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Abstract 20 
Studies on historical contingency in community assembly frequently report the presence of alternative 21 
stable states as the result of different assembly sequences. If we can observe multiple assembly 22 
sequences and resulting community structure, these observations collectively inform the constraints 23 
on community assembly dynamics that emerge from various ecological processes. These observations 24 
would be a basis for predicting the outcome of assembly processes and understanding the mechanisms 25 
that shape species assemblage. However, empirical approaches such as invasion/removal experiments 26 
require enormous time and effort and are impossible in some cases. Here, we show that data on 27 
multispecies occurrences analyzed using a pairwise maximum entropy model and energy landscape 28 
analysis are capable of providing insights into the constraints on community assembly dynamics. This 29 
approach is a minimal theoretical framework to systematically and mechanistically study community 30 
assembly dynamics. Community assembly has a prominent role in shaping real world ecosystem 31 
organization. Our approach provides a new systemic paradigm for developing a predictive theory of 32 
community ecology and can have broad impact on ecological studies and its applications including 33 
regime shifts and ecosystem management. 34 
 35 
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Introduction 1 
Community assembly can be defined as the construction and maintenance of local communities 2 
through sequential arrival of potential colonists from an external species pool (Drake 1991, Fukami 3 
2010). During assembly processes, the extinction of species from a local community or the migration of 4 
species from an external species pool drive transitions from one community state to another. The order 5 
and timing of species migration and extinction during community assembly influence structure (Drake 6 
1991, Fukami and Morin 2003) and function (Jiang et al. 2011) of communities, resulting in historical 7 
contingency, such as alternative stable states (Fukami 2010, Fukami 2015). Alternative stable states, 8 
i.e., stable coexistence of multiple community states under the same environmental conditions, have 9 
many empirical examples (see, e.g., review by Schloder et al. 2005). For example, Drake (1991) 10 
experimentally showed the effect of various sequences of species invasions on final community 11 
composition in aquatic microbial communities. More recently, also in a laboratory experiment with 12 
aquatic microbial communities, Pu & Jiang (2015) found that alternative community states were 13 
maintained for many generations despite frequent dispersal of individuals among local communities. 14 
 15 
Transition among different community states is the outcome of the ecological processes associated 16 
with the members of the species pool, and it ultimately constrains community assembly dynamics 17 
(Vellend 2010, Weiher et al. 2011, Götzenberger et al. 2012, HilleRisLambers et al. 2012, Wisz et al. 18 
2013). Understanding the global phase space that includes all possible community states of 19 
community assembly dynamics (Law and Morton 1993, Capitan et al. 2011) is important for predicting 20 
the outcome of assembly processes and understanding the mechanisms that shape local communities. 21 
Law and Morton (1993) introduced a graph representation of community assembly dynamics (termed, 22 
‘assembly graph’) in which nodes represent different community states (species compositions) and 23 
directed edges represent transitions from one community state to another. The assembly graph maps 24 
out all assembly pathways generated by invasions and extinctions. The same graph also appeared in 25 
the toy model of food web assembly introduced by Capitan et al. (2011). While these studies intended 26 
to analyze assembly dynamics in mathematical models, Warren et al. (2003) constructed the assembly 27 
graph for a pool of six protozoan species by integrating the results of two experimental studies 28 
(Weatherby et al. 1998, Law et al. 2000). By analyzing the assembly graph, Warren et al. (2003) 29 
showed that the system had a compositional cycle (Morton and Law 1997) with multiple alternative 30 
transient trajectories. An assembly graph acknowledges the relationship among community states in 31 
the global phase space of a system. These graphs represent the constraints on community assembly 32 
and can provide predictions on the outcome of assembly processes (Law and Morton 1993, Capitan et 33 
al. 2011). However, repeating experiments as in Weatherby et al. (1998) and Law et al. (2000) requires 34 
enormous time and effort, and are unrealistic if the number of species is large or the target community 35 
is difficult to manipulate experimentally. Although a theoretical approach would be the alternative, 36 
applying the approaches proposed by Law and Morton (1993) or Capitan et al. (2011) to handle 37 
observational data is not straightforward. Since these approaches were proposed to analyze the 38 
behavior of differential equations, we need to include a statistical framework to fit the parameters of 39 
differential equation models. However, it is generally difficult to fit differential equations for multi-40 
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species communities from observational data because of the computational difficulty in fitting model 1 
parameters as well as difficulty in obtaining time-series data sufficient to fit these parameters. 2 
Therefore, there is a need for developing a novel theoretical framework to systematically and 3 
mechanistically study the community assembly dynamics. 4 
 5 
In this paper, we propose an approach incorporating a pairwise maximum entropy model (also known 6 
as Markov network; Azaele et al. 2010, Araujo et al. 2011, Harris 2016) and the energy landscape 7 
analysis (Becker and Karplus 1997, Wales et al. 1998, Watanabe et al. 2014a) to model and analyze 8 
community assembly dynamics from observational data (Fig. 1). Our approach starts with community 9 
data including observations on the occurrence of species in a set of temporal and/or spatial replicates 10 
(‘samples’) with any accompanying values representing local abiotic environment (explicit abiotic 11 
factors). This dataset is then converted to the matrices of presence/absence status and explicit abiotic 12 
factors (if available) (Fig. 1B). Second, these matrices are used to fit parameters in a pairwise 13 
maximum entropy model (Fig. 1C). A pairwise maximum entropy model has previously been applied to 14 
infer species interaction from presence/absence data (Harris 2016). Because it relies on physical 15 
association between species it may not represent true ecological interactions (Barner et al. 2018). 16 
Previous studies showed that the model could accurately predict the occurrence of species due to its 17 
ability to incorporate both biotic and abiotic factors (Azaele et al. 2010, Araujo et al. 2011). Here, we do 18 
not focus on the interpretation of model parameters but its ‘energy landscape’ specified by the fitted 19 
pairwise maximum entropy model (Fig. 1D). The energy landscape is a network with nodes 20 
representing community states and links representing transitions between community states. The 21 
analysis of topological and connection attributes of this weighted network is termed ‘energy landscape 22 
analysis’ (Watanabe et al. 2014a). This analysis was first developed in the studies of molecular 23 
dynamics (Wales et al. 1998, Becker and Karplus 1997) and recently applied to the analysis of brain 24 
activity (Watanabe et al. 2014a,b, Ezaki et al. 2017, Watanabe & Rees 2017, Ezaki et al. 2018). 25 
 26 
 27 

 28 
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Figure 1. Illustrative explanation of our approach. (A) we assume that the dataset includes occurrence 1 
of species in local communities sampled from multiple sites and/or timepoints, with possibly 2 
accompanying values representing local abiotic environment (explicit abiotic factors) (in the 3 
illustration, circles and filled circles show species that is absent from or present in a local community, 4 
and colors and size of ellipses represent differences in local abiotic environment). (B) dataset is 5 
converted to matrices of presence/absence status, and explicit abiotic factors (if they are available). (C) 6 
these matrices are used to fit parameters in a pairwise maximum entropy model. Here, p σ⃗  is the 7 
probability of a community state σ⃗  (see Materials and Methods for the detail). (D) the fitted 8 
pairwise maximum entropy model specifies an energy landscape network with nodes representing 9 
community states and links representing transitions between community states. Analysis of the 10 
topology and connectivity of this weighted network, i.e., energy landscape analysis, acknowledges (I) 11 
the stable states (red and yellow filled-circles) and tipping points (green filled-circle), (II) 12 
disconnectivity graph as the summary of hierarchical relationships between the stable states and 13 
tipping points, (III) attractive basin of stable states (red and yellow circles indicate attractive basins of 14 
the two stable states). (IV) We also able to emulate assembly dynamics constrained on the energy 15 
landscape. 16 
 17 
The purpose of this paper is to show how the energy landscape analysis allows us to systematically 18 
and mechanistically study assembly dynamics. Understanding community assembly in terms of the 19 
management of ecological systems has direct relevance to conservation biology, agriculture, and 20 
medicine (Fukami et al. 2015). In conservation biology, knowledge of the paths by which communities 21 
are assembled helps ecologists to understand the role of history in shaping current communities, and 22 
is important for effective community restoration (Drake 1990, Pimm 1991, Lockwood and Pimm 1999, 23 
Weiher and Keddy 1999, Lockwood & Samuels 2004, Suding et al. 2004, Wilsey et al. 2015, Young et 24 
al. 2005, 2015). In other words, when historical contingency occurs, restoring and maintaining native 25 
biodiversity may require specific sequences of exotic species removal and/or native species 26 
introduction. This is also relevant to agriculture, e.g., the successful inoculation of agricultural soils 27 
with beneficial fungi or other microbes may depend on the timing of inoculation relative to plant 28 
growth, as well as the profile of other soil microbes (Verbruggen et al. 2013, Toju et al. 2018). In 29 
medicine, the relevance of historical contingency in community assemblies to curing some human 30 
diseases is being recognized (Costello et al. 2012, Fierer et al. 2012, Lam & Monack 2014, Devevey et 31 
al. 2015). Clinically meaningful evidence for the potential application of modulating the intestinal 32 
microbiota for therapeutic gain has created considerable interest and enthusiasm (Smits et al. 2013, Li 33 
et al. 2016, Shetty et al. 2017). For example, a disruption to the gut microbiota is associated with 34 
several disorders including irritable bowel syndrome, Clostridium difficile Infection (CDI), autism, 35 
obesity, and cavernous cerebral malformations (Karczewski et al. 2014, Cox et al. 2015, Tang et al. 36 
2017). Driving disrupted microbial communities back to their healthy states could offer novel solutions 37 
to prevent and treat complex human diseases (Van Nood et al. 2013). 38 
 39 
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By making the most of observational data, our approach not only provides information on the 1 
constraints on community assembly dynamics (Law and Morton 1993, Warren et al. 2003, Capitan et 2 
al. 2011) but describes change across environmental gradients, allows for simulation-based analysis, 3 
and provides mechanistic understandings on background ecological processes at work. First, we 4 
present a demonstration using a model with predefined (virtual) parameters that describe community 5 
assembly dynamics of an eight species metacommunity. Using this model, we explain the basic 6 
concepts of our analysis, and then we show how the community assembly dynamics can be emulated 7 
as the dynamics constrained on the energy landscape. Furthermore, we introduce an abiotic factor to 8 
the model and explain how response of the energy landscape to abiotic factors is captured in our 9 
model. Finally, to see how maximum likelihood methods works to infer the energy landscape from 10 
observational data, we generated different sized datasets from the models (either with or without 11 
abiotic factors) and examined the relationship between the correctness of inferred energy landscape 12 
and the dataset size. Subsequently, to demonstrate the application of our approach to a real 13 
community, we applied the same analysis to the mouse gut microbiota. We found a major shift in the 14 
energy landscape during the transition from young to middle age and discuss the implications on 15 
community assembly dynamics across life-stages. We discuss the significance of our approach to 16 
community assembly studies, as well as studies on regime shifts and applications to ecosystem 17 
management. 18 
 19 
 20 
Materials and Method 21 
Data structure 22 
We assume that we have a dataset containing the composition of local communities in N samples. The 23 
local community state is represented by a string of 0’s (absence) and 1’s (presence) whose length S is 24 
the total number of species included in the whole dataset. Thus, there is a total of 2  community 25 
states. We denote a community state of kth sample as a random variable σ⃗ σ , σ , … , σ , 26 
where σ ∈ 0,1  for i 1,2, … , S and k 1,2, … , N. We denote the community states of N samples as 27 
an S N matrix X σ⃗ , σ⃗ , … , σ⃗ . If available, the abiotic environment of the samples is 28 
represented by a vector of length M that may include, for example, resource availability, pH, altitude, 29 
or age of host organism, which is referred to as explicit abiotic factors. We denote the explicit abiotic 30 
factors of N samples as M N matrix Y ϵ⃗ , ϵ⃗ , … , ϵ⃗ , where ϵ⃗ ϵ , ϵ , … , ϵ  represents 31 
the abiotic factors of the kth sample. 32 
 33 
Pairwise maximum entropy model 34 
To calculate the probability of community states σ⃗ , i.e., p σ⃗ , we use a pairwise maximum 35 
entropy model derived from the principle of maximum entropy (Jaynes 1982, Mead and Papanicolau 36 
1984, Jaynes 2003, Azaele et al. 2011). The principle of maximum entropy is a powerful tool to explain 37 
statistical patterns in natural world (Azaele et al. 2010). In its simplest form, i.e., without including 38 
explicit abiotic factors, the principle requires the realized distribution of community states to 39 
maximize the following pairwise maximum entropy model (see Azaele et al. 2010 for the detail): 40 
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p σ⃗ e ⃗  /Z, (1) 1 

E σ⃗ ∑ ℎ 𝜎 ∑ ∑ 𝐽 𝜎 𝜎, /2. (2) 2 

Here, E σ⃗  is the energy of community state σ⃗ , and 3 
Z ∑ 𝑒 ⃗ . (3) 4 
Parameters in this model are h s and J s which are elements of a vector h h , h , . . , h  and a 5 

matrix J J
, ,…, ; , ,…,

, respectively. As a model for ecological community, h  may be interpreted 6 

as a parameter representing the net effect of the implicit abiotic factors (gloss effect from the abiotic 7 
environment), which may favor the presence (h 0) or absence (h 0) of species i. Moreover, each 8 
species is coupled to all others in a pairwise manner through J s, and correspondingly, J 0 favors 9 
the co-occurrence of species i and j and J 0 disfavors the co-occurrence of species i and j. Here, 10 
the term energy is used as the diversion from statistical physics since this model was first proposed in 11 
this field (Brush 1967). In ecology, it is nothing but a multiplier of the Napier’s constant as in eq.(1), 12 
i.e., the logarithm of the probability of a community state is inversely proportional to E σ⃗  where 13 
log p σ⃗ E σ⃗  log 𝑍 E σ⃗  ∑ 𝐸 σ⃗ . Hence, this equation implies that a community 14 
state having lower energy than others is more frequently observed. 15 
 16 
If observations on some abiotic factors are available, equation (2) can be extended to: 17 

E σ⃗ ∑ ℎ 𝜎 ∑ ∑ 𝑔 ϵ 𝜎 ∑ ∑ 𝐽 𝜎 𝜎, /2. (4) 18 

Here, g  represents the effect of ith abiotic factor on the occurrence of jth species, and it is an 19 

element of a M S matrix g g
, ,…, ; , ,…,

. Now, the first term of eq. (4) should be interpreted 20 

as the net effect of implicit (unobserved) abiotic factors, while the second term represents the effect of 21 
explicit (observed) abiotic factors. 22 
 23 
Both eq. (2) and (4) are based on the pairwise interaction. Thus, it implicitly assumes that all higher-24 
order occurrence patterns are well-captured by the information encapsulated in the first two moments. 25 
This is relaxed by including the high order terms in these equations. However, such extension would 26 
increase the dataset size required to obtain enough predictive performance (Nguyen et al. 2017). 27 
 28 
As we explained in Appendix A, the maximum likelihood estimates of h, J and g for observational 29 
data can be obtained by the mean occurrences (number of occurrences) for each species, the mean co-30 
occurrences (number of co-occurrences) between each species and the cross-product between the 31 
species and environment matrices. The relevance of the pairwise maximum entropy model is grounded 32 
on the assumption that a statistical population of local community states satisfies the principle of 33 
maximum entropy and the dataset is an unbiased (random) sample from such a statistical population. 34 
We adopt this assumption as a working hypothesis for our analysis, although relevance of this 35 
assumption requires further investigations. However, it is worth noting that the principle of maximum 36 
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entropy has a long history of theoretical development (Jaynes, 1957a, b), and played an important role 1 
for developing predictive models in a vast array of scientific fields (Schneidman et al., 2006; Lezon and 2 
et al., 2006; reviewed by Nguyen et al. 2017), including ecology (Shipley et al. 2006, Dewar and Porte´ 3 
2008, Harte et al. 2008). 4 
 5 
 6 
Ecological processes in pairwise maximum entropy model 7 
We describe how the essential ecological processes that can shape local assemblages are involved in 8 
our model. We present the following argument for conceptual clarity; the main purpose of this paper is 9 
not to provide detailed analysis for discussing the relative strength of different processes. 10 
 11 
In terms of temporal scale, our method infers the constraints of community assembly dynamics 12 
attained by the set of species and environmental factors at an interval in which observations took 13 
place. In other words, we do not account for the processes that can change the composition of species 14 
pool, e.g., migration of species from the outside of the set of communities, and species extinction from 15 
or evolution within the set of communities. These processes might be handled by extending our model, 16 
though we do not consider this to avoid complications. 17 
 18 
Even without considering these processes, local species assemblages are affected by numerous 19 
deterministic and stochastic processes, typically including the response of species to abiotic 20 
environment (environmental filtering), biotic interactions (biotic filtering), dispersal limitation, and 21 
stochastic processes (e.g., disturbance, demographic stochasticity, and ecological drift) (Vellend 2010, 22 
Weiher et al. 2011, Götzenberger et al. 2012, HilleRisLambers et al. 2012, Gravel 2013, Wisz et al. 23 
2013). As in eq. (2) and (4), our model explicitly accounts for the effect of abiotic factors and biotic 24 
interactions. On the other hand, stochasticity is implemented by the absolute value of parameters. To 25 
explain this, let us introduce a control parameter τ ∈ 0, ∞   and denote h/τ, J/τ and g/τ. We can 26 
characterize the relative strength of stochasticity in community assembly processes in terms of 𝜏. 27 
When 𝜏 → ∞, the differences among species disappear. This means that all community states will be 28 
equally observed, i.e., p σ⃗ 1/2  for k 1, … , N. On the other hand, 𝜏 augments the difference in 29 
deterministic effects on species’ occurrence when 𝜏 → 0. In this limit, p σ⃗  of a community state 30 
having the smallest energy approaches 1 while that of the others approach 0. Community state is fixed 31 
to a composition since any stochastic effects have disappeared. This consideration highlights that the 32 
absolute value of the parameters determines the balance between deterministic and stochastic 33 
community assembly processes. Dispersal (and thus dispersal limitation) is not explicitly implemented 34 
in our model. A species included in the model occurs with the same probability throughout different 35 
samples. However, effect of dispersal limitation would be considered when we include spatial 36 
attributes as the element of abiotic factors. In such a model, occurrence of a species will vary as a 37 
function of the spatial attributes. 38 
 39 
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Our approach differs from species distribution models (Elith & Leathwick 2009) and joint species 1 
distribution models (Warton et al. 2015) because it includes biotic interactions. However, this does not 2 
mean that the same ecological interaction would always result in the same consequence in species’ 3 
presence/absence status. For example, let us consider a simple example of a predator-prey 4 
metapopulation (Hanski and Gilpin1991); even when species A consumes B, and A exhausts B in a 5 
site, B may coexist with A in the metacommunity level if B is better at dispersing relative to A. In this 6 
case, we may see a checkerboard distribution where A and B typically occupy different sites. However, 7 
if A does not exhaust B and coexist within a site, then we see co-occurrence of A and B because 8 
presence of B facilitates presence of A. There may be an opposite consequence for the predator-prey 9 
relationship. Therefore, signal of the biotic interaction (J ) can be identified by its effect on the 10 
presence/absence status. Any biotic interactions (and other deterministic ecological processes) are 11 
ultimately identified by their effect on presence/absence status rather than the type of distinct 12 
ecological processes. 13 
 14 
Energy landscape analysis 15 
The energy landscape of the ecological dataset is defined on a network with nodes representing 16 
community states and links representing their transition. Two nodes are defined to be adjacent by a 17 
link only if they take the opposite status (i.e., 0/1) for just one species. In other words, the hamming 18 
distance between two adjacent nodes is always 1. To each node, E σ⃗ , i.e., the energy of the 19 
corresponding community states σ⃗ , is assigned. The distribution of energy over the network 20 
characterizes the energy landscape. Energy landscape analysis is a methodology to analyze the 21 
topology and connectivity of this high dimensional phase space represented as a weighted network 22 
(Becker & Karplus 1997, Wales et al. 1998, Wales, 2010, Watanabe et al. 2014a,b, Ezaki et al. 2017, 23 
Watanabe & Rees 2017, Ezaki et al. 2018). 24 
 25 
Energy minima - A local minimum is a node with energy less than all S neighboring nodes. We 26 
exhaustively examined whether each of the 2  nodes were local minima. Since the local minima have 27 
the lowest energy compared to all neighboring nodes, these corresponding community states constitute 28 
end-points when assembly processes are completely deterministic (i.e., when community states must 29 
always go down the energy landscape). We identified energy minima as stable states of the community 30 
assembly dynamics. Presence of alternative stable states can be identified as multiple energy minima 31 
within an energy landscape. 32 
 33 
Basin of attraction - The attractive basin of an energy minimum was computed as follows. First, we 34 
selected a node i in the energy landscape. If the selected node was not a local minimum, we moved to 35 
the node with the lowest energy value among the nodes adjacent to the current node. We repeated 36 
moving downhill in this manner until a local minimum was reached. The initial node i belongs to the 37 
basin of the finally reached local minimum. We ran this procedure for each of 2  nodes. The basin size 38 
of a local minimum is the fraction of nodes that belong to the basin of the local minimum. When 39 
assembly processes are completely deterministic, all the community states belonging to an attractive 40 
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basin eventually reach one distinct stable state. We denote the basin of an energy minima A as B  1 
and union of the basin of A and B as B . 2 
 3 
Disconnectivity graph, energy barriers and tipping points - A disconnectivity graph summarizes the 4 
structure of the energy landscape. It can be obtained as follows, after obtaining the local minima. 5 
First, we set an energy threshold value, denoted by E , to the energy value of the community state 6 
that attained the second highest energy value among the 2  community states. Second, we removed 7 
the nodes corresponding to the community states whose energy exceeded E . When E , is the second 8 
highest energy, the node with the highest energy was removed. We also removed the links incident to 9 
the removed nodes. Third, we checked whether each pair of local minima was connected in the reduced 10 
network. Forth, we lowered E  to the next highest energy value realized by a community state. Then, 11 
we repeated the third to fifth steps, that is, removal of the nodes and links, checking for connectivity 12 
between local minima, and lowering of E , until all the local minima were isolated. During this 13 
process, for each pair of local minima, we recorded the lowest E  value below which the two local 14 
minima were disconnected. This value is equal to the energy barrier that the assembly dynamics must 15 
overcome to reach from one local minimum to another. We referred the community state having the 16 
threshold energy value as a tipping point. Finally, we constructed a hierarchical tree whose terminal 17 
leaves represented the local minima. The vertical positions of these leaves represent their energy 18 
values. Those of the branches represent the height of the energy barrier that separates the local 19 
minima belonging to the two branches. Thus, a disconnectivity graph represents the hierarchical 20 
relationship among alternative stable states. 21 
 22 
Basin boundary - We regard a pair of adjacent community states belonging to different attractive 23 
basins as a boundary pair. Boundary pairs differ from the tipping point because they acknowledge the 24 
entire structure of the boundary between two basins. To summarize the energy of basin boundary, for 25 
each boundary pair, we assigned Max E σ⃗ , E σ⃗  as the energy of the pair, where σ⃗  and σ⃗  26 
are community sates included in the boundary pair. 27 
 28 
Path between two energy minima - If the hamming distance between two energy minima A and B is L, 29 
then there are L! paths connecting the two energy minima with L steps. Following the previous study 30 
(Ezaki et al. 2018), we defined the path energy (PE) as the sum of energy required for a path 31 
connecting two energy minima: 32 

PE P θ 𝐸 𝜎 𝐸 𝜎 . 33 

Here, P 𝜎 , 𝜎 , … , 𝜎  represents the ith path connecting A and B, and 𝜎  is the jth community 34 
state on the path. θ 𝑥  is a function that returns zero when x  0 and x when x  0. We refer to 35 
this value as an index of the ease of transition between community states. 36 
 37 
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Numerical simulations - We carried out numerical simulations to emulate community assembly 1 
dynamics constrained on an energy landscape. We employed the heat-bath (also known as Gibbs 2 
sampling) method (Gilks et al. 1996) as follows. First, we selected an initial community state. Then, in 3 
each time step, a transition from the current community state σ⃗  to one of its S adjacent community 4 
state σ⃗ , selected with probability 1/S, was attempted (σ⃗  and σ⃗  differs only with respect to 5 
the presence/absence status of one of S species). The transition to the selected community state took 6 

place with probability e ⃗ / e ⃗ e ⃗  . This procedure provides a sequence of transition 7 

of community states constrained on an energy landscape, and we refer to it as the emulated 8 
community assembly dynamics. 9 
 10 
 11 
Sample Data for demonstration 12 
Eight-species metacommunity model – To explain the basic concepts and work flow of the analysis, we 13 
use an eight species metacommunity model with predefined (virtual) parameters. Therefore, 14 
parameters for the model were not inferred from real data but given a priori. The parameter values 15 
were selected so that the system had three alternative stable states. We first evaluated the model 16 
without no explicit environmental factors, i.e., we set parameters for the biotic interactions (J) and the 17 
responses to implicit abiotic factors (h). We then extended the same model by including an explicit 18 
abiotic factor (ϵ), and set the additional parameters (g) for the responses to the explicit abiotic factor. 19 
Since we assumed only one abiotic factor, ϵ and g were defined as vectors with N elements instead of 20 
matrices. Values of these parameters are presented as supplementary information. 21 
 22 
Mouse gut microbiota - We applied our approach to the data of gut-microbiota taken from the feces of 23 
six male C57BL/6J mice, which is in the DDBJ database (http://trace.ddbj.nig.ac.jp/DRASearch/) under 24 
accession number DRA004786 (Nakanishi et al. submitted). Feces were sampled once every 4 weeks 25 
between 4 to 72 weeks of age, thus 18 data points were obtained per mouse. Hence, 96 data points are 26 
available. We transformed the relative abundance data into presence/absence data by setting a cutoff 27 
level as 1%, and we picked up OTUs that found between 20% to 80% samples. As the result we 28 
obtained the presence/absence status of 8 OTUs specified at the genus level. We also used age of 29 
mouse (4-72 weeks) as an explicit environmental parameter. In the analysis, we scaled 4-72 weeks to a 30 
value within a 0-1 range. We assumed that 4 weeks interval was sufficiently longer than the transient 31 
dynamics of the gut microbiota (Gerber 2014), and treated microbiota composition of the same mouse 32 
at different ages as independent data. Since we included only age as the abiotic factor in the analysis, 33 
ϵ and g were defined as vectors with N elements instead of matrices. 34 
 35 
 36 
Results 37 
Analysis of metacommunity models 38 
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We first explain the basic concepts and work flow of our approach, using an eight species 1 
metacommunity model with predefined (virtual) parameters. As explained in Materials and Methods, 2 
we regard the energy minima as stable states henceforth. 3 
 4 
Basic Concepts - The eight-species metacommunity model is defined so that it has three alternative 5 
stable states (Fig. 2a). We regard them as stable states A, B and C. The energy of A, B and C were -6 
10.56, -10.49 and -9.70, respectively, and these values corresponded to their probability (Fig. 2b). The 7 
relative basin size of A, B, and C is shown in Fig. 2c. The height of the energy barrier for the transition 8 
between stable states is shown in Fig. 2d and was estimated as the difference of energy between the 9 
departed stable state to the tipping point (indicated as b1 and b2 in Fig. 2a). The energy landscape 10 
acknowledges the hierarchical relationship among the three alternative stable states in this model. 11 
There was a tipping point b1 at -9.97 that connects stable state A and B (Fig. 2a). This means that b1 12 
connects the attractive basin of stable state A (BA) and that of stable state B (BB) at this energy level.  13 
A second tipping point b2 was found at -8.49 (Fig. 2a) that connects b1 and C. This means that the 14 
union of the two basins BA and BB (BAB) was connected to the attractive basin of stable state C (BC) via 15 
b2 at this energy level. 16 
 17 
 18 

 19 
Figure 2. Summary of the energy landscape of the eight species metacommunity model. (a) 20 
disconnectivity graph showing the energy minima; stable states (red points), tipping points (green 21 
points), and community composition of stable states. Pie chart indicates presence (white) or absence 22 
(black) of species i 1, … ,8 in clockwise order. (b) probability of community states calculated from eq. 23 
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(2). Stable state A, B and C and their basins are indicated by Red, Orange and Blue points, 1 
respectively. (c) relative basin size of energy minima. (d) height of energy barrier (difference in energy 2 
between the departed stable state to the tipping point) for the transition from stable states shown in 3 
columns to rows. 4 
 5 
 6 
Emulating community assembly dynamics - To consider the effect of the energy landscape on the 7 
community assembly dynamics, we considered the transition dynamics between stable states (steady 8 
state dynamics) rather than the dynamics initiated by absence of species (transient dynamics) because 9 
these provide general information on energy landscape dynamics, and have implications on the 10 
ecosystem management issues that deals with transition between established communities. 11 
 12 
Transitions between A and B occurred more frequently than between A or B to C (Fig. 3a) because of 13 
the lower energy barrier between them (Fig. 2d). We considered two strategies to investigate the 14 
transition dynamics between the stable states: the first one focused on tipping points and basin 15 
boundary and the second one focused on the paths connecting two stable states. Here, we considered 16 
transition between the stable states A and C. 17 
 18 
Since energy of the tipping point between A and B (b1) was lower than that of A and C (b2), we needed 19 
to consider the boundary between B  and B  rather than B  and B  for transition between A and 20 
C. There were 186 boundary pairs that constituted the basin boundary between B  and B . We 21 
performed a numerical simulation (10  steps heat-bath algorithm) and calculated the frequency that 22 
each boundary pair was visited (Fig. 3b). There was a negative correlation between the frequency and 23 
the energy of boundary pairs (Pearson’s correlation coefficient, -0.53, P<0.001). The top 10 low energy 24 
boundary pairs (5.3% of all boundary pairs) covered 56.7% of visited boundary pairs during transition 25 
(Fig. 3c), and these pairs included tipping point b2 (Table 1). This result shows that we can 26 
characterize the transition between stable states using a small number of critical community states. 27 
The set of these community states can be understood as the channel that mediates transition between 28 
alternative stable states. 29 
 30 
Since hamming distance between A and C was 7, there were 5040 ( 7!) possible paths connecting A 31 
and C with the shortest path length. However, there may be a small number of effective paths since 32 
the paths that eventually connect two states will have lower PE P  than the others. Figure 3d shows 33 
the negative correlation between PE and the frequency of paths (Pearson’s correlation coefficient was -34 
0.43, P<0.001). Here, the top 20 low PE paths (0.3% of all paths) covered 19.2% of transitions between 35 
A and C (Fig. 3e), again indicating that there was a relatively small fraction of paths that eventually 36 
connected stable states A and C. Since coverage of these paths will decrease when considering paths 37 
with different length (i.e., L 8,9, …), we need to consider many more paths as eventual transition 38 
paths. However, the presented result has implications for effective sequencing of species introduction 39 
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or removal to control community states. As is shown by the emulated community assembly dynamics 1 
here, some low PE paths will be more efficient than others that would be selected by random trials. 2 
 3 
 4 

 5 
Figure 3. Transition dynamics between community state A and C. (a) frequency of transition between 6 
stable states that has a negative correlation to the energy barrier represented in Fig. 2d (Pearson’s 7 
correlation coefficient between the transition frequency and energy barrier was -0.79, P=0.06). (b) 8 
relationship between the energy of boundary pairs and the frequency that they are visited. (c) 9 
cumulative probability distribution of (b). Here, points were indicated by the rank of boundary pairs 10 
with ascending order of their energy. (d) relationship between PE and the frequency of paths. (e) 11 
cumulative probability distribution of (d). Points were indicated by the rank of paths with ascending 12 
order of their PE. (a-c) were calculated from a numerical simulation with 10  steps heat-bath 13 
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algorithm. For (d-e), we repeated 10   steps heat-bath simulations until we obtain 2,000 paths whose 1 
length was 7. To obtain (a), we picked up the realized paths that start from one of the stable states and 2 
arrive at one of the others. To obtain (d-e), we first picked up the realized paths that start from A (C) 3 
and arrive at C (A) without visiting B, and pruned loops (intervals that come back to the same 4 
community state) and removed redundancy (states that was not moved to other state), and then picked 5 
up the path whose length was 7. 6 
 7 
 8 
Rank Energy Community state in 

BAB  

Community state in BC  Cumulative 

probability 

1 -8.48 {1, 1, 0, 0, 1, 0, 1, 1} {0, 1, 0, 0, 1, 0, 1, 1}* 0.08 

2 -8.45 {1, 1, 0, 0, 1, 0, 1, 1} {1, 1, 0, 0, 1, 0, 1, 0} 0.163 

3 -8.45 {0, 1, 0, 1, 1, 0, 1, 1} {0, 1, 0, 0, 1, 0, 1, 1}* 0.233 

4 -8.39 {1, 1, 0, 1, 1, 0, 1, 0} {1, 1, 0, 0, 1, 0, 1, 0} 0.309 

5 -8.12 {0, 1, 0, 1, 1, 0, 1, 1} {0, 1, 0, 1, 1, 0, 1, 0} 0.37 

6 -8.12 {1, 1, 0, 1, 1, 0, 1, 0} {0, 1, 0, 1, 1, 0, 1, 0} 0.425 

7 -7.12 {0, 0, 0, 1, 1, 1, 1, 0} {0, 0, 0, 1, 1, 0, 1, 0} 0.45 

8 -7.05 {1, 1, 0, 0, 0, 0, 1, 0} {1, 1, 0, 0, 1, 0, 1, 0} 0.479 

9 -7.01 {0, 1, 0, 0, 0, 0, 1, 1} {0, 1, 0, 0, 1, 0, 1, 1}* 0.507 

10 -6.9 {0, 0, 1, 0, 1, 1, 1, 0} {0, 0, 1, 0, 1, 0, 1, 0} 0.522 

Table 1. Profile of top 10 low energy boundary pairs. * indicates tipping point between B  and B . 9 
 10 
 11 
Energy landscape across environmental gradient - If the occurrence of species depends on some abiotic 12 
factors, change in the constraints on community assembly dynamics across the environmental 13 
gradient can be captured by the change in the energy landscape. We introduced an abiotic factor (ϵ) to 14 
the previous model and studied the change in the energy landscape over ϵ ∈ 0,1 . Figure 4a-f shows 15 
the snapshot of the energy landscape for different ϵ values, and figure 4g is a stable state diagram 16 
that shows the energy of stable states (solid lines) and tipping points (dashed lines). This result shows 17 
that C was no longer a stable state when ϵ 0.62, and A and B became more stable with increasing ϵ. 18 
Further, alteration of community composition of A, B and b1 to A’, B’ and b1’, respectively, occurred 19 
with increasing ϵ. 20 
 21 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/709956doi: bioRxiv preprint 

https://doi.org/10.1101/709956


15 
 

 1 
Figure 4. Energy landscape of an eight species metacommunity subject to an abiotic factor (ϵ). (a-f) 2 
disconnectivity graph for different ϵ values (stable states (red) and tipping points (green)). Pie chart 3 
indicates presence (white) or absence (black) of species i 1, … ,8 in clockwise order. (g) stable state 4 
diagram showing the energy of stable states and tipping points. Here, energy of stable states (solid 5 
lines, community state is indicated by red letters) and tipping points (dashed lines, community state is 6 
indicated by green letters) are shown. Each line segments (labeled by letters identifying stable states 7 
or tipping points) represent the range of age with stable states (or tipping points). 8 
 9 
Inferring energy landscape from observational data - In reality, the energy landscape analysis will be 10 
applied after inferring the energy landscape from observational data. We examined the relationship 11 
between the accuracy of the inferred energy landscape and the size of dataset used for the inference by 12 
generating the dataset from the presented models. We evaluated the accuracy using Spearman’s rank 13 
correlation (ρ) and relative mean squared error (RMSE) between the energy of all community states 14 
specified by the pairwise maximum entropy model with actual and inferred parameter values. In the 15 
eight species metacommunity model either without (Fig. 5a, b) or with (Fig. 5c-n) an abiotic factor, 16 
both ρ and RMSE were mostly saturated when dataset size was larger than 200 (78% of the total 17 
number of possible community states, i.e., 2 256), and the result was still reliable even if the data 18 
set size was 100 (39% of the total number of possible community states). 19 
 20 
 21 
 22 
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Figure. 5. Inferring energy landscapes using datasets of varying sizes. (a,b) spearman rank correlation 1 
and RMSE (root mean squared error) of inferred and actual energy of all community states calculated 2 
for 25, 50, 100, 200, 500, 1000 dataset size with 100 independent trials. In each trial, we repeated 25-3 
1000 independent runs of 104 steps heat-bath simulations, then we picked up the final community 4 
states as a dataset to infer the parameters of the pairwise maximum entropy model using gradient 5 
descent algorithm (Appendix A). (c-h) spearman rank correlation of inferred and actual energy of all 6 
community states calculated for 25, 50, 100, 200, 500, 1000 dataset size with 100 independent trials. 7 
(i-n) RMSE of inferred and actual energy of all community state calculated for 25, 50, 100, 200, 500, 8 
1000 dataset size with 100 independent trials. To obtain (c-n), in each trial we repeat 25-1000 9 
independent runs of 104 steps heat-bath simulations where ϵ values are randomly assigned from the 10 
uniform distribution [0,1], then we picked up the final community states as a dataset to infer the 11 
parameters of the pairwise maximum entropy model using stochastic approximation algorithm 12 
(Appendix A). 13 
 14 
 15 
Application to real data 16 
These results show how energy landscapes can be used to study community assembly dynamics and 17 
indicate 100 samples are sufficient to infer the energy landscape of systems with eight species. We 18 
applied this approach to the gut microbiome data of six mice with 96 samples and concluded that this 19 
dataset was sufficient to apply our approach. Community states were represented by eight genus level 20 
OTUs that can be identified as species in the above analysis, and we used age of mice as the abiotic 21 
factor.  22 
 23 
At the community level, all stable states found at initial age (C40, C44, C138 in Fig. 6a; see Table 2 for 24 
the membership of community states) increased energy as age increased. C138 was no longer a stable 25 
state after 20 weeks because its energy exceeded that of the tipping point (C140) between C12 and C138 26 
(Fig. 6a). C44 changed to C12 at 4 weeks age and then showed reduced energy with increased age. The 27 
lowest energy minimum was altered from C138 to C12 at 12 weeks age. C40 showed reduced energy with 28 
increased age when it changed to C8 at 12 weeks age. 29 
 30 
These community level responses can be understood by analyzing the estimated parameters. In figure 31 
6b, the community level response is shown by the bars marked as ‘Total’ in addition to the genus level 32 

responses. The net effect of biotic interactions (Σ J σ σ ), the bacterial responses to age (g ϵ), and 33 

the implicit effect of abiotic factors (h ; here, these values represent the sum of the effects other than 34 
the bacterial response to age or the biotic interaction between bacteria) are indicated by blue, orange 35 
and green, respectively. The correlation between age and the occurrence of genus became positive if g 36 
(genus level response to age; Table 2) was positive; this correlation became negative when g was 37 
negative.  The sum of g across community members determined the community level response to age. 38 
Bifidobacterium (in C138), Turicibacter (in C40 and C44) and unclassified RF39 (in all) had negative g 39 
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values (Table 2). The transition from C40 to C8 and C44 to C12 occurred as the alteration of stable states 1 
between those containing Turicibacter (C40 or C44) and those without Turicibacter (C8 or C12) since its 2 
absence altered the sign of the community level response to age (Table2; in Fig. 6b, the community 3 
level response to age is positive for C8 or C12 while the same value was negative for C40 and C44). 4 
Turicibacter disappeared later in C40 than in C44 (Fig. 6a) because it had a stronger positive 5 
relationship with Oscillatospira (in C40) than unclassified Ruminococcaceae (in C44) (Fig 6c). The net 6 
effect of biotic interactions to Turicibacter was negative in both cases since other members, i.e., 7 
Suttellela and RF39, had a negative relationship with Turicibacter (Fig. 6b,c; in figure 6b, the net 8 
effect of biotic interactions was negative for Turicibacter both in C40 and C44). RF39 also had a 9 
negative g value, though it remained present in C8 and C12 because its occurrence largely depended on 10 
h (Table 2, Fig 6b). The difference between C8 and C12 was presence of Oscillatospira (C8) or 11 
Ruminococcaceae (C12) (Table 2). The two genera had a negative relationship with each other (Fig. 6c). 12 
Thus, they could be mutually exclusive. Interestingly, the tipping point between C8 and C12, i.e., C24 or 13 
C52 (Fig. 6a, Table2), contained Lachnospiraceae that was not included in any stable states. 14 
 15 
Similarly, C138 lost its stability due to the negative response of Bifidobacterium to age (Table 2, Fig. 16 
6b). The energy of C138 increased faster than that of C140, i.e., tipping point between C12 and C138 (Fig. 17 
6a), because presence of Suterella (positively affected by age) in C140 reduced the inclination of its 18 
community level response to age. Different from C138, C12 continued to be a stable state over age 19 
because it included Sutterella instead of Bifidobacterium (Table 2), resulted in the alteration of the 20 
lowest energy minimum from C138 to C12 at 12 weeks age. 21 
 22 
 23 
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 1 
Figure 6. Energy landscape analysis of a mouse gut microbiota. (a) stable state diagram showing the 2 
energy of stable states and tipping points. Here, energy of stable states (solid lines, community state is 3 
indicated by red letters) and tipping points (dashed lines, community state is indicated by green 4 
letters) are shown. Each line segment (labeled by community state C  at their right end) represents 5 
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the range of age with stable states (or tipping points). Subscripts in CX identifies a community type 1 
where binary vectors are converted to a decimal number, e.g., 0,0,0,0,0,0,0,0 1, 0,0,0,0,0,0,0,1 2, 2 

etc.. (b) Strength of the net effect of biotic interactions (Σ J σ σ ), explicit abiotic factor (response to 3 

age) (𝑔 𝜖) and implicit abiotic factors (h ) for each genus i (genus level effects) and their sum over 4 

community members (community level effects), Σ Σ J σ σ , Σ 𝑔 𝜖σ  and Σ h σ  (shown as ‘total’). 5 

σ  represents membership of each communities (Table 2). For comparison, we set ϵ 0.5. (c) 6 
elements of biotic interactions (J ). The value represents the strength of association between two 7 
genera (shown in columns and rows). There is a positive association between two genera if the value is 8 
positive whereas there is negative association if it is negative. 9 
 10 
 11 

h G C8 C12 C40 C44 C138 C12* C24* C52* C140*

Bifidobacterium 0.003 -1.814 0 0 0 0 1 0 0 0 1 

Prevotella -0.509 -0.337 0 0 0 0 0 0 0 0 0 

Turicibacter 1.246 -5.512 0 0 1 1 0 0 0 1 0 

UC_Lachnospiraceae -0.114 0.458 0 0 0 0 0 0 1 1 0 

UC_Ruminococcaceae 1.84 0.844 0 1 0 1 1 1 0 0 1 

Oscillospira -0.038 0.318 1 0 1 0 0 0 1 0 0 

Sutterella 0.249 1.395 1 1 1 1 0 1 1 1 1 

UC_RF39 3.203 -1.321 1 1 1 1 1 1 1 1 1 

Table 2. Profile of eight genus included in the analysis. h (implicit effect from abiotic factors) and g 12 
(genus level response to age) are the parameters inferred by stochastic approximation (Appendix A) 13 
and 0/1 values indicate membership of each genus in stable states and tipping points (indicated by *). 14 
C12 appeared both as a stable state and tipping point since it was a tipping point at 4 weeks of age 15 
(Fig. 6a). 16 
 17 
 18 
Discussion 19 
We developed a framework to study community assembly dynamics by incorporating a pairwise 20 
maximum entropy model (Azaele et al. 2010, Araujo et al. 2011, Harris 2016) and an energy landscape 21 
analysis (Becker and Karplus 1997). Using a pairwise maximum entropy model, a set of community 22 
states can be seen as an energy landscape, which is a network with nodes representing community 23 
states and links representing their transitions. The nodes are weighted by their energy and 24 
characterize the energy landscape. Energy landscape analysis incorporated the number, composition 25 
and basin size of stable states (energy minima) as well as tipping points between them and overall 26 
basin boundary structure (represented by boundary pairs). Disconnectivity graphs (Fig. 2a, 4a) showed 27 
the hierarchical relationships among alternative stable states and tipping points. Therefore, our 28 
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approach provides systematic understanding on the constraints of community assembly dynamics by 1 
embedding the relationship of alternative stable states and other community states as the structure of 2 
energy landscape. We also introduced a heat-bath (Gibbs sampling) algorithm (Gilks et al. 1996) to 3 
emulate community assembly dynamics constrained on the energy landscape. We used it to evaluate 4 
how transition paths between two alternative stable states were constrained by the basin boundary 5 
structure. In our simulation, only 5.3% of basin boundary structure mediated 56.7% of realized 6 
transitions (Fig. 3c). This suggests that a small fraction of community states may be a channel for 7 
transition between alternative stable states, which would be a basis for developing an early warning 8 
signal (Scheffer et al. 2012) for community level transitions. Furthermore, we showed that the sum of 9 
energy that must go up over a path connecting two stable states (‘path energy’, PE) can inform how 10 
easy the transition will occur with these sequences. It will help us to find reliable assembly sequences 11 
by which we can easily change one community state to another. The presented approach can include 12 
one or more abiotic factors that affect species occurrence, and thus addresses change in energy 13 
landscape structure along these environmental axes. We introduced a stable state diagram to 14 
summarize the number and energy of stable states and tipping points (Fig. 4g, 6a), which indicated 15 
change in constraints on community assembly dynamics along with the environmental gradient. We 16 
also confirmed that energy landscapes can be reconstructed from observational data if dataset size was 17 
sufficient. In short, our approach provided information on the constraints on community assembly 18 
dynamics (Law and Morton 1993, Warren et al. 2003, Capitan et al. 2011), described change across 19 
environmental gradients, and allowed for simulation-based analysis. 20 
 21 
In the mouse gut microbiota, our approach showed a major shift in energy landscape structure that 22 
occurred during early to middle age, which accompanied the disappearance of Bifidobacterium and 23 
Turicibacter from the stable states. This suggested an age-related regime shift in mouse gut 24 
microbiota as was previously reported for human gut microbiota (Lahti et al. 2014). Lahti et al. (2014) 25 
showed evidence of ‘tipping elements’ whose presence/absence status control community structure in 26 
the human gut microbiota across age. Our result suggested that, at least for its compositional shift in 27 
early to middle age, Bifidobacterium and Sutterella may be the potential ‘tipping elements’ in the 28 
mouse gut microbiota since their presence/absence status in stable states were altered across life 29 
stage. In human gut microbiota, Bifidobacterium is introduced as a beneficial bacterium. However, it 30 
usually disappears within a few days and the ‘probiotic’ effects do not last beyond a few days without 31 
its continuous supplementation (Kim et al. 2013). Our results suggest that in mouse gut microbiota, 32 
the same thing may be observed due to the lack of stable states including Bifidobacterium. Attempts to 33 
establish a Bifidobacterium population will not succeed without finding environmental conditions that 34 
support at least one stable state including Bifidobacterium. Our result also suggested that 35 
Lachnospiraceae may be a catalytic taxon (Warren et al. 2003) which appeared in the tipping point but 36 
was absent from any stable states. In this analysis, we also revealed how the genus level differences in 37 
response to age, the effect of implicit abiotic factors, and interactions with other genera are responsible 38 
for community level responses to age and result in age dependence of community assembly processes. 39 
The response of each genus to age naturally had a prominent role in the community level response, 40 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/709956doi: bioRxiv preprint 

https://doi.org/10.1101/709956


22 
 

though interaction with other factors was also identified. The approach outlined here provided 1 
mechanistic understanding of the processes that drive community assembly dynamics. Overall, this 2 
approach allowed us to systematically and mechanistically analyze community assembly dynamics 3 
across environmental gradient. 4 
 5 
Comparison to other approaches 6 
Community structures across spatial and temporal scale have been studied by species distribution 7 
models (SDMs) or joint species distribution models (JSDMs) (Norberg et al. 2019, Wilkinson et al. 8 
2019). However, these models do not directly include biotic interactions and thus it is controversial 9 
whether they are reliable to study mechanisms that shape species assemblage (Barner et al. 2018, 10 
Freilich et al. 2018). More importantly, these models do not directly describe dynamic relationships 11 
between different community states (Baselga and Araújo 2009, Elith and Leathwick 2009, Norberg et 12 
al. 2019). Therefore, they cannot be perceived as models of community assembly dynamics. Dynamical 13 
models (such as differential equations) are able to describe shifts in community structure based on the 14 
change in population abundance of a species (Gravel et al. 2011). However, it is generally difficult to 15 
develop fully mechanistic models for multi-species communities from time-series abundance data. On 16 
the other hand, our model considers only the consequence of species extinctions or migrations in local 17 
communities. Hence, it ignores the time scale of transient population dynamics and approximates the 18 
continuous state space as a network of community states. By discarding detailed descriptions of 19 
transient dynamics, our approach offers a practical way to study the community assembly dynamics 20 
from observational data.  21 
 22 
Ecological implications 23 
Community assembly dynamics play a prominent role in real world ecosystem organization, and 24 
therefore the methodological advancement we presented here will influence conceptual development in 25 
other important topics in ecology. For example, regime shifts in ecology have mainly addressed 26 
ecological states over one environmental axis (Scheffer et al. 2001, Beisner et al. 2003, Walker et al. 27 
2004). The concept can be extended to a multi-species system (Shoroder et al. 2005) but it is typically 28 
assumed that the system is dominated by a few ecological variables and control parameters, as in the 29 
relationship of phosphorus concentration with abundance of phytoplankton and plant species in lake 30 
systems (Scheffer and Jeppsen 2007). Attempts to analyze regime shifts in real world multi-species 31 
systems are limited by development of full mechanistic models based on observational data. Our 32 
approach offers a practical way to understand how complex stability landscape (Walker et al. 2004) of 33 
a multi-species system could change across environmental axes and trigger regime shifts. This ability 34 
will have important implications for ecosystem management. Further, our approach can provide both 35 
systematic and mechanistic understanding of the processes that structure and maintain 36 
spatiotemporal heterogeneity in the composition of ecosystems, and thus will make a significant 37 
contribution to conservation of ecosystem function and services. 38 
 39 
Limitations and challenges 40 
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Although our approach has great potential to advance studies of community assembly and related 1 
fields, it still has some flaws that need to be addressed. First, further verification is required to assess 2 
the effect of replacing species’ abundance with presence/absence status. Does the pairwise maximum 3 
model always provide good approximation to the global phase space of ecological dynamics? For 4 
example, since our approach relies on a gradient system, it cannot account for attractor dynamics that 5 
often appear in ecological systems. Heteroclinic cycles that cause cyclic alteration of community states 6 
(Morton and Law 1997, Fukami et al. 2015) are one examples. These dynamics may still be identified 7 
as a set of energy minima separated by low energy barriers, though the overall consequence of 8 
approximating dynamics in a continuous phase space into a coarse-grained phase space (where nodes 9 
of the weighted network represent each sub-system of the original phase space) is unknown. Second, it 10 
is not clear if the principle of maximum entropy actually fits the distribution of community states in 11 
natural species assemblages. For example, due to disturbance and patch dynamics, community states 12 
may be in different developmental stages at different sites at any given point in time. Stochastic 13 
consequences of biotic interactions would also be responsible for such non-equilibrium community 14 
dynamics (e.g., see Warren et al. 2003). Third, increase of the number of species (S) included in the 15 
analysis will cause discrepancy between the available dataset size and the number of possible 16 
community states (2 ) and this might reduce the accuracy of the pairwise maximum entropy model for 17 
species rich systems. If community dynamics occurred only within a fraction of phase space, the 18 
discrepancy between dataset size and possible community states will not significantly reduce the 19 
performance of the pairwise maximum entropy model. More information is required on the 20 
relationship between the number of species and the proportion of phase space needed to explain 21 
community dynamics in ecological systems. Last, causal relationships between species’ 22 
presence/absence status and transition of one community state to another are not well represented 23 
using our approach. Incorporating causal analysis (e.g., Sugihara et al. 2012, Runge et al. 2017) will 24 
strengthen our approach especially when considering its application to control community states. 25 
 26 
Conclusion 27 
There is an urgent need to move ecology from empirical and conceptual work to application and 28 
management issues (Mouquet et al. 2015). Although some further verification and improvement is 29 
required, we believe that the methodological advancement presented here will be a new systemic 30 
paradigm for developing a predictive theory of community ecology (Long and Karel 2002, Chase 2003, 31 
Fukami 2010). 32 
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Appendix A 1 
The maximum likelihood estimate for the model parameters can be obtained by minimizing the 2 
discrepancy between the values of the data’s sufficient statistics and the corresponding sufficient 3 
statistics within the model (Bickel and Doksum 1977, Azaele et al. 2010, Murphy 2012, Harris 2015, 4 
Lee and Hastie 2015). 5 
 6 
 7 
Gradient descent algorithm 8 
For a dataset that does not include explicit abiotic factors and energy can be calculated by eq. (2), a 9 
gradient descent algorithm can be applied (Watanabe et al. 2014a,b, Harris 2015, Harris 2016). For a 10 
model with parameter h∗ and J∗, let the expected probability of species i be 〈σ 〉∗11 

1/2 ∑ 𝜎 𝑝 σ⃗  and the co-occurrence be 〈σ σ 〉∗ 1/2 ∑ 𝜎 𝜎 𝑝 σ⃗ . The parameter h 12 

and J can be fitted to the data by iteratively adjusting 〈𝑣 〉∗ and 〈𝑣 𝑣 〉∗ toward 〈𝑣 〉 and 〈𝑣 𝑣 〉, 13 
respectively, by updating the parameters as 14 

h ← h α log〈σ 〉/〈σ 〉∗ 15 
J ← J log〈σ σ 〉/〈σ σ 〉∗ 16 

at each step. Here, 〈σ 〉 and 〈σ σ 〉 is mean occurrence and co-occurrence calculated from the 17 
observational data. We set α 0.25 and the number of iteration as 5,000. 18 
 19 
 20 
Stochastic approximation 21 
The likelihood function of the pairwise maximum entropy model becomes computationally intractable 22 
when we need to include explicit abiotic factors (as in eq. (4)), because it requires repeating above 23 
computations independently for every sample. Therefore, it calls for a different model-fitting algorithm 24 
that is computationally more efficient. Here, following Harris (2015), we introduce a ‘stochastic 25 
approximation’ (Robbins and Monro 1951, Salakhutdinov and Hinton 2012) for this purpose. This 26 
algorithm replaces the intractable computations with tractable Monte Carlo estimates of the same 27 
quantities. Despite the sampling error introduced by this substitution, stochastic approximation 28 
provides strong guarantees for eventual convergence to the maximum likelihood estimate (Younes 29 
1999, Salakhutdinov and Hinton 2012). 30 
 31 
Stochastic approximation (Robbins and Monro 1951, Salakhutdinov and Hinton 2012) estimates the 32 
expected values of the sufficient statistics by averaging over a more manageable number of simulated 33 
assemblages during each model-fitting iteration, while still retaining maximum likelihood convergence 34 
guarantees. The advantage of this algorithm is Z (eq. (3)) does not have to be calculated at each step, 35 
which significantly improves computational efficiency. This is due to the use of a heat-bath algorithm 36 
that only requires calculating energy of two adjacent community states. The procedure iterates 37 
through the following three steps as many times as needed (Here, we set T 50000 for these 38 
analyses). 39 
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 1 
Stochastic approximation 2 
1. Set t=0, and initial parameter values for h, j and g. 3 
 4 
2. Calculate learning rate l as: 5 

l l
1000

999 𝑡
, 6 

momentum m as: 7 

𝑚 0.9 1
1

0.1t 2
, 8 

and logistic priors as p tanh h/2/2 /2, p tanh g/2/2 /2 and p tanh J/0.5/2 /2. Here, l  9 
is the initial learning rate and we set it as 1. 10 
 11 
3. For k 1 to M, run one step heat-bath algorithm based on current parameters (h, J and g): 12 
transition from the current community state σ⃗  to one of its S adjacent community state σ⃗ , 13 
selected with probability 1/S, was attempted (σ⃗  and σ⃗  differs only with respect to the 14 
presence/absence status of one of S species). The transition to the selected state took place with 15 

probability e ⃗ / e ⃗ e ⃗   (e ⃗  and e ⃗  are given by eq. (4)). 16 

 17 
4. Subtract the simulated sufficient statistics from the observed ones to calculate the approximate 18 
likelihood gradient. Sufficient statistics are calculated as, 𝑆𝑆1 XX , and SS2 Y X. Here, X19 
σ⃗

, ,,…,
 is the matrix of presence/absence status and Y 𝜖

, ,,…,
 is the matrix of abiotic 20 

factors. Then, we obtain the difference of sufficient statistics as: 21 
∆𝑆𝑆1 SS1∗ SS1, 22 

and 23 
∆𝑆𝑆2 SS2∗ SS2. 24 

Here, SS1∗ and SS2∗ is the sufficient statistics calculated for actual data. 25 
 26 
5. Adjust the model parameters to climb the approximate gradient, using a schedule of step sizes as: 27 

h ← h ∆h , 28 
J ← J ∆J , 29 

g ← g ∆g . 30 
Here, 31 

∆h l𝐺  𝑚∆h , 32 
∆J lG 𝑚∆J , 33 

∆g lG 𝑚∆g , 34 
and, 35 

𝐺
diag ∆SS1 p

M
, 36 
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𝐺
∆SS1 p

M
|I S 1|, 1 

G
∆SS2 p

M
, 2 

are the approximated likelihood gradients. 3 
 4 
6. Set h , J , g , ∆h , ∆J  and ∆g  as h , J , g , ∆h , ∆J  and ∆g , 5 
respectively. If t T, increment t by 1 and back to 2, else terminate the loop. 6 
 7 
Here, the simulations in Step 1 use one step heat-bath algorithm (Gibbs sampling) to generate a 8 
community state distribution based on the model’s current parameter estimates. While the subsequent 9 
community state distributions produced by Gibbs sampling are autocorrelated, this does not prevent 10 
convergence to the maximum likelihood estimates (Younes 1999, Salakhutdinov and Hinton 2012). 11 
The approximate likelihood gradients in Step 5 match those of gradient descent, except that they are 12 
averaged over a set of Monte Carlo samples rather than over all possible community states. These 13 
gradients were augmented with a momentum term (Hinton 2012) and by regularizers based on a 14 
logistic prior with location 0 and scale 2.0 (for environmental responses) or 0.5 (for pairwise 15 
interactions). 16 
 17 
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