
 
1 

 
 
 

 
 
 
 
Tunable genetic devices through simultaneous control of 
transcription and translation 

Vittorio Bartoli1,2, Mario di Bernardo1,2,3 and Thomas E. Gorochowski1,4,* 

 
1 BrisSynBio, University of Bristol, Life Sciences Building, Tyndall Avenue, Bristol, UK 

2 Department of Engineering Mathematics, University of Bristol, Woodland Road, Bristol, UK 
3 Department of Electrical Engineering and Information Technology, University of Naples 

Federico II, Via Claudio 21, Napoli, Italy 
4 School of Biological Sciences, University of Bristol, Bristol, Tyndall Avenue, UK 
 

* Correspondence should be addressed to T.E.G. (thomas.gorochowski@bristol.ac.uk) 
 

 

 
 

 

 

 

 

 

 

 
 

 

Keywords: gene regulation; genetic circuits; transcription; translation; toehold switch; 

synthetic biology; systems biology.

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 24, 2019. ; https://doi.org/10.1101/711275doi: bioRxiv preprint 

https://doi.org/10.1101/711275
http://creativecommons.org/licenses/by-nd/4.0/


 
2 

Abstract 1 

Synthetic genetic circuits allow us to modify the behavior of living cells. However, changes in 2 

environmental conditions and unforeseen interactions between a circuit and the host cell can 3 

cause deviations from a desired function, resulting in the need for time-consuming physical 4 

re-assembly to fix these issues. Here, we use a regulatory motif controlling transcription and 5 

translation to create genetic devices whose response functions can be dynamically tuned. 6 

This approach allows us, after assembly, to shift the on and off states of a sensor by 4.5- and 7 

28-fold, respectively, and modify a genetic NOT gate to allow its transition from an on to off 8 

state to be varied over a 7-fold range. In both cases, “tuning” leads to trade-offs in the fold-9 

change and separation between the distributions of cells in on and off states. By using 10 

mathematical modelling, we derive design principles that are used to further optimize these 11 

devices. This work lays the foundation for adaptive genetic circuits that can be tuned after 12 

their physical assembly to maintain functionality across diverse environments and design 13 

contexts.  14 
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Introduction 15 

Gene regulatory networks, or genetic circuits as they are often known, govern when and where 16 

genes are expressed in cells and control core biochemical processes like transcription and 17 

translation 1,2. The ability to synthesize DNA encoding engineered genetic circuits offers a 18 

means to expand the capabilities of a cell and reprogram its behavior 1,3. Synthetic genetic 19 

circuits have been built to implement computational operations 4–12, dynamic behaviors like 20 

oscillations 13–15, and even coordinate multicellular actions across a population 16–20.  21 

 The ability to reprogram living cells is simplified by using genetically encoded devices 22 

that use common input and output signals 1,2,7,9. This allows the output of one device to be 23 

directly connected to the input of another to create circuits implementing more complex 24 

functionalities. Signals can take many forms, but one of the most commonly used is RNA 25 

polymerase (RNAP) flux with promoters are used to guide this signal to specific points in a 26 

circuit’s DNA 7,21. Based on such input and output signals, the response function of a genetic 27 

device captures how inputs map to outputs at steady state 1,7,21. By ensuring the response 28 

functions of two devices are compatible, i.e. they are “matched” such that the range of the 29 

output of the first device spans the necessary range of inputs for the second device, larger 30 

circuits can be constructed 22. Matching of components is vital in circuits where devices exhibit 31 

switching behaviors (e.g. for Boolean logic) to ensure input signals are sufficiently separated 32 

to accurately trigger required transitions between on and off states as signals propagate 33 

through the circuit. 34 

Although the use of characterized genetic devices has enabled the automated design 35 

of large genetic circuits 7,23, the response functions of these devices are often sensitive to 36 

many factors. For example, differences in host physiology due to culturing conditions 24–26 and 37 

interactions between genetic parts and the host cell 27–32, can all affect the response function 38 

of a device and subsequently its compatibility within a circuit. This makes the creation of 39 

reliable and robust genetic circuits a challenge. Even when considering carefully controlled 40 

conditions, like those in the lab, a genetic circuit often needs to be reassembled from scratch 41 

multiple times using alternative parts until a working combination is found. This is both time 42 

consuming and expensive, and often has to be repeated if the circuit is to be deployed in 43 

slightly different conditions or host strain. 44 

In this work, we tackle this problem by developing genetic devices whose response 45 

functions can be dynamically tuned after physical assembly to correct for unwanted changes 46 

in their behavior. The ability to tune/modify the steady state input-output relationship is made 47 

possible by employing a simple regulatory motif. We show how this motif can be connected to 48 

small molecule sensors to characterize its function and then illustrate how it can be integrated 49 

into a genetic NOT gate 33 to allow for the tuning of the transition point between an on and off 50 
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state. These capabilities make these devices more broadly compatible with other components 51 

1,7,22, but come at a cost; trade-offs in their performance, i.e. the dynamic range and the ability 52 

to differentiate on and off states due to variability in gene expression across a population. We 53 

use mathematical modelling to better understand these limitations and derive design principles 54 

that are then used to further optimize their design. This work is a step towards genetic circuitry 55 

whose individual components can functionally adapt, ensuring robust system-level behaviors 56 

are maintained no matter the genetic, cellular or environmental context. 57 

 58 

Results 59 

Controlling transcription and translation using a tunable expression system  60 

To allow for the response of a genetic device to be modulated, we developed a tunable 61 

expression system (TES) based on a simple regulatory motif where two separate promoters 62 

control the transcription and translation rates of a gene of interest (Figure 1A). By using 63 

promoters as inputs, it is possible to easily connect a TES to existing genetic 64 

components/circuitry or even endogenous transcriptional signals within a cell. The TES 65 

consists of a toehold switch (THS) that enables the translation initiation rate of the gene of 66 

interest to be varied by the relative concentration of a “tuner” small RNA (sRNA) 6,34. The main 67 

component of the THS is a 92 bp DNA sequence that encodes a structural region and a 68 

ribosome binding site (RBS) used to drive translation of a downstream protein coding region. 69 

This is expressed from a promoter that acts as the main input to the TES (Figure 1A). When 70 

transcribed, the structural region of the THS mRNA folds to form a hairpin loop secondary 71 

structure that makes the RBS less accessible to ribosomes and thus reduces its translation 72 

initiation rate. This structure is disrupted by a second component, a 65 nt tuner sRNA that is 73 

complementary to the first 30 nt of the THS 34. The tuner sRNA is expressed from a second 74 

promoter, which acts as a tuner input to the device (Figure 1A). Complementarity between 75 

the tuner sRNA and a short unstructured region of the toehold switch enables initial binding, 76 

which then makes it thermodynamically favorable for the sRNA to unfold the secondary 77 

structure of the THS through a branch migration process. This increases the accessibility of 78 

the RBS and increases the translation initiation rate. Relative concentrations of the THS 79 

mRNA and tuner sRNA (controlled by the input and tuner promoters) enables the rate of 80 

translation initiation to be potentially varied over a 100-fold range for the toehold switch design 81 

we selected for our own 34 (Materials and Methods). However, THS designs exist which allow 82 

for up to a 400-fold change in translation initiation rates 6,34. 83 

 We selected as main and tuner inputs for the TES the output promoters of two sensors, 84 

Ptet and Ptac, that respond to anhydrotetracycline (aTc) and isopropyl β-D-1-85 

thiogalactopyranoside (IPTG), respectively (Figure 1B). This allows us to dynamically tune 86 
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transcription and translation rates of a gene to modify the overall rate of protein production. 87 

Each sensor consists of a transcription factor (TetR and LacI sensitive to aTc and IPTG, 88 

respectively) that represses its cognate promoter until an associated small molecule is present 89 

(Figure 1B). These bind to the transcription factor, altering its conformation and limiting its 90 

ability to repress the promoter, thereby turning on transcription of the downstream gene. 91 

Yellow fluorescent protein (YFP) was used as the output from the TES (Figure 1B) to allow 92 

us to measure the rate of protein production in single cells using flow cytometry.   93 

Characterization of the device was performed in Escherichia coli cells grown in 94 

different concentrations of aTc (input) and IPTG (tuner). Steady state fluorescence 95 

measurements of single cells in exponential growth phase were taken using flow cytometry 96 

and promoter activities of both the main and tuner input were measured in relative promoter 97 

units (RPUs) to allow for direct comparisons (Materials and Methods; Supplementary 98 

Figure S1). For a fixed tuner promoter activity, we observed a sigmoidal increase in output 99 

YFP fluorescence as the input promoter activity increased from 0.002 to 6.6 RPU (Figure 1C). 100 

As the activity of the tuner promoter increased from 0.002 to 2.6 RPU, the entire response 101 

function was shifted upwards to higher output YFP fluorescence levels. Notably, this shift was 102 

not uniform, with larger relative increases seen for lower input promoter activities; 28-fold 103 

versus 4.5-fold for inputs of 0.002 and 6.6 RPU, respectively (Figure 1C). Closer analysis of 104 

the flow cytometry data (Figure 1D), showed that these changes arose from the distributions 105 

of output YFP fluorescence for low and high inputs shifting uniformly together as the tuner 106 

promoter activity was increased. Therefore, even though a similar relative difference between 107 

outputs for low and high inputs (also referred to as the dynamic range) was observed for all 108 

tuner inputs, when the tuner input is low, the distributions are virtually identical to the 109 

autofluorescence of the cells (Figure 1D). This leads to even small absolute differences in the 110 

median values between low and high input states resulting in high fold-changes. 111 

To better understand this effect, we derived a deterministic ordinary differential 112 

equation (ODE) model of the system (Supplementary Text S1). Simulations of this model for 113 

biologically realistic parameters (Supplementary Table S1) showed similar qualitative 114 

behavior to the experiments; increasing turner promoter activity shifted the response curve to 115 

higher output protein production rates (Figure 1E). However, unlike the experiments, 116 

increases in the tuner promoter activity resulted in similar relative increases for low and high 117 

inputs (i.e. a similar fold-change). One possible mechanism that could account for the non-118 

linear response observed in the experiments is the limiting effect that the tuner sRNA can 119 

have. Because the tuner sRNA concentration is fixed for each response function, its level 120 

could be such that it is higher than the concentration of THS transcripts when the main input 121 

is low, while being much lower when the main input is high. This would cause the rate of 122 
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protein production to be limited by the THS transcript concentration at low inputs, and by the 123 

tuner sRNA concentration at high inputs. 124 

Flow cytometry data also showed a significant overlap in the output YFP fluorescence 125 

distributions for low and high input promoter activities (Figure 1D). Many applications require 126 

that “on” and “off” states in a system are well separated so that each can be accurately 127 

distinguished (e.g. for Boolean logic). To assess this separation in the TES, we calculated the 128 

fractional overlap between the output YFP fluorescence distributions for low and high input 129 

promoter activities (Materials and Methods). We found a constant intersection of ~70% 130 

across all tuner promoter activity levels (Figure 1F), which resulted from the near uniform 131 

relative shifts we see in output across all input promoter activities. 132 

 133 

Design and assembly of a tunable genetic NOT gate 134 

Some genetic devices rely on the expression of proteins such as transcription factors to 135 

implement basic logic functions that can be composed to carry out more complex decision-136 

making tasks 4,7,8. One such commonly used device is a NOT gate, which has a single input 137 

and output 33. The function of this gate is to “invert” the input such that the output is high if the 138 

input is low and vice versa. Such a behavior can be implemented by using promoters as the 139 

input and output, with the input promoter driving expression of a repressor protein that binds 140 

to the DNA of the constitutive output promoter. When the input promoter is inactive, the 141 

repressor is not synthesized and so the constitutive output promoter is active. However, once 142 

the input promoter is activated, the repressor is expressed which binds the output promoter 143 

and represses its activity. 144 

Because the activity range of promoters varies, the transition point whereby sufficient 145 

concentrations of repressor are present to cause strong repression of the output promoter 146 

may make it impossible to connect other devices and ensure a signal is correctly propagated. 147 

For example, the output promoter of a weak sensor system acting as input to a NOT gate with 148 

a high transition point might lead to insufficient production of the repressor causing the output 149 

promoter to be continually active. These incompatibilities can sometimes be corrected for by 150 

modifying other regulatory elements in the design. In the case of a repressor-based NOT gate, 151 

while the promoters cannot be easily changed, in bacteria the translation initiation rate can be 152 

varied by altering the ribosome binding site (RBS) for the repressor gene. Increasing the RBS 153 

strength causes more repressor protein to be produced for the same input promoter activity, 154 

shifting the transition point to a lower value 7,33. While such modifications can fix issues with 155 

device compatibility, they require reassembly of the entire genetic device. 156 

Given that the TES allows for the rates of both transcription and translation to be 157 

dynamically controlled, we attempted to create a proof-of-concept “tunable” NOT gate that 158 

integrated the TES to allow its response function, and crucially the transition point, to be 159 
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altered after physical assembly. We chose an existing NOT gate design 33 that uses the PhlF 160 

repressor to control the activity of the output PphlF promoter (Figure 2A). Expression of PhlF 161 

was controlled by the TES (replacing the YFP reporter protein in the original TES design; 162 

Figure 1A). Unlike the TES, the tunable NOT gate uses promoters for both inputs and outputs 163 

allowing it to be easily connected to other devices that use RNAP flux as an input/output signal 164 

(Figure 2A). 165 

To enable characterization of the tunable NOT gate, the output promoter PphlF was 166 

used to drive expression of YFP. Measurements were taken using flow cytometry for cells 167 

harboring the device in varying concentrations of aTc and IPTG, and steady state response 168 

functions generated (Figures 2B and 2C). As expected, these displayed a negative sigmoidal 169 

shape with transition points (K values from the Hill function fits to the experimental data) that 170 

varied over a 7-fold range (Figure 2B). We also found that increases in the tuner promoter 171 

activity lead to transitions at lower activity levels for the input promoter. The range of transition 172 

points achieved by our device also covered a high proportion (35%) of the largest collection 173 

of repressor-based NOT gates built to date (total of 20 variants; Figure 2D) 7. 174 

These results demonstrate the ability of the proposed TES component to dynamically 175 

alter a key characteristic of a NOT gate’s response function (specifically the transition point) 176 

to improve its compatibility with other genetic devices. However, it came at a cost; tuning 177 

resulted in a drop in the fold-change between low and high outputs (Figure 2E) and an 178 

increase in the overlap of the output YFP fluorescence distributions, which made high and low 179 

states difficult to distinguish (Figure 2F). 180 

 181 

Boosting sRNA levels improves the performance of the tunable genetic devices 182 

For the THS to function correctly, it is essential that the sRNA reaches a sufficiently high 183 

concentration relative to the THS transcript to ensure the associated RBS is in a predominantly 184 

unfolded state 34. In our design, the tuner input promoter Ptac has less than half the maximum 185 

strength of the main input promoter Ptet (Supplementary Figure S1). Furthermore, although 186 

the tuner sRNA contains a hairpin to improve its stability, sRNAs are generally more quickly 187 

turned over than normal transcripts 35,36, yielding much lower steady state concentrations 188 

compared to the THS transcript. 189 

To better understand the role that the THS transcript to tuner sRNA ratio had on the 190 

performance of the TES, we used our mathematical model of the system (Supplementary 191 

Text S1) to explore how various key parameters (e.g. transcription rates and binding affinities) 192 

altered the response function of the device. Using biologically realistic ranges of parameters 193 

(Supplementary Table S1), we found that for lower sRNA transcription rates the output 194 

response function could be shifted maintaining a similar fold-change between low and high 195 

output states (Figure 3A). At these low THS/sRNA ratios the translation rate from the THS 196 
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transcript is limited by the sRNA concentration. However, as the sRNA transcription rate 197 

increased a transition point was seen (i.e. between green and blue shared curves in Figure 198 

3A) whereby for low THS transcription rates the sRNAs are in excess making the output 199 

protein production rate limited by the THS transcript concentration (Figure 3A). In contrast, at 200 

high THS transcription rates the sRNAs become limiting again but allow for relatively much 201 

higher output protein production rates that enable a larger fold-change in the response 202 

function of the TES (Figure 3A). Further stochastic modelling of the system showed that 203 

increased sRNA transcription rates also reduced variability in the distribution of protein 204 

production rates across a population and lowered the fractional intersection between low and 205 

high output states (Figure 3B).  206 

To experimentally verify the benefit of increasing the sRNA transcription rate, we built 207 

a complementary sRNA booster plasmid that contained a high-copy pColE1 origin of 208 

replication (50–70 copies per cell) 37 and expressed the tuner sRNA from a strong viral PT7 209 

promoter (Figure 3C) 38. Transcription from PT7 requires T7 RNA polymerase (T7RNAP). This 210 

is provided by our host strain E. coli BL21 Star (DE3), which has the T7RNAP gene under the 211 

control of an IPTG inducible PlacUV5 promoter within its genome (Figure 3C) 39. Induction of the 212 

tuner Ptac promoter in our devices using IPTG leads to simultaneous expression of T7 RNAP 213 

from the host genome and transcription of additional tuner sRNA from the booster plasmid 214 

(Figure 3C). As the tunable devices are encoded on a plasmid with a p15A origin of replication 215 

(~15 copies per cell; Supplementary Figure S2) 40, we would expect at least five times higher 216 

tuner sRNA concentrations are reached when the sRNA booster is present. 217 

Cells were co-transformed with each tunable genetic device and sRNA booster 218 

plasmid, and their response functions were measured (Figures 3D and 3E). As predicted by 219 

the modelling, the TES displayed improved performance with a more than doubling in the fold-220 

change across all tuner promoter activities and >40% drop in the intersection between low 221 

and high output YFP fluorescence distributions (Table 1). For the tunable NOT gate only minor 222 

differences in performance were seen with mostly decreases for high tuner promoter activities. 223 

 224 

Self-cleaving ribozyme insulators impact toehold switch function 225 

In our initial designs, a RiboJ self-cleaving ribozyme was included in the TES and NOT gate 226 

to insulate the translation of the yfp or phlF genes, respectively, from different 5’ untranslated 227 

region (UTR) sequences that might be generated when using different promoters as an input 228 

(Figures 1A, 2A) 41. Any variable UTR sequences would be cleaved at the RiboJ site to 229 

produce a standardized mRNA with more consistent rates of mRNA degradation and 230 

translation. Unfortunately, because RiboJ contains a number of strong secondary RNA 231 

structures 41,42, it is possible that the 23 nt hairpin at the 3’-end impacts the ability for the sRNA 232 

to interact with the THS, reducing the hybridization rate (Figure 4A). 233 
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To assess whether the RiboJ insulator might affect the stability of secondary structures 234 

that are crucial to the TES’s function, we performed thermodynamic modelling of the binding 235 

between the toehold switch region of the mRNA and the tuner sRNA for variants of the TES 236 

design with and without RiboJ present (Materials and Methods). Simulations showed a 40% 237 

drop in the predicted Gibbs free energy of the reactants when RiboJ was removed (−40.5 238 

kcal/mol with versus −65 kcal/mol without RiboJ; Figure 4B). This suggests that binding of 239 

the sRNA may be hampered by interactions with the RiboJ insulator, lowering the effective 240 

translation initiation rate of the RBS controlled by the toehold switch and subsequently the 241 

overall performance of the devices. 242 

To experimentally test these predictions, non-insulated variants of the TES and tunable 243 

NOT gate were constructed in which RiboJ was removed. Characterization of these devices 244 

showed major improvements in overall performance (Figures 4C and 4D). The TES saw more 245 

than a doubling in the dynamic range and 10-fold increase in the fold-change between on and 246 

off states across low and high tuner activity levels compared to the original design and a >50% 247 

drop in the fraction of intersection of the output YFP fluorescence distributions (Table 1). The 248 

tunable NOT gate saw more modest improvements with a 73% increase in the fold-change at 249 

high tuner activity levels, but an overall drop of 66% in the range of transition points (K values) 250 

that could be achieved (Table 1). These results highlight an important consideration often 251 

ignored. When using RNA-based devices that require proper formation of secondary 252 

structures, care must be taken in looking at how multiple devices relying on mRNA folding to 253 

function could interfere with each other, leading to cryptic failure modes. 254 

Another counterintuitive change in the TES’s response function after RiboJ removal 255 

was the large drop in output YFP fluorescence from 26 to 3 arbitrary units (a.u.) when no input 256 

or tuner was present (Figure 4C). Similar drops were also seen of between 4- and 11-fold for 257 

higher tuner promoter activities. Given that binding of a tuner sRNA to the THS mRNA should 258 

be less hampered without RiboJ present, an increase not decrease in output protein 259 

production would be expected. A possible explanation is that the stability of the THS mRNA 260 

decreases after the removal of RiboJ. This is supported by recent results that have shown the 261 

RiboJ insulator both stabilizes its mRNA and also boost the translation initiation rate of a 262 

nearby downstream RBS 43. The precise mechanisms for this are not well understood, but the 263 

structural aspect of the RiboJ element at the 5’-end of an mRNA likely inhibits degradation by 264 

exonucleases and the hairpin at the 3’-end of RiboJ is thought to help expose the nearby RBS 265 

by reducing the chance of secondary structure formation 41,42. 266 

Finally, we combined the non-insulated designs with the sRNA booster plasmid to see 267 

whether further improvements could be made (Table 1). For the TES, we found that the 268 

dynamic range had plateaued, with only moderate increases that were mostly at low tuner 269 

promoter activities. In contrast, the fold-change between low and high outputs more than 270 
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doubled across tuner promoter activities when compared to the non-insulated design, and a 271 

further drop of >18% was seen in the fractional intersection between the YFP fluorescence 272 

distributions for these output states. The tunable NOT gate showed minor decreases in 273 

performance for many of the measures (Table 1). However, the inclusion of the sRNA booster 274 

likely increased overall PhlF concentrations as the transition points from an on to off state (K 275 

value range) shifted to far below what had been seen for all other designs. This would make 276 

this specific design of value for uses where a weak input signal needs to be inverted and 277 

amplified simultaneously. 278 

 279 

Discussion  280 

In this work, we have developed a new class of genetic device where an additional tuner input 281 

is able to dynamically change key features of the device’s response function. This was 282 

achieved by employing a regulatory motif that allows for the transcription and translation rate 283 

of a gene to be controlled by the activity of multiple input promoters. Connecting this TES to 284 

a number of small molecule sensors, we were able to demonstrate its ability to shift the on 285 

and off output states by 4.5- and 28-fold, respectively (Figure 1). Furthermore, we showed 286 

how the TES could be incorporated into a genetic NOT gate to enable tuning of the crucial 287 

transition point between an on and off state over a 7-fold range (Figure 2). This made the gate 288 

more broadly compatible with other components where matching of transition points to high 289 

and low output levels is essential for effective propagation of biological computations 7,22. 290 

Unfortunately, the performance of the tunable sensor and NOT gate varied for differing tuner 291 

inputs, leading to a trade-off between performance and the level of tuning required. 292 

Mathematical and biophysical modelling of the TES helped to uncover: 1. the importance of 293 

ensuring sufficient tuner sRNA is present to fully activate the THS (Figure 3), and 2. the 294 

presence of possible detrimental interactions between a self-cleaving ribosome used to 295 

insulate protein expression from genetic contextual and the THS that relies on the correct 296 

folding of an RNA secondary structure to function properly (Figure 4). Modified designs that 297 

addressed these concerns demonstrated improved performance for the TES in both cases, 298 

but only minor improvements in the fold-change of the tunable NOT gate when the self-299 

cleaving ribosome was removed (Table 1). By combining these two modifications into a single 300 

system, further improvements were also observed for the TES, but not the tunable NOT gate 301 

when compared to the original designs (Table 1). To our knowledge the simultaneous control 302 

of transcription and translation to tune the response function of a genetic device has not been 303 

shown before, making this work a valuable resource for others to build on. Furthermore, unlike 304 

other attempts at tuning the response of devices through mutation of protein components to 305 
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alter catalytic rates 44, our method allows for dynamic changes to a response function using 306 

simple to control transcriptional signals (i.e. by the use of appropriate promoters). 307 

An interesting future direction opened up by the adaptive nature of our devices is the 308 

ability to incorporate many of them into larger circuits. This would allow many parts of a circuit 309 

to be tuned simultaneously to maximize the compatibility between components and optimize 310 

the behavior of the overall system. Unlike a typical design-build-test cycle that requires the 311 

reassembly of a genetic circuit with a new combination of parts if malfunctions are detected, 312 

this work supports a design-build-test-tune cycle where time consuming and costly 313 

reassembly can be avoided. Rather than reassembling a circuit after each cycle, parts can 314 

instead be dynamically tuned until they work correctly in unison. In this context, the use of 315 

sensitivity analysis 45, during circuit design would offer valuable insight into specific 316 

components where even small deviations in behavior would adversely impact overall circuit 317 

function. These would be ideal candidates to be encoded using tunable devices to allow for 318 

tweaking at these critical points. Furthermore, the use of new microfluidic culturing systems 319 

and online machine learning algorithms offers a way to rapidly discover the precise tuner 320 

inputs needed to achieve specific circuit functions under fluctuating environmental conditions 321 

46–49. 322 

Some practical challenges are raised by the additional tuner input in our devices. 323 

Systems composed of numerous tunable devices will require a large number of tuner inputs 324 

to be controlled simultaneously. If external signals are to be used, then a unique sensor is 325 

required for each tuner input as well as the capability to be able to control the environment to 326 

provide the correct set of input signals over time. Although the range of small molecule 50 and 327 

light based 44,51 sensing systems available to bioengineers in E. coli has grown over recent 328 

years, the ability to control many environmental factors (e.g. small molecule concentrations 329 

and light intensities) simultaneously remains difficult. However, external control is not the only 330 

way to tune the behavior of these devices. The use of promoters as inputs and outputs allows 331 

them to be controlled by connecting them directly to the many transcriptional signals used 332 

natively in a cell. This offers the advantage of tapping into the cells innate capacity to sense 333 

and respond to its environment and internal protein synthesis demands. 334 

For synthetic biology to have a broad and lasting impact outside of the carefully 335 

controlled conditions of a lab, it is vital that means are developed to construct adaptive genetic 336 

circuits able to maintain their functionality when exposed to unexpected environmental 337 

changes or shifts in host cell physiology 52. By combining advances in biological control 338 

engineering 52–57 with the tunable genetic devices developed in this work, bioengineers have 339 

a complementary set of tools capable of taking steps towards this goal. 340 

 341 

Materials and Methods 342 
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Strains and media 343 

Cloning was performed using Escherichia coli strain DH5-α (F– endA1 glnV44 thi-1 recA1 344 

relA1 gyrA96 deoR nupG purB20 φ80dlacZΔM15 Δ(lacZYA–argF)U169, hsdR17(rK
–mK

+), λ–) 345 

(New England Biolabs, C2987I). Device characterization was performed using BL21 Star 346 

(DE3) (F– ompT hsdSB (rB
–, mB

–) gal dcm rne-131 [DE3]) (Thermo Fisher Scientific, C601003). 347 

For cloning, cells were grown in LB Miller broth (Sigma-Aldrich, L3522). For device 348 

characterization, cells were grown in M9 minimal media supplemented with glucose containing 349 

M9 salts (6.78 g/L Na2HPO4, 3 g/L KH2PO4, 1 g/L NH4Cl, 0.5 g/L NaCl) (Sigma-Aldrich, 350 

M6030), 0.34 g/L thiamine hydrochloride (Sigma T4625), 0.4% D-glucose (Sigma-Aldrich, 351 

G7528), 0.2% casamino acids (Acros, AC61204-5000), 2 mM MgSO4 (Acros, 213115000), 352 

and 0.1 mM CaCl2 (Sigma-Aldrich, C8106). Antibiotic selection was performed using 50 μg/mL 353 

kanamycin (Sigma-Aldrich, K1637) or 50 mg/mL spectinomycin (Santa Cruz Biotechnology, 354 

sc-203279). Induction of sensor systems was performed using anhydrotetracycline (aTc) 355 

(Sigma-Alrdich, 37919) and isopropyl β-D-1-thiogalactopyranoside (IPTG) (Sigma-Aldrich, 356 

I6758). 357 

 358 

Genetic device synthesis and assembly 359 

Plasmids containing the TES and tunable NOT gate devices were constructed by gene 360 

synthesis of the individual transcriptional units (e.g. tuner sRNA, THS-yfp, THS-phlF and yfp), 361 

(GeneArt, Thermo Fisher Scientific) and insertion of these elements into a pAN1201 plasmid 362 

backbone. pAN1201 provides all the sensor systems used for induction of the input promoters. 363 

Assembly was performed by first PCR of the synthesized transcriptional units and the 364 

pAN1201 plasmid (without the lacZα region normally used for blue/white screening) with all 365 

primers containing a 20 bp tail homologous sequence to the previous or subsequent region in 366 

the desired assembly. Gibson assembly (New England Biolabs, E2611S) was then used to 367 

scarlessly assemble these fragments into a complete plasmid. The plasmid used to boost 368 

tuner sRNA levels (pVB005) was fully synthesized (GeneArt, Thermo Fisher Scientific). 369 

Annotated plasmid maps of all devices are provided in Supplementary Figure S2 and 370 

Supplementary File S2. All plasmids were sequence verified by Sanger sequencing (Eurofins 371 

Genomics). 372 

 373 

Genetic device characterization  374 

Single colonies of cells transformed with the appropriate genetic constructs were inoculated 375 

in 200 μL M9 media supplemented with glucose and necessary antibiotics for selection in a 376 

96-well microtiter plate (Thermo Fisher Scientific, 249952) and grown for 16 hours in a shaking 377 

incubator (Stuart, S1505) at 37 °C and 1250 rpm. Following this, cultures were diluted 9:1600 378 

(15 μL into 185 μL, with 15 μL of this dilution loaded into 185 μL) in glucose supplemented M9 379 
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media with necessary antibiotics for selection and grown for 3 hours at the same conditions. 380 

Next, the cultures were diluted 1:45 (10 μL into 140 μL) into supplemented M9 media with 381 

necessary antibiotics for selection and any required inducers in a new 96-well microtiter plate 382 

(Thermo Fisher Scientific, 249952) and grown at 37 °C and 1250 rpm for 5 hours. Finally, the 383 

cells were diluted 1:10 (10 μL into 90 μL) in phosphate-buffered saline (PBS) (Gibco,18912-384 

014) containing 2 mg/mL kanamycin to halt translation and incubated at room temperature for 385 

1 hour to allow for maturation of the YFP before performing flow cytometry. 386 

 387 

Flow cytometry 388 

YFP fluorescence of individual cells was measured using an Acea Biosciences NovoCyte 389 

3000 flow cytometer equipped with a NovoSampler to allow for automated collection from 96-390 

well microtiter plates. Cells were excited using a 488 nm laser and measurements taken using 391 

a 530 nm detector. A flow rate of 40 μL/min was used to collect at least 105 cells for all 392 

measured conditions. Automated gating of events using the forward (FSC-A) and side scatter 393 

(SSC-A) channels was performed for all data using the FlowCal Python package version 1.2 394 

58 and the density2d function with parameters: channels = [‘FSC-A’, ‘SSC-A’], bins = 1024, 395 

gate_fraction = 0.5, xscale = ‘logicle’, yscale = ‘logicle’, and sigma = 10.0. 396 

 397 

Autofluorescence correction 398 

To measure YFP fluorescence from our constructs it was necessary to correct for the 399 

autofluorescence of cells. An autofluorescence control strain containing the pAN1201 plasmid 400 

7, which does not express YFP but contains the same backbone as our genetic devices, was 401 

measured using flow cytometry under the same culturing conditions as for characterization. 402 

Measurements were taken from three biological replicates and an average of the medians of 403 

the gated distributions was subtracted from the gated YFP fluorescence flow cytometry data 404 

of the characterized devices, as in previous work 7. 405 

 406 

Characterization of sensor systems in relative promoter units (RPU) 407 

To allow for inputs to our devices to be controlled in standardized relative promoter units 408 

(RPUs) 7,59, calibration curves for the two sensor systems were generated to enable a 409 

conversion between a chemical inducer concentration and the relative promoter activity of 410 

each sensors’ output promoter (Ptac and Ptet). Cells transformed with plasmids pAN1718 and 411 

pAN1719 for Ptac and Ptet, respectively, and the pAN1717 RPU standard 7, were cultured in 412 

the same way as the characterization experiments. Flow cytometry was used to measure YFP 413 

fluorescence which was further corrected for cell autofluorescence. RPU values were then 414 

calculated by dividing the YFP output from the sensor by the YFP output from the RPU 415 

standard and a Hill function fitted to the resultant data (Supplementary Figure S1).  416 
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 417 

Quantifying histogram intersections  418 

The fraction of intersection H between two histograms (e.g. flow cytometry fluorescence 419 

distributions), x and y, was calculated using, 420 

𝐻(𝑥, 𝑦) = 	∑ *+,	(-.,/.)
-.

0
123 	.           (1) 421 

Here, histograms x and y are divided into n bins that correspond to identical ranges of values 422 

for each, with xi and yi denoting the value of bin i for histogram x or y, respectively. 423 

 424 

Predicting RNA binding and secondary structure 425 

To predict the binding and secondary structure of the toehold switch and tuner sRNA (Figure 426 

3), thermodynamic modelling was performed using the NUPACK web application 60. All 427 

simulations were run using the parameters: nucleic acid = RNA, temperature = 37 °C and the 428 

concentration of toehold switch mRNA was set to 5 × 10−4 μM. The switch sequence mRNA 429 

and the switch sequence mRNA with an upstream cleaved RiboJ were simulated 430 

independently with additional parameters strand species = 1 and a maximum complex size = 431 

1. The toehold switch mRNA with and without an upstream RiboJ sequence where also 432 

simulated in the presence of trigger sRNA set to a concentration of 7 × 10−5 μM with additional 433 

parameters: strand species = 1 and a maximum complex size = 1. Full sequences are given 434 

in Supplementary Table S2. 435 

 436 

Computational analyses and data fitting 437 

All computational analyses were performed using Python version 3.6.6. Response functions 438 

for the TES designs were generated by fitting median values of YFP fluorescence from flow 439 

cytometry data to a Hill function of the form 440 

𝑦 = 𝑦*+, + (𝑦*56 − 𝑦*+,)
-8

98:-8
,          (2) 441 

where y is the output YFP fluorescence (in arbitrary units), ymin and ymax are the minimum and 442 

maximum output YFP fluorescence (in arbitrary units), respectively, K is the input promoter 443 

activity (in RPU units) at which the output is halfway between its minimum and maximum, n is 444 

the Hill coefficient, and x is the input promoter activity (in RPU units). Response functions for 445 

the tunable NOT gates were generated in a similar way using a Hill function of the form 446 

𝑦 = 𝑦*+, + (𝑦*56 − 𝑦*+,)
98

98:-8
.          (3) 447 

Fitting of data was performed using non-linear least squares and the curve_fit function from 448 

the SciPy.integrate Python package version 1.1. 449 

 450 

Numerical simulation 451 

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 24, 2019. ; https://doi.org/10.1101/711275doi: bioRxiv preprint 

https://doi.org/10.1101/711275
http://creativecommons.org/licenses/by-nd/4.0/


 
15 

The deterministic ODE model (Supplementary Text S1) was simulated using the odeint 452 

function of the SciPy.integrate Python package version 1.1 with default parameters. Stochastic 453 

simulations of biochemical model (Supplementary Text S1) were performed using the tau-454 

leap method in COPASI 61 version 4.24 with the settings: duration = 100 min, interval size = 1 455 

min, number of intervals = 100 and starting in steady state. 456 

 457 

Visualization of genetic designs 458 

All genetic diagrams are shown using Synthetic Biology Open Language Visual (SBOL Visual) 459 

notation 62. SBOL Visual diagrams were generated using the DNAplotlib Python package 63,64 460 

version 1.0 which were then annotated and composed with OmniGraffle version 7.9.2.  461 

 462 

Data availability 463 

Systems Biology Markup Language (SBML) files implementing models of the TES and tunable 464 

NOT gate can be found in Supplementary File S1. Annotated sequence files in GenBank 465 

format for all plasmids are available in Supplementary File S2. All plasmids are available 466 

from Addgene (#127185–127189). 467 
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Figure and Captions 629 

 630 

Figure 1: Design and characterization of a tunable expression system (TES). (A) 631 

Schematic of the TES (top) and genetic implementation using a toehold switch (design 20) 34 632 

to regulate translation initiation rate of an output protein (bottom). Transcriptional (TX) and 633 

translational (TL) steps are explicitly shown by arrows within the TES (dashed box). Yellow 634 

fluorescent protein (YFP) is used as the output and T1 and T2 correspond to the transcriptional 635 

terminators L3S3P11 and L3S2P21, respectively 65. (B) Genetic design of the sensor modules 636 

used to drive the main and tuner inputs to the TES. (C) Experimentally measured response 637 

functions for the TES. Points denote the average of three biological replicates and error bars 638 

show ±1 standard deviation. Each line shows a fitted Hill function for a fixed tuner input (light–639 

dark: 0.002, 0.03, 0.15, 0.43, 0.90, 2.61 RPU). Promoter activities for both the main and tuner 640 

inputs are given in relative promoter units (RPU) (Materials and Methods). (D) Flow 641 

cytometry distributions of YFP fluorescence when the tuner promoter activity is low (bottom; 642 

0.002 RPU) and high (top; 2.61 RPU). Left and right distributions correspond to a low (0.002 643 

RPU) and high (6.6 RPU) input promoter activity, respectively. Autofluorescence distribution 644 

is shown by the black line. (E) Response functions from a deterministic model of the TES 645 

(Supplementary Text S1). Output shown as the steady state protein level. Line color 646 

corresponds to the promoter activity of the tuner input (light–dark: 0.0001, 0.0005, 0.0025, 647 

0.0124, 0.0617, 0.3077, 1.5340, 7.6467, 38.117, 190.00 RNAP/min). (F) Fraction of 648 

intersection between YFP fluorescence distributions for low (0.002 RPU) and high (6.55 RPU) 649 

inputs across varying tuner promoter activities.  650 
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 651 

Figure 2: Design and characterization of a tunable NOT gate. (A) Schematic of the tunable 652 

NOT gate (top) and genetic implementation embedding the TES (bottom). Yellow fluorescent 653 

protein (YFP) expression is driven by the output promoter and T1 and T3 correspond to the 654 

transcriptional terminators L3S3P11 and ECK120033737, respectively 65. (B) Experimentally 655 

measured response functions of the tunable NOT gate. Points denote the average of three 656 

biological replicates and error bars show ±1 standard deviation. Each line shows a fitted Hill 657 

function for a fixed tuner input (light–dark: 0.002, 0.03, 0.15, 0.43, 0.90, 2.61 RPU). Arrow at 658 

top of plot shows range of K values across all fitted curves. Promoter activities for both the 659 

main and tuner inputs are given in relative promoter units (RPU) (Materials and Methods). 660 

(C) Flow cytometry distributions of YFP fluorescence with no autofluorescence correction from 661 

the tunable NOT gate when the tuner promoter activity is low (bottom; 0.002 RPU) and high 662 

(top; 2.61 RPU). Left and right distributions correspond to a low (0.0022 RPU) and high (1.51 663 

RPU) input promoter activity, respectively. (D) Comparison of switching point (K value) for 664 

each repressor-based NOT gate from Cello 7 (black circles) to the range achievable by the 665 

tunable NOT gate (red crosses and shaded regions). (E) Fraction of intersection between YFP 666 

fluorescence distributions for low (0.002 RPU) and high (1.5 RPU) inputs for varying tuner 667 

promoter activities. (F) Fold-change in the median YFP fluorescence between low (0.002 668 

RPU) and high (1.5 RPU) inputs for varying tuner promoter activities.  669 

2

4

6

0.0

0.5

1.0

0
103

104

A

K value (RPU)

(active)

(inactive)

THS20
Ptet

phlF
RiboJ

Ptac

PhlF

Input
(aTc)

Tuner
(IPTG)

yfpPphlF

YFP

Output

sRNA20 T1

T3

Input

Tuner

Output

B

E

D

Tunable NOT gate

Input, Ptet (RPU)O
ut

pu
t, 

YF
P 

(R
PU

)

  Tuner, Ptac (RPU)

In
te

rs
ec

tio
n

Fo
ld

-c
ha

ng
e

F

10-3 10-1 101

C

Tu
ne

r, 
P t
ac

 (R
PU

)

Fluorescence (a.u.)
102 103 105

Co
un

t

104

10-1 1010 10-1 1010

(RNAP/s)

(RNAP/s) (RNAP/s)

0.01 0.1
SrSR
QaFR
3srA
3hlF
LPrA
LLtR

IFaRA
HlyIIR
BHtI

B03R1
APtR
APHR

RiboJ
Tuner, Ptac (RPU)

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 24, 2019. ; https://doi.org/10.1101/711275doi: bioRxiv preprint 

https://doi.org/10.1101/711275
http://creativecommons.org/licenses/by-nd/4.0/


 
22 

 670 

Figure 3: Increasing tuner sRNA transcription rate to improve device performance. (A, 671 

B) Results of deterministic simulations of the TES model (Supplementary Text S1) showing 672 

steady state protein output and THS mRNA to tuner sRNA ratio for a range of input and 673 

tuner promoter activities. Tuner promoter activities are shown in bands between 0.0001, 674 

0.0005, 0.0024, 0.012, 0.056, 0.27, 1.3, 6.4, 31, 150 and 730 RNAP/min, respectively (light–675 

dark). (B) Stochastic simulation of the same TES model (n = 10000) for low (1 RNAP/min; 676 

grey) and high (1.5 RNAP/min; green) input promoter activity. Top and bottom panels 677 

correspond to low (1.5 RNAP/min) and high (5 RNAP/min) tuner promoter activity, 678 

respectively. (C) Genetic design of the sRNA booster. The T7RNAP gene is encoded in the 679 

host genome and an additional plasmid contains a tuner sRNA expression unit. (D) 680 

Experimentally measured response functions (left) and flow cytometry distributions of the 681 

YFP fluorescence output (right) for the TES with the sRNA booster present. (E) 682 

Experimentally measured response functions (left) and flow cytometry distributions of the 683 

YFP fluorescence output (right) for the tunable NOT gate with the sRNA booster present. 684 

Points in all response functions denote the average of three biological replicates and error 685 

bars show ±1 standard deviation. Each line shows a fitted Hill function for a fixed tuner input 686 

(light–dark: 0.002, 0.03, 0.15, 0.43, 0.90, 2.61 RPU). Arrow at top of plot shows range of K 687 

values across all fitted curves. All flow cytometry distributions are shown for low (bottom; 688 

0.002 RPU) and high (top; 2.61 RPU) tuner promoter activity, with left and right distributions 689 

corresponding to a low (0.002 RPU) and high (6.6 RPU for the TES and 1.5 RPU for the 690 

NOT gate) input promoter activity, respectively. Autofluorescence distribution is shown by 691 

the black line. Promoter activities for both the main and tuner inputs are given in relative 692 

promoter units (RPU) (Materials and Methods).  693 
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 694 

Figure 4: Self-cleaving ribozyme insulators affect tunable device performance. (A) 695 

Original designs of both the TES and tunable NOT gate include a RiboJ insulating element, 696 

which can potentially interfere with binding of the tuner sRNA to the toehold switch. (B) RNA 697 

secondary structure predictions for THS alone and with complimentary tuner sRNA bound. 698 

Separate structures shown when the RiboJ insulating element is present (left) and absent 699 

(right). (C) Experimentally measured response functions (left) and flow cytometry distributions 700 

of the YFP fluorescence output (right) for the TES with the RiboJ insulator removed. (D) 701 

Experimentally measured response functions (left) and flow cytometry distributions of the YFP 702 

fluorescence output (right) for the tunable NOT gate with the RiboJ insulator removed. Points 703 

in all response functions denote the average of three biological replicates and error bars show 704 

±1 standard deviation. Each line shows a fitted Hill function for a fixed tuner input (light–dark: 705 

0.002, 0.03, 0.15, 0.43, 0.90, 2.61 RPU). Arrow at top of plot shows range of K values across 706 

all fitted curves. All flow cytometry distributions are shown for low (bottom; 0.002 RPU) and 707 

high (top; 2.61 RPU) tuner promoter activity, with left and right distributions corresponding to 708 

a low (0.002 RPU) and high (6.6 RPU for the TES and 1.5 RPU for the NOT gate) input 709 

promoter activity, respectively. Autofluorescence distribution is shown by the black line. 710 

Promoter activities for both the main and tuner inputs are given in relative promoter units 711 

(RPU) (Materials and Methods).  712 
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Tables 713 

Table 1: Performance summary of all tunable devices. 714 

Device Design 

Dynamic rangea,b 
(a.u.) 

Fold-changea,c Intersectiona,d 
K range 
(RPU)g Lowe Highf Lowe Highf Lowe Highf 

TES Original  333 ± 
53 

877 ± 
695 

14 ± 
1.7 

2.4 ± 
1.2 

0.78 ± 
0.06 

0.69 ± 
0.16 

– 

sRNA boosterh 538 ± 

51 

2064 ± 

1070 

227 ± 

297 

5.7 ± 

1.8 

0.46 ± 

0.04 

0.35 ± 

0.15 

– 

Non-insulatedi 882 ± 

134 

2149 ± 

409 

445 ± 

412 

31 ± 

16 

0.26 ± 

0.07 

0.27 ± 

0.06 

– 

Combinedj 1550 ± 

209 

1712 ± 

584 

1236 ± 

613 

66 ± 

54 

0.15 ± 

0.04 

0.22 ± 

0.04 

– 

NOT 
gate 

Original 17280 ± 

1273 

3512 ± 

286 

6.0 ± 

0.1  

1.5 ± 

0.1 

0.19 ± 

0.04 

0.84 ± 

0.02 

0.01–0.07 

sRNA boosterh 22040 ± 

1601 

2170 ± 

654 

5.8 ± 

0.3 

0.9 ± 

0.3 

0.13 ± 

0.07 

0.85 ± 

0.02 

0.01–0.06 

Non-insulatedi 17466 ± 
1926 

4061 ± 
827 

6.8 ± 
0.3 

2.6 ± 
0.4 

0.11 ± 
0.03 

0.56 ± 
0.08 

0.02–0.04 

Combinedj 27751 ± 

3104 

2383 ± 

165 

6.0 ± 

0.6 

0.9 ± 

0.1 

0.08 ± 

0.05 

0.90 ± 

0.03 

0.003–0.02 

a.  Average values are shown ± 1 standard deviation calculated from flow cytometry data for three 715 

biological replicates. 716 

b. Dynamic range calculated as the absolute difference in YFP fluorescence between low and high 717 

inputs (0.002 and 6.6 RPU for the TES, and 0.002 and 1.5 RPU for the NOT gate, respectively). 718 

c. Fold-change in YFP fluorescence (corrected for cell autofluorescence) for low and high inputs 719 

(0.002 and 6.6 RPU for the TES, and 0.002 and 1.5 RPU for the NOT gate, respectively). 720 

d. Fraction of intersection between the flow cytometry YFP fluorescence distributions for low and high 721 

inputs (0.002 and 6.6 RPU for the TES, and 0.002 and 1.5 RPU for the NOT gate, respectively) 722 

(Materials and Methods). 723 

e. Performance measured for a low tuner input (0.002 RPU). This is the expected promoter activity of 724 

the Ptac promoter in our designs. 725 

f. Performance measured for a high tuner input (2.61 RPU). This is the expected promoter activity of 726 

the Ptac promoter in our designs. 727 

g. Range of K values from Hill functions fitted to experimental data. 728 

h.  Original designs (Figures 1A and 2A) with the sRNA booster system (Figure 3E). 729 

i. Design has the RiboJ insulating element removed (Figure 4A). 730 

j. Design has the RiboJ insulating element removed (Figure 4A), and sRNA booster system present 731 

(Figure 3E). 732 
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