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Abstract 

 Despite the recent availability of complete genome sequences of tumors from thousands of 

patients, isolating disease-causing (driver) non-coding mutations from the plethora of somatic 

variants is notoriously challenging, and only a handful of validated examples exist. By integrating 

whole-genome sequencing, gene expression, chromatin accessibility, and genetic data from 

TCGA, we identified 301 non-coding somatic mutations that affect gene expression in cis. These 

mutations cluster into 36 hotspot regions with diverse molecular mechanisms of gene expression 

regulation. We further show that these mutations have hallmark features of noncoding drivers; 

namely, that they confer a positive selection on growth, functionally disrupt transcription factor 

binding sites, and contribute to disease progression reflected in decreased overall patient survival. 

 

Introduction 

 Identification of somatic mutations that contribute to tumorigenesis is an essential step to 

understanding disease prognosis and developing therapies1-3. Despite extensive exome and 

genome sequencing efforts, a substantial proportion of causal or driver mutations (called drivers 

from here on) are thought to be unknown4-7. On average, 22.2% of tumor samples within each 

cancer type do not harbor coding mutations in any of 144 common driver genes8. Moreover, since 

multiple drivers are typically involved9, even tumors with well-characterized mutations likely 

harbor additional causal alterations9-12. Mutations in cis-regulatory elements (CREs) are postulated 

to comprise a large fraction of the undiscovered drivers12. However, despite the availability of 

hundreds of complete tumor genomes, only a few non-coding drivers have been experimentally 

validated (Table S2). 

Distinguishing drivers from passengers outside coding regions requires overcoming 

several known challenges: the search space is orders of magnitude larger, functional impact cannot 

be predicted from amino acid changes (especially gain-of-function hotspots), mutation rates are 

higher 13, and positive selection pressure on relative growth is relaxed. These challenges have been 

partially overcome by associating mutations with alterations to transcription factor binding sites14-

16, altered mRNA abundance17, clinical data14,18, and evolutionary conservation19-22. Combinations 

of these features have also been weighed to prioritize putative drivers and determine significant 

mutational hotspots14,21-23.  
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Since the tumorigenic role of a noncoding driver is likely exerted through a cis- change in 

gene expression24, mapping genes whose expression is impacted by cis-acting regulatory effects 

has significant promise. Allele-specific expression (ASE), where one allele of a gene is more 

highly expressed than the other, is a powerful approach for detecting cis-regulatory effects, since 

trans-regulatory effects impact both alleles equally25. By comparing ASE in tumors to matched 

normal ASE (“diffASE”), it is further possible to distinguish somatic from germ-line effects. 

Ongen et al. applied this approach to identify 71 putative driver genes in colorectal cancer26. In 

practice, however, the sparse availability of matched tumor and normal gene expression and 

genetic data poses a significant limitation. Just 7.7% of TCGA tumor samples have matched 

normal RNA-Seq data (Fig. S1A). 

Here we show that the vast majority of differential ASE is acquired in tumors, enabling us 

to dispense with the matched normal requirement and expand our survey 13-fold. We interrogated 

all whole-genome sequenced noncoding somatic mutations across 1,165 TCGA patients and 

identified 36 novel regulatory driver hotspots on the basis of robust association with ASE in 

tumors. The driver role of these mutations is further supported by elevated variant allele 

frequencies, functional disruption of transcription factor binding sites, and negative association 

with overall patient survival. This functional catalog of novel noncoding features significantly 

expands our knowledge of noncoding tumor driver biology. 

 

Survey of Breast Invasive Carcinoma (BRCA) reveals that >98% of differential ASE is due 

to ASE in tumor We initially focused on BRCA since it is the cancer type with the largest set of 

matched tumor and normal data accompanied by whole genome sequence (WGS) in TCGA (Fig. 

S1A). Measuring ASE relies on counting RNA-Seq reads that map over heterozygous single 

nucleotide polymorphisms (SNPs) (Fig. 1A) detected by genotyping arrays. To maximize our 

sensitivity, we first imputed and phased SNPs using the 1000 Genome haplotypes27 (Fig. 1A), 

which on average increases the number of informative SNPs 5-fold. This is more accurate than 

relying on WGS where sufficient coverage is not always available (Fig. S1B). Moreover, false-

positive SNPs have a disproportionately high impact on estimates of ASE since all reads are 

assigned to one haplotype. Phasing also allowed us to combine allelic counts across SNPs within 

the same gene28 (and see Methods for more details). We observed extensive diffASE in BRCA 

(Fig. 1B). 
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Strikingly, nearly all of the diffASE can be attributed to an increase of ASE in tumors 

relative to matched controls (Fig. 1B). We reasoned that this trend may be due to higher clonality 

of tumors relative to matched normal tissue which would be expected to be more complex. We 

first considered whether loss of heterozygosity (LOH) may be a confounding factor. We reasoned 

that since all BRCA tumors are female, a comparison of allelic expression between autosomes to 

the X-chromosome could illuminate the contribution of clonality. X-chromosomes are randomly 

inactivated across cells comprising normal tissue. Comparison with a clone derived from this tissue 

(where all cells retain monoallelic expression from the same allele) would yield strong diffASE 

for any expressed gene on chromosome X. If clonality was the dominant source of greater ASE in 

tumors, we would expect enrichment of highly ranked X-linked genes when evaluated for diffASE. 

This enrichment would not be expected if LOH was the dominant source. We indeed observed a 

high enrichment of X-linked genes (66/100) among the top diffASE genes, suggesting that these 

tumors are highly clonal (Fig. S1D). When we performed the analysis of ASE using tumor 

expression data alone (tumorASE), we observed a recapitulation of >98% of the diffASE events 

(Fig. 1C). Finally, ASE events originating in tumors were not strongly correlated with CNV or 

methylation (Fig. 1D, E), which we estimate collectively explain less than 1% of ASE in tumors. 

In summary, we believe that altered cis-regulatory mechanisms of gene expression explain the 

majority of observed ASE in tumors, and that this signal is a valuable starting point for identifying 

noncoding drivers. 

 

Identification of mutations that explain ASE in tumors The availability of WGS data for 113 

BRCA RNA-seq samples (Fig. S1A) allowed us to find specific mutations that are associated, and 

which may explain, the observed ASE in tumors. We evaluated common mutation callers and 

implemented a robust filtering scheme to yield high confidence somatic variants (see Methods for 

details). We then asked whether the presence or absence of these variants near a gene is associated 

with ASE of that gene across BRCA tumor samples. Unfortunately, using the entire region 

surrounding a gene did not yield associations that survived multiple test correction, even in this 

heavily surveyed cancer type. The high proportion of neutral mutations relative to genuine 

noncoding drivers likely explains this result, and necessitates an enrichment strategy for variants 

that are likely to have a functional impact. 
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The vast majority of previously validated noncoding driver mutations occur in promoters, 

enhancers, and CTCF binding sites (Table S1). As these collectively encompass major sites of 

transcriptional regulation, we focused on somatic variants within these features and refined them 

using several publically available annotation resources. To comprehensively map genomic regions 

where transcription is regulated, we also included an aggregate map of TF binding sites (‘ChIP-

seq’). For the enrichment analysis, we grouped the somatic mutations in promoters, CTCF and TF 

binding sites by regulatory feature and asked if they were 10kb upstream of a TSS or gene body 

of a gene exhibiting ASE. Conversely, since enhancers vary by cell type and frequently regulate 

non-adjacent genes, we used cancer-specific enhancers and regulatory relationships defined by 

associations between accessible chromatin and changes in gene-expression29. Putative drivers 

were identified by positive correlations between gene-level ASE and somatic regulatory mutations 

(see Methods). This approach revealed novel non-coding driver mutations regulating genes 

previously implicated in breast cancer by coding variants as well as altered regulation of novel 

genes.  

Using these features, we found somatic mutations in the regulatory elements of seven genes 

that are enriched for altered cis-regulation in breast cancer (FDR<=0.9, n=113). These include 

mutations in the enhancers of EGFR, CDC42EP3 and TIMP3, variants in the promoters of UNC5B, 

CTCF binding sites of DAAM1 and NOTCH1 as well as TF binding sites near ITPR3 (Fig. 2A). 

Altered cis-regulation of EGFR is particularly notable as coding mutations in it are among the 

most common cancer drivers (Fig. 2B, C)30,31. In the 4 tumors harboring enhancer mutations, 

dysregulation is evident from the ASE ratio of 3.81 compared to 1.68 in tumors where they are not 

mutated (Fig. 2B, P=3.64x10-3, Pearson’s linear correlation). 

 

Somatic mutations in regulatory features are enriched for gene-level ASE in diverse tumors 

We applied our pipeline to 12 cancer types that had a sufficient number of matched WGS, RNA-

Seq, genotyping, and chromatin accessibility data (derived by ATAC-seq29) (Fig. S1A). We 

identified 36 putative driver hotspots consisting of 301 mutations (Fig. 3, Table S1), which we will 

collectively refer to as the “novel driver candidates”. Notable examples of novel drivers based on 

prevalence include the enhancers of ME3 in colon adenocarcinoma (COAD; 13.2%; n=7/53), the 

CTCF bound regions of CBLB in acute myeloid leukemia (LAML; 12.2%; n=5/41) and the CTCF 

bound region of SEMA4D in lung squamous cell carcinoma (LUAD; 11.5%; n=26/226). 
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Interestingly dysregulation of COL4A1 was found in two cancer types, including LUAD and 

COAD (Table 1 and S1). The majority of genes impacted by our novel drivers have been 

implicated previously in cancer and compelling cases for their driver mechanistic roles are 

explored further below (see Discussion). 

 

Novel driver candidates have elevated variant allele frequencies By definition, driver 

mutations confer a selective advantage to the cells in which they occur. Variant allele frequency 

(VAF) measures the fraction of alleles in a sample in which the variant is present. Hence, if a 

mutation confers a selective advantage to the cell in which it occurs, its VAF would be higher, on 

average, than passenger mutations that arose coincidentally. A corollary being that mutations with 

increased VAF occurred early enough during tumor evolution for this selective advantage to 

manifest as increased VAF. To ask whether driver mutations conferred a selective advantage, we 

compared the normalized VAF of all putative drivers to all non-coding mutations that were not 

enriched for ASE (P>0.5). As a positive control we used known coding driver mutations8. As 

expected, we found that the VAF of known coding drivers (n=116) was, on average, higher than 

background mutations in coding regions (P-value=7.5×10-6, n=2,971).  Importantly we found that 

the VAF of our novel driver candidates was also higher (Fig. 4A), an effect that is independent of 

CNV based on the stable ratio of adjacent heterozygous SNPs (Table 1 and S1).  

 

Novel driver candidates disrupt transcription factor binding motifs To begin to explore the 

mechanisms through which our driver mutations may be acting, we asked whether they may impact 

TF binding. TF binding affinities are typically represented by a generalized position-weight matrix 

(PWM) that represents a motif and a probability of observing any of the four bases at each position 

in that motif. These probabilities are typically constructed from observed frequencies of genuine 

binding events and can be represented as bit-scores. A bit-score of 2 implies that a particular base 

is always found at that position. The challenge with relying on PWMs exclusively to identify 

transcription factor binding is that there is typically insufficient information to distinguish genuine 

binding sites from the many possible motif sequence matches in the genome. To enrich for genuine 

binding sites we only considered mutations in our functionally annotated regions and required that 

mutations exceed a minimal degree of evolutionary conservation (Phastcons>0.05;32). 
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If our driver mutations were causing ASE by disrupting binding at one of the alleles, we 

would expect to see a greater impact on the difference in bit scores (i.e. delta-bit) in ASE (driver) 

vs. non-ASE (background) mutations. We observed this effect in our promoter and CTCF features 

(Fig. 5). It is also possible that improving binding (i.e. a positive delta-bit) could cause ASE, 

although we did not see evidence for this which may be due to power constraints stemming from 

“functional gain” in binding being less frequent than “functional loss”. 

  

Novel driver candidates correlate with reduced survival To assess the impact of the putative 

drivers on patients, we asked how they effected survival. For this analysis, we grouped patients 

across all cancer types and features to enhance statistical power. Since each cancer type alone 

yields vastly different survival outcomes33, we constructed carefully matched background sets with 

cancer type proportions constrained (see Methods). The overall survival (OS) of patients whose 

tumors were driven by any of the 36 non-coding drivers (Table 1 and S1) was worse than patients 

with a matched mutation burden not associated with ASE. The lower OS is also evident when 

comparing non-coding driver carriers to background versus 5,000 random subsets of the entire 

cohort (Fig. 6A). The negative impact of these drivers is clear when visualizing survival of patients 

carrying the non-coding drivers to one random subset of the whole dataset (Fig. 6B). Next we 

compared the impact of mutations in different classes of regulatory elements in different cancers 

on survival. The impact of driver mutations in promoters as well as CTCF and TF binding sites 

was predominantly negative (Fig. 6C). These analyses indicate that mutation of distinct classes of 

regulatory features may contribute to disease progression. 
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Discussion  

Our 36 mutation hotspots associated with ASE significantly expand the landscape of 

noncoding cancer drivers. The majority of our findings are novel, although there is parital overlap 

with previous noncoding driver discoveries. For example, we found enriched cis-regulatory 

mutations in the CTCF binding sites of DAAM1 and NOTCH1 in BRCA. DAAM1 is a member of 

the formin protein family activated by Dishevelled binding34. It regulates cytoskeletal dynamics 

through its control of linear actin assembly35. Regulatory mutations in DAAM1 were recently 

implicated in invasiveness of melanoma36. Similarly, mutations in the 3’ UTR of NOTCH1 were 

previously implicated in chronic lymphocytic leukaemia23. Our findings also overlap previous 

reports in that somatic mutations in other regulatory regions of the same genes in the same type of 

cancer have been implicated as drivers. For example, mutations in the splice-acceptor site of 

GATA3 were previously implicated in LUAD37. Here we implicated promoter mutations in GATA3 

in LUAD. This overlap suggests that the consequences of mutated regulatory features may overlap 

in these cases, and that combining the association of distinct features that regulate the same gene 

may increase sensitivity. 

 Many of the genes impacted by noncoding drivers discovered here (Table 1 and S1) have 

been previously implicated in cancer biology. The BRCA hotspots illustrate how driver roles 

clearly tie into the established functions of the dysregulated genes. Binding of a variety of ligands 

to EGFR promotes cell survival and proliferation via ERK signaling, and its mutation is one of the 

most common cancer drivers30,31. NOTCH1 is a key mediator of signaling between adjacent cells. 

It is essential in specification of a variety of cell types, maintaining tissue homeostasis and its 

mutation is a highly prevalent driver in certain cancers, such as T-cell Acute Lymphoblastic 

Leukemia38. ITPR3 mediates the release of intracellular calcium in response to IP339. It was 

recently implicated as the target of the tumor suppressor BAP1 that triggers apoptosis following 

exposure to genotoxic stress40. UNC5B is a netrin family receptor that mediates guidance of the 

vascular system as well as other cell types41,42. It encodes a repulsive netrin whose disruption 

results in aberrant extension, branching and navigation of affected cells41. CDC42EP3 is a Cdc42 

effector that regulates septin organization through binding to septin GTPases43,44. The tumor 

growth promoting activity of cancer-associated fibroblasts requires CDC42EP345. Finally, TIMP3 

is an inhibitor of matrix metalloproteinases whose upregulation suppresses tumor growth46. 
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In contrast with previous reports, somatic mutations in regulatory features, not CNVs or 

differential methylation, underlie the majority of altered cis-regulation in tumors47. Somatic 

variants in non-coding regions that are enriched for altered cis-regulation were found in 13.4% of 

the tumors analyzed. This high-prevalence is predicted by multi-hit models as well as divergent 

phenotypes between tumors with common known drivers. While many of the associations involve 

genes thought to be involved in tumorigenesis, the implication of specific mutations and regulatory 

features is novel. Indeed, we are not aware of any of the specific mutated regulatory features 

reported here previously being implicated as drivers of tumorigenesis. 

 Although TCGA and other emerging cancer data now include >1000 available genomes, 

illuminating the complete set of noncoding drivers will require a substantially broader collection. 

Even with the approach employed here of focusing on functional somatic variants with underlying 

evidence of gene expression regulation, we found ourselves limited by statistical power, especially 

in cancer types with fewer than 100 genomes. Deeper genome sequencing with longer reads will 

also improve driver detection sensitivity by enabling phasing of mutations with the direction of 

ASE. This would allow more evidence to be used to prioritize genuine drivers (e.g. disruption of 

an activating transcription factor binding site should reduce expression of that allele). This was 

generally not possible with the current available data since accurate phasing of somatic variants 

more than a few hundred base pairs away from the gene would require long-read technology or 

much deeper coverage. Improved matching of the regulatory features to each cell type will also 

improve sensitivity. When possible, cellular context was prioritized throughout these analyses to 

account for context-specific aspects of gene-regulation. For example, enhancers were matched to 

the cancer type being analyzed29, and each cancer was separately analyzed in parallel, however, 

enhancer to gene maps are still incomplete and will no doubt improve with more chromatin 

accessibility readouts expand. In any case, we believe our approach here, made freely available as 

a dockerized pipeline (see Methods) will be a powerful tool for taking advantage of these emerging 

resources and building on our discoveries. 
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Methods 

Genotyping and imputation Genome-wide Affymetrix 6.0 genotype array datasets from normal 

blood samples were downloaded as Birdseed files from GDC Legacy Archive 

(https://portal.gdc.cancer.gov/legacy-archive/search/f) for all 5,875 patients from 12 cancer 

types. Among these patients, only the 1,165 where tumor RNA-seq and matched tumor/normal 

WGS data were available were included in the downstream association between gene-level ASE 

and mutation occurrence (see Fig. S1A). These datasets were annotated with Affymetrix 

annotation files and converted into base-level genotypes. To minimize allelic mapping bias we 

excluded SNPs with more than 2 polymorphisms or those where 2 SNPs conflicted at the same 

site on the same strand in phased 1000 Genomes Project Phase1 v3 data. Affymetrix 6.0 arrays 

genotype nearly 1 million SNPs. Typically ~25% of these sites are heterozygous and only a 

small fraction fall within expressed regions (mean=12,468). To increase the number of SNPs 

available to resolve ASE, we imputed and phased genotypes as previously described in Babak 

and DeVeale et al.28. In brief, genotyping data were transformed into PLINK binary format and 

subjected to pre-phasing with Shape-IT software (v2.r790)48 using the 1000 Genomes Project 

Phase1 v3 data as the reference, then imputed and phased using Impute2 software (v2.3.2)27. We 

imputed with default parameters and used phased 1000 Genomes Project Phase1 v3 data as the 

reference panel. For each individual, heterozygous SNPs with genotype probability ≥ 0.95 were 

retained, as well as the allelic status within phased haplotypes. This provided an average of 4-

fold additional SNPs per individual. 

 

RNA-seq Matched tumor/normal RNA-Seq BAM files were downloaded from GDC Legacy 

Archives for all 1,165 patients across these 12 cancer types. SAMtools49 mpileup was used to 

calculate the reads at each heterozygous SNP site in all the RNA-seq BAM files aligned to the 

GRCh37-lite human reference genome with BWA. Default SAMtools mpileup settings were used 

except for a maximum read depth of 8,000 in order to reduce the bias of bases showing excessive 

depth and conserve computational resources. 

 

Gene-level ASE To generate gene-level ASE ratios, heterozygous SNPs in each individual were 

mapped to a custom human transcript track generated by aggregating Ensembl (v80), UCSC and 

NCBI transcripts. Gene-level ASE was calculated by summing allelic counts from all heterozygous 
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SNPs within the same haplotype by gene. Notably, the increased number of expressed 

heterozygous SNPs provided by imputation increased the proportion of genes assayable (≥50 

reads) for gene-level ASE from 50% to ~90%. 

 

Differential ASE To distinguish somatic from physiological ASE (random monoallelic silencing, 

imprinting etc.) we performed differential (diff)ASE analysis. diffASE is the difference in gene-

level allelic bias between the normal and the tumor expression profiles (e.g. 50:50 versus 60:40, 

chi-squared p = 0.1). An event was either tumor- or normal-specific, depending on which sample 

deviated further from 50:50 allelic expression. diffASE events where the ratio between two alleles 

is more skewed in the tumor than in the normal are of primary interest. The FDR generated with 

10,000 permutations of ASE reads from tumor and normal samples for each gene. In cases where 

matched normal RNA-seq was not available, ‘tumorASE’ was assessed relative to the binomial 

distribution (P<0.001). The FDR was assessed with 10,000 permutations of the reads at each gene 

randomly drawn from all samples. To compare the outcome of diffASE and tumorASE, we filtered 

for genes ≥50 reads in at least half of both the tumor and normal samples. Extensive overlap 

between diffASE events (chi-squared P<0.001) and tumorASE (binomial distribution P<0.001), 

indicates that >98% of diffASE originates in tumors (Fig. 1C). Thus we included gene-level ASE 

from tumor RNA-seq without a matched normal sample to dramatically increase the sample size 

(Fig. S1A).  

 

Mutation calling To identify somatic mutations, we used Varscan in conjunction with custom 

filters. WGS data of 12 cancer types were downloaded from GDC Legacy Archive as 1,165 

matched tumor/normal BAM files (extensive sample information is available in Table S3). We 

required that WGS samples had matched tumor/normal files, as well as corresponding genotype 

array, copy-number, and tumor RNA-seq data for inclusion. Additionally, only WGS 

tumor/normal pairs aligned to the GRCh37 reference build (hg19) were included in our analysis. 

For SKCM, we used metastatic tumor samples (sample type 6 in the TCGA database), and primary 

tumor samples for the remaining cancer types (sample type 1). The sequence read counts at each 

site were obtained from WGS BAM files aligned to the GRCh37-lite human reference genome 

with the SAMtools49 mpileup. The base quality alignment (BAQ) computation of SAMtools was 

turned off with the parameter ‘-B’ as it is too stringent for variant calling, and reads with mapping 
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quality > 0 was set with ‘-q 1’. Single nucleotide substitutions, insertions and deletions were 

simultaneously called using Varscan2 somatic caller50. Data were processed using a 1,052-core 

Linux cluster at the High-Performance Computing Virtual Laboratory (HPCVL) (Kingston, 

Ontario). 

 

Somatic mutations were focused on single-nucleotide substitutions, as well as small insertions and 

deletions (Fig. S2D), not structural variations. Somatic mutations generated by Varscan2 were 

initially filtered with two criteria: (1) a minimum read depth of 10 for both the tumor and matched 

normal, and (2) alleles with a mutation frequency exceeding 0.1 in tumor but less than 0.1 in 

matched normal (Fig. S2A). However, since ~60% of the mutations called with this approach were 

rare germline SNPs (Fig. S2B; all SNPs from dbSNP150), we implemented custom filters to 

deplete them.   

 

The custom filters were chosen based on optimization on 48 randomly selected BRCA 

tumor/normal WGS. Pearson correlation analysis was performed among 48 BRCA WGS samples 

to determine which Varscan parameters contributed to dbSNPs being called mutations. These 

included the number of normal reads, tumor reads, alternative allele frequency (AAF) in tumors 

(Tumor AAF), AAF in normal (Normal AAF), and Delta AAF (i.e., Tumor AAF – Normal AAF). 

The extent of germline SNPs contaminating Varscan-called somatic mutations was assessed as a 

proportion and Pearson correlation R2 relative to dbSNP150s from UCSC and mapped by genomic 

coordinates to both dbSNP alleles. This assessment was run among 48 randomly selected BRCA 

tumor/normal WGS. Using these metrics of contamination, each parameter (Tumor AAF, Normal 

AAF and Delta AAF was assessed through a range of values. This analysis revealed that two 

parameters, Normal AAF (R2=0.37, P<1×10-4) and Delta AAF (R2=-0.13, P<1×10-4), were 

primarily responsible for the high proportion of dbSNPs in Varscan. 

 

This optimization supported use of an AAF ≤ 2% in matched normal samples since the fraction of 

dbSNPs increased when the AAF was higher (Fig. S2C). It also supported a requirement that the 

AAF exceed 10% in tumors. Finally, we required that the difference between the AAF in tumors 

and matched normal samples exceed 30% based on the optimization (Fig. S2B). Only 12.8% of 

variants passed this 30% threshold but it was effective in decreasing the fraction of dbSNPs 
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included in the association as variants (Fig. S2C). Finally, we filtered all known dbSNPs from the 

mutations that passed these filters. 

 

Effect of copy number variations on gene-level ASE To evaluate the effect of CNV on gene-

level ASE, raw Affymetrix CNV data were downloaded from GDC Legacy Archive for 1,091 

BRCA tumors. CNV data were then annotated with ‘GenomeWideSNP_6.cn.na35.annot.csv.zip’ 

downloaded from Affymetrix home page and mapped to Ensembl genes. Gene-level CNV signals 

were calculated by averaging the signals of all CNVs mapped to the gene. Finally, the somatic 

CNV signal for each gene was correlated with its corresponding value of gene-level allelic 

imbalance (reads ≥50) to determine the influence of CNV on ASE in tumors. We applied this 

process to 1,091 tumor ASE and 92 diffASE, calling significant associations between gene-level 

ASE and CNV signal when P<0.05. 

 

To remove the confounding effect of CNVs among associations between gene-level ASE and 

regulatory mutations, we assessed the correlation of each gene associated in our analysis with CNV 

signal. We also determined the association between gene-level ASE and CNV exclusively among 

driver mutation carriers to differentiate the effect of driver mutations from that of CNV on gene-

level ASE. We applied this filter for BRCA and other 11 cancer types, and found that none of 

driver genes displayed significant association (P<0.05) with CNV when only the samples 

containing driver mutations were considered. 

 

To ask whether the CNV contributed to the association between mutated regulatory features and 

ASE of individual genes, we asked if CNV and ASE were correlated for each putative driver (Table 

1 and S1). 30 of 36 drivers were not correlated with CNV. For the 7 genes where there was an 

association, we asked if it was dependent on CNV. The only putative driver where mutations and 

CNV coincided was TSHZ2 (STAD). Hence the association between mutations and ASE occurs 

independent of CNV in 35/36 putative drivers. Even for TSHZ2 (STAD), the mutations in TF 

binding sites and CNV only coincided in 1 tumor, and the association between mutations and ASE 

remained significant after excluding it (P=2.2×10-5).   
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Effect of methylation on gene-level ASE To determine the effect of methylation on gene-level 

ASE, we downloaded methylation Beta values for 1,091 BRCA tumors from GDC Legacy 

Archive. These methylation data were converted into bed format and mapped to Ensembl genes. 

The average methylation score was determined for each gene including a 2kb region upstream and 

downstream of each gene to encompass the promoter. ASE imbalance values were then correlated 

with average methylation levels on a gene-by-gene basis to determine the influence of methylation 

on gene-level ASE. This analysis was applied to all genes for 92 tumor/normal RNA-seq samples. 

Significant correlations between gene-level ASE and methylation Beta value were called at 

P<0.05. 

 

Selection of cis-regulatory features We surveyed major cis-regulatory features for cis-regulatory 

variants. These included TF binding sites (Encode ChIP-seq peaks clustered V3, 2013) and CTCF 

binding sites (from GM12878 cell line) both obtained from the UCSC database. We derived a 

single track of TF binding sites by collapsing multiple ChIP-seq maps of TF binding (Table S4). 

We also interrogated promoters (Roadmap Project) and cancer-specific enhancers29. These were 

defined based on the presence of peaks: promoters were defined as H3K4me3+ regions (signal in 

≥10/127 tissues/cell types from the NIH Roadmap Epigenomics Mapping Consortium), while 

cancer-specific enhancers were defined by association between accessible chromatin and gene-

expression changes in specific cancers29.  

 

Association of mutations and gene-level ASE Only samples with corresponding WGS, 

genotyping array and tumor RNA-seq data were included in the ASE-mutation association 

analysis. To test association between mutations and gene-level ASE across various regulatory 

features, these data were imported into MATLAB 2014a (The MathWorks Inc., Natick, MA, 

2014).  

 

First, the somatic mutations were mapped based on proximity to promoters and enhancers as well 

as TF and CTCF binding sites. Using these annotations, promoters comprise 1.6% of the genome, 

enhancers ~1.4% (ranging from 0.8% in LGG to 2.7% in BRCA), TF binding sites 13.2% and 

CTCF binding 6.0% of the genome. Somatic mutations were binned as present (=1) or absent (=0) 

among the regulatory features. The overlap among these regulatory features ranges from 0.04% to 
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85% (Fig. S3A). For example, CTCF and TF binding sites occupy 20-70% of the enhancer feature, 

while the enhancers occupy <10% of the CTCF binding sites. 

 

Second, somatic mutations, including single-nucleotide alterations, insertions and deletions were 

mapped to nearby genes. The genomic coordinates of each gene were defined as beginning 10kb 

upstream of the TSS and gene body of each gene. These settings were applied to test mutation 

association within each regulatory region (see Fig. S3C-D for a summary of the number of 

mutations mapped to the different regulatory features). Third, each gene (i) containing somatic 

mutations and also with summed heterozygous SNP allelic counts ≥50 reads was analyzed for 

gene-level allelic imbalance (P) by using the read counts of the two haplotypes (Ha, Hb) of each 

gene (i), in each sample (n), with the following formula, Pi=|2×Ha/( Ha+Hb) – 1|. The gene-level 

ASE varies considerably between different cancer types (Fig. S3B, binomial P-value<0.001). To 

increase sample size in the association test, we included all gene-level ASE, regardless of their 

binomial P-values.   

 

Finally, the correlation significance (Pearson r2 value; coefficient of determination) between a 

gene’s allelic imbalance and mutations in each annotated region was determined with MATLAB. 

To obtain robust results we only ran the association when both mutation carriers (n>=3) and non-

carriers (n>=3) had gene-level imbalance values derived from summing ≥50 reads from all 

heterozygous sites. Only ASE events positively correlated with mutations were retained in the 

analysis to focus on allelic imbalance resulting from dysregulation. All negative correlation were 

assigned P value =1. 

 

We permutated the data to determine the false discovery rate (FDR) for the association between 

gene-level ASE and the occurrence of somatic mutations in each genomic feature. For mutations 

residing in specific genomic regions, all pairs of gene-level ASE and mutations were randomized 

1,000 times to generate association P-values that reflect the distribution of the data. The FDR for 

each gene was then calculated through comparison of the actual association P-value to all genes’ 

minimum P-values derived from 1,000 random permutation as: sum(real P<minimum(1,000 

permutations of P-values))/total number of genes. Regulatory features that could be associated 

with multiple genes were included in all possible associations. When independent mutations were 

found within the same feature of the same sample, they were collapsed to a single mutation for the 
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association. Finally, if multiple regulatory features were enriched for ASE of the same gene, only 

the most significant association with the smallest FDR was retained.  

 

VAF VAF was calculated independently for each mutation that we identified in WGS data as the 

fraction of all sequencing reads covering the variant that were mutated. VAF was z-scaled within 

each patient using all mutations detected in that patient in order to normalize out the effect of tumor 

heterogeneity. Noncoding driver and background sets were selected on basis of association with 

ASE. P>0.5 and FDR=1 were used as criteria for lack of significant association with ASE. 

Significance (2-tailed) was assessed using an unpaired t-test for unequal variance. 

 

Survival Analysis Unique patients IDs with predicted noncoding drivers were extracted from 

Table S1 (ASE-mutation association FDR<0.5). Clinical data for TCGA was downloaded from 

BROAD Firehose (https://gdac.broadinstitute.org/) on April 21, 2017. Null distributions of 

patients were selected on basis of 1) having matching mutations in the same set of features in the 

same cancer type, 2) being powered to detect ASE (i.e. presence of RNA-seq data and phased 

SNPs), and 3) association between ASE and mutation having no significance (i.e. FDR=1). 

Probability of a difference in survival was assessed using the Kaplan Meier approach with 

censored data implemented in the MATLAB script KMPLOT51. Since P-values are dependent on 

random selection of background and the limitations above imposed an upper limit on the number 

of background subjects that fit all criteria. Bootstrapping with 5,000 iterations was conducted to 

compare with P-values generated from random sets of background comparisons. 

 

Effect on Transcription Factor Binding Sites The human genome was scanned using HOMER 

(scanMotifGenomeWide.pl using default settings for 392 motifs in the HOMER package52 to map 

putative binding sites for each factor. The default log-odds detection thresholds included with the 

package were used. Somatic mutations were overlapped with each motif and the difference in bit-

scores (i.e. "delta-bit" using the PWM) between the reference and mutated bases was calculated, 

with 2 is the maximum bit-score. Delta-bit scores associated with genes under ASE versus no-

ASE were compared. Only single nucleotide substitutions at positions with phastcons scores 

greater than 0.05 were considered for this analysis. A mutation could be considered more than 

once if two or more transcription factor binding motifs were present. 
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Driver-ASE We have implemented our analysis methods for gene-level ASE and somatic 

mutation calling into a Perl package named Driver-ASE, which is available at GitHub 

(https://github.com/MichealRollins-Green/Driver-ASE). All MATLAB scripts to test association 

between mutations and gene-level ASE are also included in Driver-ASE. All of the dependencies 

required to run Driver-ASE are contained in a Docker (http://www.docker.com) image found here: 

https://hub.docker.com/r/mikegreen24/driver-ase. Docker is required to run Driver-ASE and the 

instructions Docker installation can be found here: https://docs.docker.com/engine/installation. 

Instructions to set up a Docker image are in the description section of the Docker page.  

 

Data availability Driver-ASE uses data or software provided by the following websites: UCSC 

Genome Browser (https://genome.ucsc.edu/cgi-bin/hgTables), Cancer Genomics Hub 

(https://cghub.ucsc.edu), Genomic Data Commons (https://gdc.cancer.gov), The Cancer Genome 

Atlas (TCGA) (http://cancergenome.nih.gov), PLINK (www.cog-genomics.org/plink), NIH 

Roadmap Epigenomics Mapping Consortium (www.roadmapepigenomics.org), SAMtools 

(www.htslib.org), overlapSelect (http://hgdownload.soe.ucsc.edu/admin/exe/linux.x86_64.v287), 

VarScan (http://massgenomics.org/varscan), impute2 

(https://mathgen.stats.ox.ac.uk/impute/impute_v2.html) and shapeit 

(https://mathgen.stats.ox.ac.uk/genetics_software/shapeit/shapeit.html). 
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Table  

Table 1. Annotated catalog of the 36 putative driver hotspots. 

Cancer Regulatory feature 
Gene 

symbol 
P FDR Carriers 

ASE-CNV 

Assoc P 

BLCA TF binding SFMBT2 8.8×10-4 0.55 4 0.78 

BLCA TF binding SLC39A11 5.1×10-5 0.14 7 0.61 

BLCA TF binding TPCN1 1.1×10-3 0.60 3 0.18 

BRCA Cancer-specific enhancer CDC42EP3 5.0×10-3 0.80 3 1.00# 

BRCA CTCF DAAM1 1.1×10-3 0.88 5 0.83 

BRCA Cancer-specific enhancer EGFR 3.6×10-3 0.13 10 0.88 

BRCA TF binding ITPR3 1.3×10-4 0.69 5 0.72 

BRCA CTCF NOTCH1 6.7×10-4 0.79 4 0.21 

BRCA Cancer-specific enhancer TIMP3 2.0×10-4 0.01 8 0.47 

BRCA Promoter UNC5B 1.9×10-3 0.22 4 1.00# 

CESC TF binding SULF1 4.0×10-3 0.22 3 1.00# 

COAD Promoter COL4A1 3.4×10-3 0.50 3 0.68 

COAD Promoter GSTA4 2.9×10-3 0.47 3 1.00# 

COAD Cancer-specific enhancer ME3 3.7×10-3 0.81 7 1.00# 

HNSC Promoter WLS 6.2×10-3 0.08 3 *6.7×10-3 

LAML CTCF CBLB 3.7×10-4 0.05 4 1.00 

LUAD Cancer-specific enhancer ATXN1 2.6×10-4 0.38 9 *2.2×10-2 

LUAD Cancer-specific enhancer CACNA1H 1.1×10-3 0.47 7 0.68 

LUAD Cancer-specific enhancer COL4A1 2.2×10-4 0.36 3 *4.5×10-4 

LUAD TF binding ERI2 1.8×10-6 0.67 3 0.29 

LUAD Promoter GATA3 3.4×10-6 0.17 4 0.95 

LUAD TF binding ITGAE 8.1×10-7 0.54 11 0.20 

LUAD Cancer-specific enhancer JCAD 4.0×10-3 0.89 8 0.58 

LUAD CTCF LPAR1 2.5×10-5 0.83 24 0.60 

LUAD Cancer-specific enhancer PIP5K1B 1.1×10-5 0.14 5 0.21 

LUAD CTCF SEMA4D 1.2×10-6 0.31 26 *1.4×10-2 

LUAD TF binding SND1 7.4×10-8 0.22 24 0.88 

LUAD Cancer-specific enhancer TBCD 1.3×10-4 0.32 4 0.63 

LUAD Cancer-specific enhancer TRIM2 6.7×10-4 0.45 8 0.95 

OV TF binding PKNOX2 2.4×10-3 0.47 4 0.49 

OV CTCF SLC27A1 7.7×10-3 0.56 4 *3.2×10-2 

SKCM CTCF KANSL1 8.5×10-3 0.10 3 1.00# 

STAD CTCF ARSB 2.3×10-4 0.27 3 *2.5×10-3 

STAD Cancer-specific enhancer CCND2 5.4×10-2 0.87 3 0.40 

STAD CTCF PAG1 5.5×10-3 0.87 4 0.59 

STAD TF binding PBX1 2.1×10-4 0.56 4 0.56 

STAD TF binding TSHZ2 2.7×10-6 0.10 4 *1.5×10-2 

 

Note: *Among all 7 genes demonstrating association between ASE and CNV, no genes have tumors carrying driver 

mutations and CNV coincidently, except for TSHZ2 (STAD) where only one tumor carrying both driver mutation 

and CNV; however, the association between mutations and ASE remained significant after excluding the tumor 

(P=2.2×10-5). #When a driver gene doesn’t have more than 1 sample harboring CNV for the association test between 

ASE and CNV, the association is assigned as P = 1. 

CNV: copy number variation; P: ASE-mutation association P-value; ASE-CNV Assoc P: ASE-CNV association P-

value; FDR: false discover rate; Carriers: driver mutations carriers.  
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Figures 

Figure 1. Allelic bias commonly arises in tumors independent of copy number variations 

(CNVs) and promoter methylation. (A) A schematic of the allele-specific expression (ASE) 

analysis strategy implemented on TCGA breast cancer samples. In brief, imputed genotyping data, 

tumor RNA-Seq and cases where tumor-normal matched RNA-seq are assessed for gene-level 

ASE by calculating the allelic imbalance ratios for imputed and phased heterozygous single-

nucleotide polymorphisms (SNPs). We report differential ASE (diffASE) between tumors and 

matched normals and ASE in tumors (tumorASE) in cases when matched normals are unavailable. 

(B) diffASE events in breast cancer tumors exceed the background. A diffASE event is called 

between a tumor and its matched normal when the allelic ratio between them is P<0.001 using a 

chi-squared test and the skew is greater in the tumor. 632 diffASE events were obtained when the 

diffASE events calculated with the actual sample identities were compared to the background 

obtained with 10,000 permutations of randomized normal/tumor identities (FDR<0.05 and greater 

ASE in the tumor than the matched normal). The FDR reflects the proportion of permutations 

where the most significant diffASE event was obtained with the actual tumor/normal data. (C) 

>98% of diffASE events originate in breast cancer tumors. The breakdown of diffASE that 

overlaps tumorASE (P<0.001, binomial), does not overlap tumorASE, as well as the tumorASE 

that does not overlap diffASE by individual. (D) ASE does not correlate with CNV in BRCA 

tumors. The Pearson correlation between linear regression of gene-level ASE (ranging from 0 to 

1) and tumor CNV signal intensity is weak and not significant (R=4.7x10-42, P=0.07, n=92). This 

analysis includes every gene exhibiting ASE (binomial P<0.001) in an individual tumor and 

excludes all others. The CNV signal intensity is obtained from CNV microarrays. (E) Gene-level 

diffASE is not correlated with the promoter (+/- 2Kb from TSS) methylation (Pearson's linear 

correlation R=5.7x10-45, P=0.06, n=92). As in Fig. 1D, all genes exhibiting ASE (binomial 

P<0.001) in an individual tumor were included. The beta-value is the ratio of methylated to total 

probe intensity. 

 

Figure 2. Seven somatically mutated regulatory features are enriched for ASE in breast 

cancer. (A) The significance of gene-level associations between mutated regulatory features and 

ASE in relation to FDR in breast cancer. The association of gene-level ASE was evaluated with a 

Pearson co-efficient of determination. The FDR calculated by permuting the identity of tumor 
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samples for both ASE and mutation values (see methods for detail). Each association was 

performed genome-wide. (B) The ASE ratio of putative BRCA driver EGFR (P=3.64×10-3, 

FDR=0.014, n=6). The boxplot is delimited by the first and the third quartile, while the horizontal 

lines represent the medians. (C) The distribution of somatic mutations in the enhancer of EGFR 

among the 10 cancers analyzed (n=1,086 tumors). Each row represents a sample and each column 

represents 1 bp. Cancer-specific enhancers were not available for OV and LAML. 

 

Figure 3. Thirty somatically mutated regulatory features are enriched for ASE across 11 

additional cancer types. (A) The significance of gene-level associations between mutated 

regulatory features and ASE in relation to FDR in 11 additional cancers. The association of gene-

level ASE was evaluated with a Pearson co-efficient of determination. The FDR calculated by 

permuting the identity of tumor samples for both ASE and mutation values (see methods for detail). 

Each association was performed genome-wide. (B) The ASE ratio of putative LUAD driver 

PIP5K1B (P=1.06×10-5, FDR=0.14, n=5). The boxplot is delimited by the first and the third 

quartile, while the horizontal lines represent the medians. (C) The distribution of somatic mutations 

in the enhancer of PIP5K1B among the 10 cancers analyzed (n=1,086 tumors). Each row 

represents a sample and each column represents 1 bp. Cancer-specific enhancers were not available 

for OV and LAML. Mutations of PIP5K1B enhancers are putative drivers of LUAD. (D) The 

number of somatic mutations in each tumor as well as the median number for each type of cancer. 

(E) The number of somatic mutations in regulatory features that were tested in the ASE-Mut 

association in each tumor as well as the median number for each type of cancer. (F) The 

distribution of driver significance plotted by the type of regulatory feature that is mutated. (G) The 

penetrance (% of all tumors) of mutated regulatory features in the cancer type where they are 

enriched for ASE. (H) The distribution of mutated regulatory features between samples. The inset 

illustrates that the majority of samples do not harbor driver mutations. 

 

Figure 4. Variant allele frequency (VAF) of noncoding drivers suggests positive selection. 

VAF was calculated as the fraction of all sequencing reads covering variant with mutation and was 

normalized against all mutations within each patient to account for differences in tumor 

heterogeneity. (A) Coding Drivers (n=116) represent all mutations within known driver genes that 

yield a functional amino acid change and Coding Bcg (n=2,971) represent identically selected 
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mutations in all other coding genes8. Noncoding Drivers represent all mutations from Table S1 

(n=301) and Noncoding Bcg represent all noncoding mutations not enriched for ASE (n=122,603). 

Both Coding and Noncoding VAFs are positively shifted relative to background (P=7.5×10-6, 

P=2.0×10-10). Please see Methods for more details. (B) Same as (A) with noncoding drivers divided 

by feature. 

 

Figure 5. Driver mutations preferentially disrupt transcription factor binding motifs. The 

damage driver and passenger mutations caused to transcription factor binding sites was compared 

using delta-bite scores (delta-PWM information bits). Driver mutations were more disruptive to 

transcription factor binding sites in both promoters (P-value = 2.3×10-3) and CTCF binding sites 

(P-value = 3.3×10-5); Mann-Whitney U tests were performed to determine the difference of delta 

bit-scores between driver mutations and background. All driver mutations are with FDR<1, and 

the background mutations’ FDRs are equal to 1. There are 53 and 121 driver mutations and 2,292 

and 14,514 background mutations found promoters and CTCF binding sites, respectively.  

 

Figure 6. Non-coding drivers correlate with a worse overall survival outcome. (A) Sample 

Kaplan-Meier survival outcome analysis of patients harboring high-confidence non-coding drivers 

(Table S1; FDR<0.5) versus patients with mutations not enriched for ASE, matched for cancer and 

feature type (see Methods). Distribution of log-rank P-values (2-tailed) for 5,000 iterations shown 

in inset (blue) as well as random sets versus background (magenta). ‘+’ data points indicate 

censored data. (B) Survival analyses for mutations considered in (A) broken down by cancer and 

feature type. 
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Supplementary Data 

Figure S1. diffASE and tumorASE events exceed background at the chosen 

thresholds. (A) A summary of relevant TCGA samples available for analysis. (B) Whole 

genome sequence (WGS) coverage for tumor and matched normal across 20 cancer types 

(estimated based on bam size of WGS). (C) The number of genes where diffASE can be 

calculated per BRCA sample (n=92 tumor/normal RNA-seq) at various read thresholds. 

(D) X-linked diffASE events are enriched relative to autosomal events. The number of X-

linked diffASE events exceeds the number of autosomal events in real, but not permuted 

data (P=3.3x10-21, ANOVA). (E) A comparison of the number of genes where diffASE and 

tumorASE (n=92 tumor/normal RNA-seq) can be calculated per BRCA sample at a 

threshold of 50 reads. (F) X-linked tumorASE events for the 92 tumor RNA-seq samples 

are enriched relative to autosomal events. The number of X-linked and autosomal 

tumorASE events (P=3.5x10-37, ANOVA). (G) tumorASE events in BRCA (n=92 RNA-

seq) exceed the number expected by chance due to the distribution of the data. tumorASE 

events are those where the allelic ratio is P<0.001 using a binomial test. 241 tumorASE 

events with FDR<0.05 were obtained when the tumorASE events calculated with the actual 

sample identities were compared to the background obtained with 10,000 permutations of 

randomized tumor identities. The FDR reflects the proportion of permutations where the 

most significant tumorASE event was obtained with the actual tumor data. (H) Gene-level 

ASE is imbalanced among those harboring mutations in CTCF or TF binding sites, 

promoters, and cancer-specific enhancers (2.8x10-27, ANOVA, n=113 samples where 

tumor RNA-seq and matched tumor/normal WGS was available). Only 16 of these samples 

overlap with those used to compute diffASE in Fig. 1. 

  

Figure S2. Optimized parameters deplete somatic mutation calls of rare germline 

SNPs. (A) A schematic of the analysis workflow used to associate allelic imbalance with 

mutations in regulatory regions. Our analyses identified 36 drivers at a false discovery rate 

(FDR)<0.9 (see Table S1 for detailed output). 12 tumors were analyzed: breast cancer 

(BRCA), Bladder Urothelial Carcinoma (BLCA), Cervical Squamous 

Cell Carcinoma (CESC), Colon Adenocarcinoma (COAD), Head and Neck Squamous 

Cell Carcinoma (HNSC), Acute Myeloid Leukemia (LAML), Low Grade Glioma (LGG), 
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Lung Adenocarcinoma (LUAD), Ovarian cancer (OV), Prostate Adenocarcinoma (PRAD), 

Skin Cutaneous Melanoma (SKCM), Stomach Adenocarcinoma (STAD). (B, C) The effect 

of filtering parameters on the fraction of false-positive mutations (SNPs) called by Varscan 

was determined using BRCA WGS samples (n=48 matched tumor/normal BRCA WGS 

samples) (B) The proportion of SNPs among mutations called by Varscan decreases when 

the delta alternative allele frequency (delta AAF) between tumor and matched normal 

whole genome sequence (WGS) increases (≥10 versus ≥50, P=0.024, n=48 BRCA 

samples, Duncan's new multiple range test). C) The proportion of false positive mutations 

called by Varscan (i.e. those that are actually SNPs) increases when normal AAF increases 

(normal AAF at a threshold of 2% was significantly different when compared to normal 

AAF thresholds ranging from 4% to 10%, n=48 BRCA WGS samples, Duncan's new 

multiple range test). (D) The total number of somatic mutations, including substitutions, 

insertions, and deletions for all 12 cancer types (left panel). The insertions and deletions 

grouped by the length of insertion and deletion (right panel). All of these somatic mutations 

were obtained by applying the optimized WGS filters listed in (A). 

 

Figure S3. Characterizing four regulatory features and tumor ASE events, as well as 

mutations residing in these regulatory features, for 12 cancer types. (A) The heatmap 

displays the pairwise overlap among the four regulatory features analyzed: CTCF, TF 

binding sites (ChIP-seq), promoters, and cancer-specific enhancers. Reading to the right of 

the diagonal indicates how much of the feature listed in each row is overlapped by the 

feature listed in each column. Conversely, to the left of the diagonal indicates how much 

of the feature listed in each column is overlapped by the feature listed in each row. For 

example, 20-70% of each enhancer track is overlapped by the CTCF and TF binding sites, 

but these enhancers occupy <10% of the CTCF and TF binding sites. (B) The average 

number of tumorASE (binomial P<10-3) events per tumor among 1,165 tumor RNA-seq 

samples plotted by the 12 types of cancers. (C) The average number of somatic mutations 

residing in the four regulatory features among 1,165 tumor/normal WGS divided into the 

12 cancer types. (D) The number of somatic mutations in each regulatory feature 

distinguished by different colors for each of the 12 cancer types. In each boxplot, the 
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horizontal line represents the median. The boxes are delimited by the first and the third 

quartile. 

 

 

Supplementary Tables 

Table S1. Annotated catalog of the 301 potential driver mutations among 36 putative 

driver hotspots. 

 

Table S2. A table of known non-coding drivers. 

 

Table S3. Annotation of the samples used in this analysis. 

 

Table S4. Annotation of the samples used to generate the meta-track of TF binding 

sites. 
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