rs2642608 10 71559723 T/C 0.27 293051 0.42 0.07 3.8×10-9 

91 ZMIZ1 rs1769758 10 80898969 T/G 0.50 267464 0.50 0.07 1.0×10-11 

92 U3 rs117443987 10 88509088 T/A 0.92 288153 1.00 0.12 6.1×10-17 

93 ADRB1 rs67234920 10 115782061 G/A 0.89 293051 0.67 0.11 2.3×10-10 

94 FGFR2 rs2912774 10 123348662 T/G 0.42 288153 0.48 0.07 1.3×10-13 

95 MPPED2 rs553951 11 30432176 C/T 0.73 293051 0.39 0.07 3.8×10-8 

96 WT1 rs11031737 11 32372772 G/A 0.52 293051 0.35 0.06 4.5×10-8 
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97 PCNXL3 rs12801636 11 65391317 A/G 0.24 293051 0.41 0.07 4.1×10-8 

98 CRYAB rs12808601 11 111776066 G/A 0.70 293050 0.51 0.07 3.1×10-13 

99 USP28 rs144789148 11 113666335 G/A 0.05 290495 0.96 0.17 6.4×10-9 

100 PDE3A rs10770646 12 20544361 T/C 0.79 288153 0.53 0.08 6.4×10-11 

101 SSPN rs78518764 12 26306484 T/C 0.86 293051 0.61 0.10 2.1×10-10 

102 ARID2 rs76611452 12 46209520 T/C 0.04 286416 1.19 0.19 1.5×10-10 

103 SRGAP1 rs17099893 12 64283014 A/G 0.06 291836 0.95 0.14 9.9×10-12 

104 MIR6074 rs4026608 12 66394664 T/C 0.62 293051 0.38 0.07 6.5×10-9 

105 SLC6A15 rs10862858 12 84806298 A/G 0.43 293051 0.46 0.06 1.1×10-12 

106 HCFC2 rs2629745 12 104503806 A/G 0.88 293051 0.69 0.10 1.7×10-12 

107 RIC8B rs3759310 12 107166122 G/C 0.36 293051 0.56 0.07 4.5×10-17 

108 UBE3B rs2004359* 12 109976893 G/T 0.47 291836 0.42 0.06 5.0×10-11 

109 TESC rs7972416 12 117491824 A/G 0.66 293051 0.45 0.07 1.8×10-11 

110 FREM2 rs9634754* 13 39261151 G/T 0.69 293051 0.41 0.07 4.4×10-9 

111 FGF14 rs9513995 13 102878269 T/C 0.74 287628 0.50 0.07 2.1×10-11 

112 ARHGEF40 rs12885183 14 21545230 G/A 0.22 283907 0.49 0.08 8.5×10-10 

113 RP11-562L8.1 rs7146955 14 29750244 G/A 0.59 293051 0.44 0.06 6.7×10-12 

114 AKAP6 rs3784192 14 32923336 A/G 0.20 293051 0.55 0.08 3.0×10-11 

115 NFKBIA rs8904 14 35871217 G/A 0.63 287252 0.40 0.07 1.6×10-9 

116 SYNE2 rs1255908 14 64457638 T/G 0.69 291546 0.52 0.07 6.0×10-14 

117 FLRT2 rs17712080 14 86041160 G/A 0.75 293050 0.47 0.07 2.0×10-10 

118 RP11-1070N10.3 rs179145 14 95983975 A/G 0.38 287627 0.41 0.07 5.2×10-10 

119 MARK3 rs3759579 14 103851272 A/G 0.41 287627 0.42 0.07 1.2×10-10 

120 RBPMS2 rs3935716* 15 65035979 A/G 0.15 293051 0.61 0.10 1.2×10-10 

121 CORO2B rs11330601 15 69021265 I/D 0.55 222818 0.43 0.08 1.4×10-8 

122 HCN4 rs8039168 15 73664723 A/T 0.83 293051 0.60 0.09 2.0×10-12 

123 ALPK3 rs6496452 15 85372645 A/T 0.55 287628 0.55 0.06 1.3×10-17 

124 LINC00924/NR2F2 rs62008078 15 96460899 C/T 0.44 285649 0.48 0.07 4.4×10-13 

125 SPSB3 rs35816944* 16 1828030 G/A 0.99 247100 2.70 0.44 1.3×10-9 

126 SRL rs79321945 16 4282284 C/A 0.78 293051 0.50 0.08 2.1×10-10 

128 
LOC101927480/ 

LINC02140 
rs1186818 16 54598337 G/A 0.24 293051 0.43 0.07 9.0×10-9 
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129 CNOT1 rs7199856* 16 58584772 G/T 0.26 292217 0.56 0.07 8.6×10-15 

130 LINC01082/IRF8 rs904199 16 86184639 G/A 0.08 287629 0.73 0.12 7.9×10-10 

131 ZFPM1 rs28634651 16 88553198 T/C 0.61 261197 0.51 0.07 2.1×10-12 

132 MINK1 rs7774 17 4801163 A/C 0.33 293051 0.43 0.07 8.6×10-10 

133 EFCAB5 rs55866125* 17 28312993 T/C 0.52 293051 0.42 0.06 3.2×10-11 

134 CACNA1G rs757416 17 48666064 T/C 0.63 293051 0.69 0.07 2.5×10-25 

135 CSHL1 rs2006122 17 61987405 T/A 0.27 293051 0.42 0.07 5.8×10-9 

136 PRKCA rs9909004 17 64306133 C/T 0.42 291623 0.38 0.06 2.9×10-9 

138 AC100791.2 rs745570* 17 77781725 G/A 0.53 293051 0.35 0.06 3.4×10-8 

139 CDH2 rs11083300 18 26339589 G/C 0.46 293050 0.35 0.06 3.8×10-8 

140 GAREM rs982521 18 30029141 C/T 0.18 293050 0.75 0.09 1.7×10-18 

141 DTNA rs1786595 18 32399259 C/T 0.74 293050 0.47 0.07 6.9×10-11 

142 CCBE1 rs12961264 18 57138957 C/T 0.23 293050 0.51 0.08 1.1×10-11 

143 STK11 rs3795063 19 1217560 C/G 0.65 268324 0.49 0.08 7.3×10-11 

144 ZNF358 rs113394178 19 7581244 A/C 0.60 212667 0.46 0.08 2.1×10-8 

145 TMEM59L rs111551996 19 18733355 G/T 0.95 290902 0.95 0.16 8.0×10-10 

146 RNF24/SMOX rs16989138 20 4031653 G/A 0.43 291546 0.53 0.07 7.1×10-16 

147 KIAA1755 rs6023939 20 36832526 C/A 0.54 293051 0.44 0.06 6.7 ×10-12 

148 DERL3 rs2070464 22 24183875 G/A 0.38 291836 0.54 0.07 6.2 ×10-16 

149 PHF5A rs9607805 22 41854446 T/C 0.70 287628 0.42 0.07 5.6 ×10-9 

European meta-analysis  

29 BMPR2 rs2103208 2 203373030 G/A 0.49 271570 0.36 0.07 4.8×10-8 

30 AC007563.5 rs6435953 2 217628087 C/T 0.16 271570 0.51 0.09 2.1×10-8 

39 MLF1 rs6799180* 3 158333891 A/G 0.47 271570 0.37 0.07 2.2×10-8 

47 MYOZ2 rs78277783 4 120070079 A/T 0.27 266672 0.42 0.08 2.1×10-8 

52 FER rs6889995 5 108210304 G/A 0.22 266672 0.44 0.08 4.3×10-8 

79 AZIN1 rs565720 8 103914366 A/C 0.77 271570 0.44 0.08 3.1×10-8 

127 MYH11 rs72772025 16 15834729 T/C 0.27 269591 0.41 0.08 3.5×10-8 

137 CASKIN2 rs7501873 17 73505172 G/A 0.22 271570 0.45 0.08 4.9×10-8 

 635 
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There was no evidence of heterogeneity for any of the newly identified loci across individual 636 

studies (Pheterogeneity ≥ 0.001) or across ancestry groups (Pheterogeneity > 0.01).  637 

Locus ID: unique locus identifier; Nearest gene(s): Nearest annotated gene(s) to the lead 638 

variant; rsID, variant accession number; Chr, chromosome; Position, physical position in build 639 

37; EA, effect allele; OA, other allele; EAF, effect allele frequency; N, total sample size 640 

analyzed; beta, effect estimate is milliseconds; SE, standard error; P, P-value. 641 

* Missense variant or variant in high LD (r2 > 0.8) with missense or splice site variant(s).  642 

  643 
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Figures 644 

Figure 1 Overview of the study design.  645 

Figure includes overview of contributing studies, single-stage discovery approach, and downstream bioinformatics and in silico 646 

annotations we performed to link variants to genes, and polygenic risk score analysis to link variants to cardiovascular disease risk.  647 
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Figure 2 Manhattan plot of the multi-ancestry meta-analysis for PR interval. P values are plotted on the -log10 scale for all variants 650 

present in at least 60% of the maximum sample size. Associations of genome-wide significant (P < 5 × 10-8) variants at novel (N = 141) 651 

and previously reported loci (N = 61) are plotted in dark and light blue colours respectively.  652 

 653 

 654 
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Figure 3 Plausible candidate genes of PR interval from S-PrediXcan 655 

Diagram of standard electrocardiographic intervals and the heart. The electrocardiographic 656 

features are illustratively aligned with the corresponding cardiac conduction system structures 657 

(orange) reflected on the tracing. The PR interval (labeled) indicates conduction through the atria, 658 

atrioventricular node, His bundle, and Purkinje fibers. Right: The tables show 120 genes whose 659 

expression in the left ventricle (N=272) or right atrial appendage (N=264) was associated with PR 660 

interval duration in a transcriptome-wide analysis using S-PrediXcan and GTEx v7. Displayed 661 

genes include those with significant associations after Bonferroni correction for all tested genes at 662 

the two tissues with a P < 4.4×10-6 (=0.05/(5,977+5,366)). Longer PR intervals were associated 663 

with increased predicted expression of 59 genes (blue) and reduced expression of 61 genes 664 

(orange). 665 

 666 
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Figure 4 Bubble plot of phenome-wide association analysis of multi-ancestry PR interval polygenic risk score.  667 

Polygenic risk score was derived from the multi-ancestry meta-analysis results. Orange circles indicate that higher polygenic risk score of 668 

prolonged PR interval is associated with an increased risk of the condition, whereas blue circles indicate that higher score is associated with lower 669 

risks. The darkness of the colour reflects the effect size (odds ratio, OR) changes per 1 standard deviation increment of the polygenic risk score. 670 

Given correlation between traits, we did not establish a pre-specified significance threshold for the analysis and report nominal associations (P < 671 

0.05). 672 
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Figure 5 Candidate genes in PR interval loci encoding proteins involved in cardiac muscle cytoskeleton. Candidate genes or encoded proteins are 675 

indicated by a star symbol in the figure and listed in the table. More information about the genes is provided in Supplementary Tables 18-19. 676 

*Novel locus, # genome-wide significant locus in transformed trait meta-analysis.  677 

1 Missense variant; 2 Nearest gene to the lead variant; 3 Gene within the region (r2>0.5); 4 Variant(s) in the locus are associated with gene expression 678 

in left ventricle and/or right atrial appendage; 5 Left ventricle best HiC locus interactor (RegulomeDB score ≤ 2); 6 Animal model; 7 Monogenic 679 

cardiovascular disease. 680 
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URLs 682 

1000 Genome Project: http://www.internationalgenome.org 683 

BOLT-LMM: https://data.broadinstitute.org/alkesgroup/BOLT-LMM/ 684 

DEPICT: https://data.broadinstitute.org/mpg/depict/ 685 

DGIdb: http://www.dgidb.org 686 

EasyQC: https://www.uni-regensburg.de/medizin/epidemiologie-687 

praeventivmedizin/genetische-epidemiologie/software/# 688 

FORGE: https://github.com/iandunham/Forge 689 

GCTA: https://cnsgenomics.com/software/gcta/#Overview 690 

GTEx: https://gtexportal.org/home/ 691 

HRC: http://www.haplotype-reference-consortium.org 692 

IMPUTE2: http://mathgen.stats.ox.ac.uk/impute/impute_v2.html 693 

Ingenuity Pathway Analysis software: 694 

https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis/ 695 

International Mouse Phenotyping Consortium: https://www.mousephenotype.org/  696 

IPA: https://www.qiagenbioinformatics.com/products/ingenuity-pathway-analysis 697 

LocusZoom: http://locuszoom.org/ 698 

MACH: http://csg.sph.umich.edu/abecasis/mach/tour/imputation.html 699 

METAL: http://csg.sph.umich.edu/abecasis/metal/ 700 

OMIM: https://www.omim.org/ 701 
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RegulomeDB: http://www.regulomedb.org 702 

S-PrediXcan: https://github.com/hakyimlab/MetaXcan 703 

UK Biobank: https://www.ukbiobank.ac.uk 704 
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