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Abstract
Memory and forgetting constitute two sides of the same coin, and although the first has been rigorously investigated, the latter
is often overlooked. A number of experiments under the realm of psychology and experimental neuroscience have described the
properties of forgetting in humans and animals, showing that forgetting exhibits a power-law relationship with time. These results
indicate a counter-intuitive property of forgetting, namely that old memories are more stable than younger ones. We have devised a
phenomenological model that is based on the principle of retroactive interference, driven by a multi-dimensional valence measure
for acquired memories. The model has only one free integer parameter and can be solved analytically. We performed recognition
experiments with long streams of words were performed, resulting in a good match to a five-dimensional version of the model.

Introduction

Memory has been often associated solely with the property of persistence, that is the ability to retain and retrieve
information with the passage of time. Another equally important characteristic of memory however, is transience, or in
other words, the ability to forget and discard information that could be no longer relevant. This process is considered
crucial for memory and it is hypothesized to be essential for adaptive behavior [1]. Traditionally, since Ebbinghaus‘s
seminal study [2], forgetting has been described with the use of the retention curve. This curve is a continuous function
of time R(τ), which denotes the probability that a memory of age τ still exists (i.e not yet forgotten). The shape of
the retaining function has been investigated through the examination of experimental data over the last century, with
some of the authors proposing universal power-law decay [3, 4, 5] (but see [6]):

R(τ) ∝ τ−α (1)

Conversely, we can define a forgetting rate function F(τ), expressing the probability that an available memory of age
τ, will be forgotten within the next time interval dt. The two functions are related under the equation:

R(τ) ≈
t=τ/dt∏

t=0

(1 − F(t)dt) ≈ e−
∫ τ

0 F(t)dt (2)

which simply expresses the fact that in order to remain for time τ, the memory has to remain for each of the intervening
time intervals. Equation 2 can be inverted to

F(τ) = −
R′(τ)
R(τ)

(3)
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This equation means that while the retention function is monotonically decreasing with time (if we assume that extin-
guished memories cannot be reinstated), the forgetting function could in principle be both decreasing and increasing,
depending on the decay speed of the retention function. In particular, an exponential retention function is a borderline
case which results in a forgetting function that is independent of time, i.e. all memories have the same probability to
be forgotten, irrespective of their age.

Substituting (1) into (3), we get that for power-law decay of retention, the forgetting rate will decay in time at an
inversely proportional manner, regardless of the value of the exponent α:

F(τ) ∝
α

τ
(4)

In other words, memories that are older are more resilient (have lower probability to be forgotten at any given mo-
ment). Most neural network models of memory however, treat forgetting as a process that is linear in time, i.e the
older the memory, the more probable it is to be forgotten at any given moment, which is the core idea of forgetful
learning and memory palimpsests [7].

The interest in mathematical forms of memory curves was encouraged by the hope that they may shed light int the
mechanisms of remembering and forgetting. While this is not necessarily true, as different mechanisms could result in
similar mathematical forms of forgetting (see below), memory models should still be at least broadly compatible with
observations, and ideally provide some insights into their computational advantages to potentially alternative schemes.
Mechanisms that are usually considered in relation to forgetting are passive decay of memories, interference and
consolidation (see e.g. [8]). Decay theories state that memories are degraded with time, and are completely forgotten
when a threshold is reached. On the other hand, the more popular interference theories suggest that prior (proactive) or
subsequent (retroactive) learning disrupts memory consolidation and therefore memories are forgotten (For a review
of both cases see [8]). A simple and elegant mathematical model of the first type is presented in [5]. While it would
appear that passive decay of memory strength should result in new memories gradually replacing the older ones,
Kahana and Adler showed that when new memories are characterized by variable initial strengths and decay rates,
and are forgotten when the strength dips below threshold, retention function converges to 1/τ scaling in the limit of
large τ. Importantly, the necessary condition for this property is that the distribution of decay rates extends all the way
towards zero, i.e. some memories don’t decay with time. For example, in the simplest case when memory decay is
characterized by a linear function: S (t) = a − bt with random positive a and b, one can show that asymptotic scaling
for the probability that a memory is still available at time τ after acquisition is given by

R(τ) ≈
Pb(0)
τ

< a >, (5)

where Pb(b) is the probability density of the decay rate b and < a > is the average value of the initial memory strength
(see Appendix for a derivation). The condition that Pb(0) > 0 also means that the average life-span of a memory
is infinite. We conclude that while this study to some extent demystifies the power-law scaling of retention curves,
the assumption about the passive decay of memories seems to contradict the well-documented effect of memory
interference [9] and the model does not provide any mechanistic reasons for why some memories decay with time and
some not, which is a crucial requirement for power-law forgetting. An alternative model that combines passive decay
and interference was proposed in [10], where memories are characterized by a ratio of time since their acquisition
to that of other memories. Recall probability is assumed to depend on its ’distinctiveness’, defined as an inverse
of acquisition time ratios averaged over all other memories . On one hand, interference is involved since different
memories interact to determine their distinctiveness; on the other hand, when time passes without any new memories
being acquired, distinctiveness of all memories, and hence their recollection, declines, indicating that passive decay
is also effectively at play. The authors show that this mathematical model accounts for experimental retention curves
as well as other well-known phenomena in recall literature, such as recency-to-primacy gradient. However, the model
rests on several strong assumptions, e.g. the time since acquisition of each memory has to somehow be encoded, and
a particular mathematical form of distinctiveness measure has no mechanistic underpinning.

In the current contribution, we aim at a forgetting mechanism that would be compatible with realistic retention
curves, contain as few assumptions as possible, and could have a clear functional interpretation. To this end, we
propose a phenomenological model that parallels the concept of retroactive interference and captures the statisti-
cal properties of forgetting that were previously discussed. Similar to [5] it simplifies the memory retention as a
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Figure 1. Interference model of forgetting. 1-D. Each item is represented as a thin vertical bar. The height of the bar corresponds to the valence
of an item. The top row bars above the black line represent items that are stored in memory just before the acquisition of a new item, shown on
the right (Sample). All the items that have smaller valence (bar height) than the new item are discarded from memory (crossed by red bar), and the
new item is added. Bottom row represents the memory content, after the new memory is acquired. 2-D. Same as 1-D, but each memory item has
2 valences, represented by the width and height of a rectangular. In this case, all the items that have both valences smaller than the corresponding
valences of the new item are discarded.

binary process (available/forgotten) and introduces the notion of memory strength (that is generalized to be a multi-
dimensional valence). However it does not assume an independent and passive decay of memory valence, rather it
proposes a specific process of forgetting based on the idea of retroactive interference. The process proposed has a
clear functional interpretation of trying to keep important memories while discarding less important ones. Besides
valence dimensionality, the model has no free parameters to tune and results in an asymptotic scaling of retention
function similar to that of [5] without any additional assumptions. Furthermore, we performed a series of recognition
experiments designed to quantitatively test the predictions of the model and found that it provides a good match to the
data.

The Model

To illustrate the main idea of our model, let us first consider a system that continuously acquires new memory
items, each characterized by the scalar value v (valence), considered to be a measure of its importance and indepen-
dently sampled from a distribution P(v). The form of this distribution can be arbitrary, but we assume that it is not
changing with time. For simplicity, we assume that memories are acquired at a constant rate (one new memory per
time unit). Each time a new item is sampled, all the previously stored items that have a smaller valence are discarded
(’forgotten’; see Fig. 1, upper panel). Therefore, the total number of stored items will increase if items with relatively
small valences are sampled but can suddenly decrease if the sampled element is very potent. This process can be
regarded as a crude approximation to retroactive interference. By the construction of the model, at any given moment
the valence of the stored units will be a monotonically increasing function of their age, since units are retained only
if following units have a smaller valence and are discarded otherwise. Therefore, the probability that a unit will be
forgotten at the next time step is strictly a decaying function of its age, i.e. one of the most counter-intuitive features
of memory retention is inherently captured by the model. Mathematically, the retention function R(t) is defined as the
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probability that a memory item is still retained in memory t time steps after its acquisition, and can be computed as:

R(t) =

∫ ∞

−∞

dvP(v)
[
1 −

∫ ∞

v
dv′P(v′)

]t
(6)

where the term in square brackets expresses the chance that an item with valence v survives the acquisition of one
extra item. With the change of variables v→ y(v) =

∫ ∞
v dv′P(v′), equation (6) converts to:

R(t) =

∫ 1

0
(1 − y)tdy =

1
t + 1

(7)

We see that this simple model exhibits the uniform power-law scaling of memory retention for all times. Importantly,
there are no free parameters that affect the retention properties of the model, in particular the form of the probability
distribution of valences, P(v) has no effect on the model behavior. The 1/t scaling of the retention curve implies that
the average number of memories does not saturate with time but continues to grow, which is an attractive feature of
the model. However, if we compute the average number of items in memory after a long time T from the beginning
of the acquisition process, we obtain

N(T ) =

T∑
t=1

1
t + 1

≈ log(T ) (8)

i.e. the number of stored items is very small in relation to the total number of sampled ones. In particular, even after
T = 108 time units (several years of learning if one assumes a new memory acquisition per second), no more than
twenty memories are retained, which is clearly not a reasonable estimate. Furthermore, the assumption that there
is a single metric of importance is also unrealistic. Each piece of acquired information might be very important in
one context but trivial in another (see also Discussion below). This idea can be easily translated into the model by
introducing a multidimensional valence distribution, where each component of the sample v represents its valence on
a different domain. The forgetting rule in this case is expanded to all dimensions, and for an item to be forgotten, it is
required that the newly acquired sample has a larger valence value on all axes (see 1, lower panel, for 2-dimensional
case). The retention function in this extended model cannot be expressed in a closed form but can be iteratively
computed with the following scheme:

Rn(t) =
1

t + 1

t∑
k=0

Rn−1(k) (9)

with n being the number of dimensions and R1(t) being the retention curve of the 1-dimensional model (equation 7
above, for detailed derivation see Appendix B). Repeated application of equation 9 allows the exact calculation of
the retention curve for arbitrary n. Assuming large t, this expression approximates to

Rn(t) ≈
1

(n − 1)!
logn−1(t + 1)

(t + 1)
, (10)

which has the same scaling as in the one-dimensional case (7) with a logarithmic correction. This correction aggre-
gated over a long time T , leads to the total number of retained memories given by

Nn(T ) =

T∑
t=1

Rn(t) ≈
1
n!

logn(T ). (11)

Figure 2 shows the plots for R(t) and N(T ) for several values of dimensionality. For example, we see that for n = 5
the number of retained memories after T = 108 steps of acquisition is around few tens of thousands, which appears to
be a reasonable estimate [11].

The above analysis shows that in the multidimensional case, the retention curves deviate from simple power-law
functions due to logarithmic corrections. One can still approximate the retention curve with a power-law function
with a slowly changing exponent:

Rn(t) ≈ c(t)tα(t) (12)
4
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Figure 2. Theoretical results. A. Theoretical retention curves (9) for different number of valence dimensions n. The dashed green line shows the
asymptotic approximation of equation (10) for n = 5 that converges to an exact curve from T ≈ 104, B. The average number of retained memories
accumulated as a function of elapsed time from the beginning of acquisition.

where the exponent α(t) can be estimated as

α(t) =
d(log(Rn(t))

d(log(t))
(13)

(see Fig. 2). One can see that the scaling exponent is slowly reduced to −1 for very large times, remaining significantly
above that asymptotic value even for times as large as 108. The asymptotic expression of the exponent can be derived
by the asymptotic expression for the retention curve, Eq. 10, resulting in

α(t) ≈ −1 +
n − 1
log(t)

. (14)

Experiment

To test whether the model conforms with human memory performance and to estimate the number of dimensions
for the valence distribution of memory, we designed an experimental protocol based on the two-alternative-forced-
choice delayed recognition task [12]. The experiment was performed on Amazon’s Mechanical Turk R© platform.
Participants were presented with a sequence of 500 words, intermittent with recognition attempts. During recognition
inquiries participants were prompted to select between two words on the basis of which word they remembered as
having previously appeared: one choice constituted a word presented earlier in the sequence (either 2 or 10 words
before the recognition attempt or one of the first 25 presented) and another one a lure (see Figure 4). Following [12]
we make a simplifying assumption that if a previously presented word is still in memory, the participant will provide a
correct answer, otherwise the response is going to stem from guessing. The experimental results are shown in Figure 5.
Figure 5a shows the results for all 471 participants in the experiment. One can observe that the probability to recognize
a word decays towards chance level (50% correct recognitions) as a function of lag between presentation and inquiry
(green line). The probability of recognizing the word presented 10 (10-back task) or 2 (2-back task) positions before
the recognition prompt also declines as the experiment furthers in time (blue and orange lines). This could result
from either proactive interference (when previously memorized items interfere with an acquisition of new words),
or general fatigue accompanied with diminished attention, leading to disruption of new word acquisition. Since the
short-term memory capacity is estimated to be 3–5 items [13], we conjectured that the last 2 words, if acquired,
should stay in short-term memory. We therefore selected 197 participants who exhibited perfect performance on the
2-back recognition task (see 5b). Indeed, these participants show no decline of performance for the 10-back test
either, indicating the absence of forward interference. Their retention performance (green line) is in agreement with
the theoretical prediction for n = 5 (dashed green line).
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Figure 3. Power fit of theoretical retention curves. A-E Theoretical retention curve computed with equation (9) for n = 5, plotted for different
time windows. In the inset, the estimated value of the power α for the corresponding window is shown. F The dependence of α on time (orange
curve). The value of α very slowly approaches −1, such that even for T = 108 it is still about −0.8. For comparison the asymptotic estimate of α
given by equation (14) is shown in blue.
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Word from
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Figure 4. Experimental protocol. A series of vertical bars represents word presentations. Pairs of horizontal bars represent a delayed recognition
task, where participants were presented with one word shown to them previously and one lure word. Participants were requested to click on the
word they felt that they saw before. In total 500 words were presented and all first 25 words were queried at different moments. Additionally,
participants undertook recognition tasks for the second (25) and tenth (25) back word from the time of inquiry resulting in a total of 75 tasks per
participant. The 2/10 back conditions were conducted in blocks, i.e no question from the first 25 words was asked between presentation of the item
to be queried and that query itself.
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Figure 5. Experimental results. A Recognition performance for all participants who passed the qualification task (see Methods). B Recognition
performance for participants that were perfect in the 2-back task. The experimental retention curve (recognition performance vs the lag between
word presentation and delayed recognition task positions, solid green curve) declines for both groups. One can observe that performance in the
2-back task (solid blue curves, time here indicates the position of the recognition task) is declining with time, It is generally assumed that working
memory capacity is 3-5 items, therefore the drop of performance in the 2-back task indicates that a progressively smaller fraction of words was
acquired towards the end of the trial, due to fatigue, loss of attention, or other reasons. Selecting the group of participants (in panel B) that are
perfect in the 2-back task we ensured that all the words were acquired during presentation. For this group of participants, the performance in
the 10-back task (orange solid curves, time indicates query position) remains constant throughout the experiment (compare with faint orange line
representing mean performance in the 10-back task). The dashed lines represent theoretical retention curves computed with equation B.5 corrected
for guessing (see Methods), for different number of dimensions n.

Discussion

We proposed a simple phenomenological model of forgetting that is broadly compatible with power-law retention
curves reported in the earlier literature and with focused recognition experiments performed specifically for this study.
In particular, the model results in power-law retention curves with exponents that very slowly decline towards −1,
remaining significantly above this asymptotic value for all realistic time lags that can be measured experimentally.
As opposed to previous quantitative models [5, 10], it is founded on a single computational principle that has a clear
functional meaning; namely, we assume that the system tries to maintain important memories at the expense of less
important ones, and to this end, each newly acquired element erases already stored ones that are less significant.
Importance is evaluated by a multi-dimensional valence measure such that memories that remain are characterized by
relatively higher valence measures in one or more dimensions. The nature of these differential valence dimensions
is not specified in the model. For example, the memory of an event could have five domains (who, when, where,
what and why), each of them defining a different axis of importance. If that event involves a very relevant person
(therefore a high value on the ’who’ axis), it would be likely to be retained in memory, even if what happened was
relatively insignificant. Another way to view a piece of information as a multidimensional element, comes from the
work on semantic representations of words. In particular, it has been shown that the same word pertaining to different
conceptual groups, activates different parts of the brain according to the contextual associations made upon acquisition
[14].

Similar to [5], the average life-span of memories in the model diverges due to accumulation of very strong mem-
ories, and hence the process never reaches a steady state, with the number of memories increasing, albeit with mono-
tonically decreasing speed. Besides the number of dimensions, the model does not have a single free parameter,
hence the observation that it fits the experimental results so well is quite surprising. It shows that retroactive interfer-
ence, which is well documented in psychological studies [9], is by itself sufficient to account for power-law retention
curves. Consolidation is thus not critical for this property of memory, which does not preclude its role in other aspects
of memory that were not addressed in this study.

Some of the assumptions of the model clearly oversimplify the memory system (some of them are mentioned in
Introduction). In particular, the valence of each memory is supposed to be stable for the duration of memory, and
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the distribution of valences, while not constrained in the model, is supposed to be stationary. In real life, one could
imagine that some memories’ importance could be altered in time while the distribution of new memory valences
could also potentially change, for example due to aging or other life changes. It would be interesting to consider how
the system would adapt to these changes by slowly replacing memories that become less relevant by the more relevant
ones.

Finally, we believe that we proposed a model with a minimal set of assumptions that is compatible with power-
law forgetting curves. However, since other models, based on different principles, can also account for the same
observations, we want to conclude the paper by encouraging further experimental and theoretical studies, in particular
designing ’critical experiments’, that would try to disambiguate different models and uncover the true mechanisms of
forgetting.

Methods

Participants, Stimuli and Procedure

A total of 900 participants were recruited to undertake a series of recognition tasks, designed to be performed
utilizing Amazon’s Mechanical Turkr (mTurk) platform (https://www.mturk.com). Ethics approval was obtained by
the IRB(Institutional Review Board) of the Weizmann Institute of Science and each participant accepted an informed
consent form before participation. Participants were first required to complete the qualification task and if they met
criteria described below they were allowed to participate in the main experiment (471 people). Participation was
compensated at 10 cents for the qualification task and 30 cents for the regular task.

Delayed Recognition Tasks. All tasks performed in this study were two alternative forced choice (2AFC) delayed
recognition tasks. Experiments were initiated with participants clicking on a ’Start Experiment’ button. A stream of
words was presented sequentially utilizing the standard interface on mTurk’s website for Human Intelligence Tasks,
using a custom HTML file with embedded Javascript. Each word was briefly flashed for a duration of 1s followed by a
blank screen of 0.5s. The words were displayed centrally on a white screen in black font. At random points during the
trial and once in the end, after all words were presented, the presentation of words paused and participants were given
a choice of two words in the form of vertically aligned buttons. Each button was randomly assigned with a word,
one that was previously presented during the trial and one new word (lure). Participants were instructed to select the
button containing the word they remembered seeing. After the selection, presentation resumed automatically. The list
of presented words for each participant was randomly generated by sampling without replacement from a pool of 751
words which was produced by selecting English words[15] that exhibited a frequency larger than ten per million[16].
Each participant performed only one qualification and one main task trials.

Qualification. In previous experience we encountered that many workers on mTurk platform are not following in-
structions. Therefore, each participant was presented with simpler and shorter task first. A recognition delayed task
with one hundred words in a stream was presented to participants. In 25 recognition tasks participants were questioned
about word that was presented just before the last one (2-back task). We reasoned that two last presented words should
stay in short-term memory if participants are attending to stimuli and following instruction. Therefore, we informed
people who performed the qualification task with a success rate of more than 95% that they may perform the main
experiment. The rest were compensated for participation in qualification experiment.

Main Task. Similarly to the qualification task participants had to attend to a stream of words, in this case five hundred
in total. During the trial, at seventy four random points (excluding the first 25 words) plus at the end of the list,
they were prompted for a delayed recognition of a previously shown word versus a lure word. Twenty five of them
requested a recognition of the second-back word as in the qualification, twenty five for the tenth-back and twenty five
for the first twenty five words presented. Recognition tasks were randomly intermixed.
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Analysis
In Figure 5 the lag was computed as the difference between a query position and a presentation position in the

stream of words. For example, if before the 100th word there was a recognition task related to 15th word the lag is
85. In the figure the mean fraction of correct recognition is shown for lag bins with equal population of measurements
(197) per bin, averaged across all participants having questions with query lags inside the bin. Not all participants had
queries for all bins.

Correction for guessing
In computing the theoretical performance for the recognition task we assumed that if a person is remembering the

presented word then she/he would correctly point out to the presented word. In the case where participants do not
remember the word, we assume they are guessing, and therefore choosing with equal probability. Therefore, one may
express recognition performance as

p(t) = R(t) +
1
2

(1 − R(t)) =
1 + R(t)

2
. (15)

where p(t) is fraction of correct responses in recognition task plotted in Figure 5b (dashed curves) and R(t) is retention
probability of a memory acquired t time steps before testing.
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Appendix A. Solution of Kahana model

We analyze the version of Kahana model [5] with linear decay of memory strength: S (t) = a − bt with positive
random coefficients a and b. Other types of passive decay produce similar results. For simplicity we assume that
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memory is forgotten when its strength dips below zero. The probability that a memory is still available time t after its
inception is given by

R(t) = Prob(a − bt > 0) =

∫ ∞

0
dbPb(b)

∫ ∞

bt
daPa(a) (A.1)

where Pa and Pb is the probability density of a and b, respectively. Introducing the new variable b → bt, and taking
the limit t � 1, one obtains

R(t) =
1
t

∫ ∞

0
dbPb(b/t)

∫ ∞

b
daPa(a)

≈
Pb(0)

t

∫ ∞

0
db

∫ ∞

b
daPa(a)

=
pb(0)

t
< a >

where the third line is obtained by integration by part of the previous line, < a > stands for the average value of a.
Finally, we note that the 1/t scaling of retention implies that the probability density of the life-span of a memory,
Pli f e(t) scales as 1/t2 asymptotically for large t:

Pli f e(t) = −
d
dt

R(t) ∼
1
t2 (A.2)

which it turn implies that the average memory life-span is infinite.

Appendix B. Multidimensional Retention Function Derivation

In the multidimensional case we can define the retention function as:

Rn(t) =

∫
· · ·

∫ ∞

−∞

P(v1)P(v2)· · · P(vn)d(v1)d(v2)· · · d(vn)
[
1−

∫ ∞

v1

· · ·

∫ ∞

vn

dv′1dv′2· · · dv′nP(v′1)P(v′2)· · · P(v′n)
]t

(B.1)

With a change of variable vi → y(vi) we get:

Rn(t) =

∫
· · ·

∫ 1

0
dy1· · · dyn(1 − y1· · · yn)t (B.2)

And computing the first integral:

Rn(t) =

∫
· · ·

∫ 1

0
dy1· · · dyn−1

 (1 − y1· · · yn)t+1

(t + 1)(y1· · · yn−1)

∣∣∣∣∣∣1
0


=

1
t + 1

∫ 1

0
dy1· · · dyn−1

[
(1 − y1· · · yn−1)t+1 − 1

(y1· · · yn−1)

]
=

1
t + 1

∫ 1

0
dy1· · · dyn−1

[
1 − (1 − y1· · · yn−1)t+1

1 − (1 − y1· · · yn−1)

]
The term on the bracket is a progression and by expanding it we get:

Rn(t) =
1

t + 1

∫
· · ·

∫ 1

0
dy1· · · dyn−1

[
1 + (1 − y1· · · yn−1) + (1 − y1· · · yn−1)2 + . . . + (1 − y1· · · yn−1)t)

]
(B.3)

Rearranging terms:

Rn(t) =
1

t + 1

[ ∫
· · ·

∫ 1

0
dy1· · · dyn−1(1−y1· · · yn−1)t+

∫
· · ·

∫ 1

0
dy1· · · dyn−1(1−y1· · · yn−1)t−1+. . .+

∫
· · ·

∫ 1

0
dy1· · · dyn−1

]
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(B.4)

And by definition:

Rn(t) =
1

t + 1
[
Rn−1(t) + Rn−1(t − 1) + . . . + Rn−1(0)

]
=

1
t + 1

t∑
k=0

Rn−1(k) (B.5)

with R1(t) = 1
t+1 as derived in the text. In the limit of large t, one can replace the sums in equation (B.5) by corre-

sponding integrals, which results in the approximate expression (10).
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