
 1 

Dopamine modulates dynamic decision-making during foraging 1 

Abbreviated title: Dopamine modulates dynamics of foraging 2 

 3 

Campbell Le Heron1,2,3, Nils Kolling4,5, Olivia Plant4, Annika Kienast4, Rebecca Janska4, 4 

Yuen-Siang Ang1,4, Sean Fallon4,6, Masud Husain1,4,5*, Matthew A J Apps4,5* 5 

 6 

1 Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford OX39DU, 7 

UK  8 

2 New Zealand Brain Research Institute, Christchurch 8011, New Zealand 9 

3 Department of Medicine, University of Otago, Christchurch 8011, NZ 10 

4 Department of Experimental Psychology, University of Oxford, Oxford OX26GG, UK 11 

5 Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford OX39DU, 12 

UK 13 

6  Bristol Medical School, University of Bristol, Bristol BS81UD, UK 14 

 15 

*These authors contributed equally 16 

Correspondence to: Dr Campbell Le Heron, New Zealand Brain Research Institute, 17 

Christchurch 8011, New Zealand. 18 

Email: campbell.leheron@nzbri.org  19 

 20 
Number of pages: 24 21 
Number of figure: 3 22 
Number of tables: 1 23 
Abstract word count: 249 24 
Introduction word count: 650 25 
Discussion word count: 1500 26 
 27 
The authors declare no competing financial interests. 28 
 29 
ACKNOWLEDGEMENTS 30 
This research was supported by a University of Oxford Christopher Welch Scholarship in Biological Sciences, a 31 
University of Oxford Clarendon Scholarship and a Green Templeton College Partnership award (C.L.H.); a 32 
Wellcome Trust Principal research fellowship to MH; the NIHR Oxford BRC (Biomedical Research Centre; 33 
MH); the Velux Foundation (MH); A BBSRC David Phillips Fellowship (BB/R010668/1) to MAJA.   34 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 29, 2020. ; https://doi.org/10.1101/709857doi: bioRxiv preprint 

https://doi.org/10.1101/709857
http://creativecommons.org/licenses/by/4.0/


 2 

ABSTRACT  1 

The mesolimbic dopaminergic system exerts a crucial influence on incentive processing. 2 

However, the contribution of dopamine in dynamic, ecological situations where reward rates 3 

vary, and decisions evolve over time, remains unclear. In such circumstances, current 4 

(foreground) reward accrual needs to be compared continuously with potential rewards that 5 

could be obtained by travelling elsewhere (background reward rate), in order to determine the 6 

opportunity cost of staying versus leaving. We hypothesised that dopamine specifically 7 

modulates the influence of background – but not foreground – reward information when 8 

making a dynamic comparison of these variables for optimal behaviour. On a novel foraging 9 

task based on an ecological account of animal behaviour (marginal value theorem), human 10 

participants were required to decide when to leave locations in situations where foreground 11 

rewards depleted at different rates, either in rich or poor environments with high or low 12 

background rates. In line with theoretical accounts, people’s decisions to move from current 13 

locations were independently modulated by both foreground and background reward rates. 14 

Pharmacological manipulation of dopamine D2 receptor activity using the agonist 15 

cabergoline significantly affected decisions to move on, specifically modulating the effect of 16 

background but not foreground rewards rates. In particular, when on cabergoline, people left 17 

patches in poor environments much earlier. These results demonstrate a role of dopamine in 18 

signalling the opportunity cost of rewards, not value per se. Using this ecologically derived 19 

framework we uncover a specific mechanism by which D2 dopamine receptor activity 20 

modulates decision-making when foreground and background reward rates are dynamically 21 

compared. 22 

 23 

Significance statement 24 

Many decisions, across economic, political and social spheres, involve choices to “leave”. 25 

Such decisions depend on a continuous comparison of a current location’s value, with that of 26 

other locations you could move on to. However, how the brain makes such decisions is 27 

poorly understood. Here, we developed a computerized task, based around theories of how 28 

animals make decisions to move on when foraging for food. Healthy human participants had 29 

to decide when to leave collecting financial rewards in a location, and travel to collect 30 

rewards elsewhere. Using a pharmacological manipulation, we show that the activity of 31 

dopamine in the brain modulates decisions to move on, with people valuing other locations 32 

differently depending on their dopaminergic state.  33 
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KEY WORDS  1 
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 3 

INTRODUCTION 4 

The mesolimbic dopaminergic system plays a crucial role in motivating behaviour towards 5 

goals and has been closely linked to neural circuits which convey information about 6 

incentives (Schultz and Dickinson, 2000; Haber and Knutson, 2010; Salamone and Correa, 7 

2012; Manohar et al., 2015; Hamid et al., 2016; Le Bouc et al., 2016). Several experiments 8 

across species have demonstrated a crucial role for dopamine in overcoming costs to obtain 9 

rewards (Salamone and Correa, 2012; Le Bouc et al., 2016; Syed et al., 2016; Le Heron et al., 10 

2018b) and for learning about rewarding outcomes to update future behaviour (Pessiglione et 11 

al., 2006; Schultz, 2016). Tasks probing dopamine function typically require an agent to 12 

make binary decisions between presented options, based on learning the contingent 13 

relationship between stimuli and rewards, or an integration of cost and reward information 14 

(Salamone et al., 2007; Schultz, 2016; Le Heron et al., 2018b). Yet, in real world settings 15 

many of our decisions are not binary choices between stimuli or actions. Moreover, animal 16 

models increasingly highlight that dopamine signals change gradually during ongoing 17 

behaviours as the rate of obtaining rewards changes, suggesting a need to examine the role of 18 

dopamine in decisions that are dynamic in nature (Howe et al., 2013; Hamid et al., 2016; 19 

Mohebi et al., 2019).  20 

 21 

One real-world, dynamic decision, is whether to stay in a current location or switch to an 22 

alternative to maximize reward collection (Pearson et al., 2014; Mobbs et al., 2018). Such 23 

decision-making requires a continuous comparison between the current (foreground) reward 24 

rate and the alternative (background) reward rate available in the environment (Rutledge et 25 

al., 2009; Kurniawan et al., 2011; Constantino et al., 2017). However, despite the clear 26 

ecological significance of such reward rate comparisons for decisions to move on, 27 

dopamine’s role in modulating these processes remains unclear.  28 

 29 

It has been proposed that tonic (slower-changing) dopamine signals encode information about 30 

environmental richness, and background reward rates (Niv et al., 2007). This is supported by 31 

voltammetry experiments linking slow changes in dopamine levels to a rodent’s reward 32 

environment (Hamid et al., 2016), and evidence of changes in motor vigour as dopamine state 33 
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 4 

varies in humans (Beierholm et al., 2013; Guitart-Masip et al., 2014; Le Bouc et al., 2016; Le 1 

Heron et al., 2018b). However this association has been questioned (Zenon et al., 2016), and 2 

it remains unknown whether the link between dopamine and background reward rates applies 3 

to more abstract – but ecologically crucial – decisions to move on.  4 

 5 

Models of foraging behaviour, derived in behavioural ecology, provide an ideal theoretical 6 

framework to investigate the relationship between dopamine and dynamic human decision-7 

making. Marginal Value Theorem (MVT), an influential foraging model, provides a formal 8 

framework for how animals decide to leave a location (“patch”) as rewards deplete, and 9 

travel to find rewards in another (Charnov, 1976; Stephens and Krebs, 1986). At its core is 10 

the notion that animals should continuously compare the instantaneous foreground reward 11 

rate with the average background reward rate, and an optimal forager should leave when the 12 

former falls below the latter (Charnov, 1976; Stephens and Krebs, 1986; Pearson et al., 13 

2014). Within MVT, these two rates independently impact when it is optimal to leave 14 

patches, making this dynamic decision framework ideal for testing if dopamine processes the 15 

background reward rate. However, despite the behaviour of a wide range of species following 16 

MVT predictions (Nonacs, 2001; Stephens et al., 2007), little is known about whether such 17 

principles extend to human behaviour (Hutchinson et al., 2008; Pearson et al., 2014; Mobbs 18 

et al., 2018; Gabay and Apps, 2019). 19 

 20 

We developed a novel ecologically derived decision-making task in which participants chose 21 

when to move on as foreground and background reward rates varied. We hypothesised that 22 

both young and old human participants would make leaving decisions in accordance with 23 

MVT, and that manipulating dopamine receptor activity using the D2-agonist cabergoline 24 

would selectively modulate the influence of background reward rate on decisions to move 25 

on.   26 

 27 

 28 

MATERIALS AND METHODS 29 

To test the hypothesis that manipulating dopamine availability would modulate the influence 30 

of background reward rates on patch-leaving decisions in humans we designed a novel 31 

foraging based task. In the first study, we highlight the validity of this task in healthy young 32 

participants. In the second, we manipulated dopamine availability pharmacologcally, testing 33 
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 5 

the influence of cabergoline administration on older adults in double-blind, placebo-matched, 1 

crossover design. 2 

 3 

Participants 4 

This study was approved by the local research ethics committee and written informed consent 5 

was obtained from all participants. 6 

 7 

Study ONE: 40 healthy volunteers (mean age 24, range 20-30) were recruited via a local 8 

database. One was subsequently excluded because of poor engagement with the task 9 

(identified at de-briefing).  10 

 11 

Study TWO: 30 healthy older (mean age 69, range 60-78) participants were recruited via a 12 

local database. Potential participants were screened for the presence of neurological, 13 

psychiatric or cardiovascular diseases, or for the use of medications that could interact with 14 

cabergoline, and excluded if any of these were present. One subject was subsequently 15 

excluded because a core metric of task performance (variance in leaving times per condition) 16 

fell outside three standard deviations of the mean variance, leaving 29 participants for 17 

analysis. 18 

 19 

Experimental design 20 

All participants were administered a computer based patch-leaving task in which they had to 21 

decide when to move on from a current patch. The task design independently manipulated 22 

background and foreground reward rates, based on the principles of MVT, a theory of 23 

optimal foraging behaviour (Charnov, 1976; Stephens and Krebs, 1986). The task was framed 24 

as a farming game in which people had to collect as much milk (reward) as possible – this 25 

would be sold at a market at the end of the game and their financial remuneration was 26 

according to the milk accrued. Participants spent a fixed time in each of two farms, collecting 27 

milk from fields of cows and making decisions of whether to move on (leave the current field 28 

for the next one) (Figure 1A). Moving on to the next field incurred a time cost (travel time) 29 

during which no milk could be collected.  30 

 31 

Participants aimed to maximise their overall reward returns by deciding how long to spend in 32 

these sequentially encountered patches, in which the current (foreground) reward rate 33 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 29, 2020. ; https://doi.org/10.1101/709857doi: bioRxiv preprint 

https://doi.org/10.1101/709857
http://creativecommons.org/licenses/by/4.0/


 6 

decreased in an exponential manner. The reward obtained so far in the patch was displayed as 1 

a bucket which continuously filled during patch residency.  2 

 3 
Figure 1. Patch leaving paradigm 4 
(A) Participants had to decide how long to remain in their current patch (field), in which reward (milk) was 5 
returned at an exponentially decreasing rate (displayed on the screen by continuous filling (white bar) of the 6 
silver bucket), before moving on to the next patch, which incurred a fixed cost of 6 seconds during which they 7 
could collect no reward. Their goal was to maximise milk return across the whole experiment. The 8 
instantaneous rate of bucket filling indicated the foreground reward rate, whilst the coloured frame indicated 9 
the distribution of different patch types, and thus the background reward rate. Participants were aware they 10 
had approximately 10 minutes in each environment, but were not shown any cues to indicate how much total 11 
time had elapsed. Following a leave decision, a clock ticking down the 6 second travel time was presented. (B) 12 
Three foreground patch-types were used, differing in the scale of filling of the milk bucket (low, medium and 13 
high yield), which determined the foreground reward rate. Two different background environments (farms) were 14 
used, with the background reward rate determined by the relative proportions of these patch-types. The rich 15 
environment contained a higher proportion of high yield fields, and a lower proportion of low yield ones, 16 
meaning it had a higher background reward rate than the green farm, which had a higher proportion of low yield 17 
fields. (C) According to MVT participants should leave each patch when the instantaneous reward rate in that 18 
patch (grey lines) drops to the background environmental average (gold and green dotted lines). Therefore, 19 
people should leave sooner from all patches in rich (gold dotted line) compared to poor (green dotted line) 20 
environments, but later in high yield compared to low yield patches. Crucially, these two effects are independent 21 
from each other. 22 
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 1 

Three patch-types were used, differing in the scaling factor of the reward function (S in 2 

equation one below), and corresponding to low (32.5), medium (45) and high (57.5) yield 3 

patches. The foreground reward rate, after T seconds in a patch, was determined by the 4 

equation: 5 

𝒈′(𝑻) = 𝑺 ∗ 𝒆*𝟎.𝟎𝟕𝟓∗𝑻   (1) 6 
 7 

The height of milk displayed in the bucket was proportional to the integral of equation (1) 8 

between time = 0 and T, and was updated with a frequency of 20Hz. Participants were not 9 

explicitly instructed which patch-type they were currently in – rather they inferred this by 10 

observing the rate of milk accumulation.  11 

 12 

The background reward rate was manipulated by varying the proportions of low, medium and 13 

high yield patches in “farms”, in a pseudorandomised fashion (Figure 1B). In the rich farm 14 

(environment), 50% of the patches were high yield, 30% medium and 20% low yield, whilst 15 

in the poor farm 50% of the patches were low yield, 30% medium and 20% high. Therefore, 16 

the background reward rate was higher in the rich environment. The background reward rate 17 

was continuously cued by the coloured border on the screen, indicating either the rich (gold 18 

border) or poor farm (green border). MVT demonstrates that, to maximise reward gain, 19 

participants should leave each field when the instantaneous reward rate in the field (from 20 

equation 1) drops below the background average reward rate for the farm. Simply, for a 21 

given patch-type, participants should leave earlier in the rich environment compared to the 22 

poor environment (Figure 1C).  23 

 24 

Procedure 25 

Before commencing the experiment participants were trained on the task elements using a 26 

structured explanation and practice session lasting ~20 minutes. Comprehension of the 27 

different elements was checked verbally before commencing the main experiment, with 28 

volunteers asked to explain what each display item meant. They were not given any 29 

instructions as to what optimal behaviour would be. However, they were told they would 30 

spend an equal amount of time on the two farm types (gold and green) and that they would 31 
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 8 

never run out of fields. Participants were seated in front of a desktop computer running 1 

Pyschtoolbox (pyschtoolbox.org) implemented within MATLAB (MathWorks, USA). 2 

 3 

When participants chose to leave their current patch (by releasing the spacebar they had been 4 

holding down), they incurred a fixed time cost of 6 seconds, described as the time to walk to 5 

the next patch. During this time a counter was displayed which ticked down the seconds until 6 

the next patch was reached. On arriving at the next patch participants were cued to “press and 7 

hold the spacebar”, and after doing this the screen display changed to show the new patch 8 

 9 

Study ONE: Participants were tested in a single session following training as above. 10 

  11 

Study TWO: This was conducted as a randomised, double-blind, placebo-controlled study. 12 

Participants were tested in two separate sessions, once following administration of a single 13 

dose of 1mg cabergoline (which stimulates post-synaptic D2 receptors (Brooks et al., 1998))  14 

and once following administration of an indistinguishable placebo tablet. An older population 15 

was chosen because they may have a relative dopaminergic deficit compared to younger 16 

people (Karrer et al., 2017) and thus be more sensitive to the intervention (Fallon et al., 17 

2019). The order of testing was counterbalanced across drug manipulation, gender and order 18 

of background foraging environment (rich-poor or poor-rich).  19 

 20 

Statistical analyses 21 

We used a hierarchical linear mixed effects model (fitlme in MATLAB, Mathworks, USA; 22 

maximum likelihood estimation method) as our primary analysis method for both 23 

experiments, to account for between and within subject effects. All fixed effects of interest 24 

(patch, environment and where applicable dopamine) and their interactions were included, 25 

and the random effects structure was determined by systematically adding components until 26 

the Akaike Information Criterion was minimised (Barr et al., 2013). Notably the signifncance 27 

of any effects in all these models were the same simpler models fitting only a random effect 28 

of subject. Significant model effects were also followed up with parametric tests (t-tests 29 

and/or Analysis of Variance). 30 

 31 

Study ONE: 32 
𝐿𝑒𝑎𝑣𝑖𝑛𝑔	𝑇𝑖𝑚𝑒 = 1 + 𝑝𝑎𝑡𝑐ℎ ∗ 𝑒𝑛𝑣 +(1|sub)+	(1|sub:patch)+	(1|sub:env)+(1|sub:patch:env)	33 
	34 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 29, 2020. ; https://doi.org/10.1101/709857doi: bioRxiv preprint 

https://doi.org/10.1101/709857
http://creativecommons.org/licenses/by/4.0/


 9 

Study TWO: 1 
𝐿𝑒𝑎𝑣𝑖𝑛𝑔	𝑇𝑖𝑚𝑒 = 1 + 𝑝𝑎𝑡𝑐ℎ ∗ 𝑒𝑛𝑣 ∗ 𝐷𝐴 +(1|sub)+	(1|sub:DA)	+	(1|sub:patch)	+	2 
(1|sub:env)+(1|sub:patch:env:DA)	3 
 4 
patch	=	foreground	reward	rate,	env	=	background	reward	rate,	DA	=	dopamine	state,	sub	=	subject.	5 
Fixed	effects	are	shown	in	blue,	random	effects	in	green. 6 
 7 

To avoid the potentially biasing effects of outlying data points on the primary analysis we 8 

excluded, subject by subject, any trials in which the leaving time was more than 3 standard 9 

deviations from that individual’s mean leaving time. Of note, this approach did not change 10 

the significance (or otherwise) of any reported results compared to analysis of the full data 11 

set.  12 

 13 
 14 
RESULTS 15 
 16 

Healthy human foragers are guided by MVT principles  17 

Within MVT, foreground and background reward rates should have independent effects on 18 

how long an individual remains in a patch. People should leave low yield patches sooner than 19 

high yield patches, and patches in rich environments sooner than patches in poor 20 

environments. In line with these hypotheses, in Study 1, we found a main effect of 21 

foreground reward, as well as a main effect of background reward, but no interaction on 22 

participants’ (N = 39) decisions about when to leave their current patch (Foreground: 23 

F(1,74.6) = 528, p < 0.0001 ; Background: F(1,37.5) = 40, p < 0.0001; Foreground × 24 

Background: F(1,1929) = 1.6, p = 0.2; Table 1A). Furthermore, behaviour conformed to 25 

predicted directionality of these effects, with higher patch yield, and poor compared to rich 26 

background environment, both leading to later patch leaving times (Figure 2A & 2B). 27 

 28 

Are healthy people optimal foragers?  29 

Although participants showed effects in the directions predicted by MVT, we wanted to 30 

know whether the magnitude of these effects conform to foraging theories, which stipulate 31 

the optimal time to leave each patch. Every individual showed a significant bias to remain 32 

longer across all patch types (across both environments) than optimal, on average leaving 33 

8.0s later than MVT predictions (t38 = 8.4, p < 0.001, Figure 2C & 2D). However, it has been 34 

noted that non-human primates also show such a bias to stay, but are close to optimal once 35 

controlling for this bias, e.g., by analysing the relative changes across conditions (Hayden et 36 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted April 29, 2020. ; https://doi.org/10.1101/709857doi: bioRxiv preprint 

https://doi.org/10.1101/709857
http://creativecommons.org/licenses/by/4.0/


 10 

al., 2011). Therefore for each participant we subtracted their own mean leaving time from 1 

each of their patch leaving decisions, and calculated the magnitude of the background (poor 2 

− rich) and foreground (mean change between each patch-type) reward rate effects (Figure 3 

2B & 2F).  4 

 5 

 6 
 7 

Figure 2. Healthy human foragers are guided by MVT principles. 8 
(A) Raw patch leaving times. Participants (N = 39) left patches later when the background environment was 9 
poor, compared to rich (p < 0.00001), and when patches had higher, compared to lower yields (p < 0.00001), 10 
with no interaction between patch-type and background environment (p = 0.2). (B) These effects of changing 11 
reward parameters were in the predicted direction, with participants leaving on average 4.7s later as patch-type 12 
varied, and 3.6s later in poor compared to rich environments. There was more variation between individuals in 13 
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the effects of changing background, compared to foreground, reward rates. Dashed lines show predicted (MVT) 1 
effects of changing reward rate on leaving time. (C) & (D) Participants showed a bias to remain in patches 2 
longer than predicted by MVT. Mean leaving time for each environment, collapsed across patch-type is shown 3 
in (C), whilst (D) demonstrates mean leaving times for each patch-type in the rich environment. (E) The 4 
foreground (patch) reward rate at which participants chose to leave each patch varied as a function of 5 
background environmental richness (rich vs poor). (F) The magnitude of this background environment effect 6 
was close to optimal (as predicted by MVT). Error bars are ± SEM. 7 
 8 

MVT makes two core predictions about behaviour as foreground and background reward 9 

rates change, which can be used to assess optimality of foraging behaviour (independent to 10 

any systematic bias to remain in patches longer). Firstly, in the background environments 11 

(poor vs rich), the foreground reward rate at leaving a given patch-type should differ by the 12 

same amount. Secondly, foragers should adjust their leaving time as patch quality varies, 13 

such that the instantaneous reward at leaving is the same in each patch (for a given 14 

background). That is within an environment, each patch should be left, regardless of its yield, 15 

when the rate at which milk is being accrued is the same. 16 

 17 

Strikingly, participants varied their leaving times as background environment changed, such 18 

that the difference in reward rate between the two conditions was not significantly different 19 

from the predicted optimal difference (mean difference in reward rate at leaving = 3.33, 20 

actual difference between environments if behaving optimally = 3.30, t38 = 0.07, p = 0.95, 21 

Figure 2E & 2F). In contrast, the foreground reward rate at patch leaving did vary across 22 

patch type (F(1.5,42) = 6.73,  p = 0.005, RM-ANOVA). Although the instantaneous reward 23 

rate on leaving low and medium yield patches did not differ (mean difference = 0.06, t37 = 24 

0.2, p = 1), participants remained in high yield patches until the instantaneous reward rate 25 

was lower compared to both medium yield (mean difference = 1.1, t37 = 3.8, p = 0.002), and 26 

low yield patches (mean difference = 1.1, t37 = 2.6 , p = 0.04; Figure 2E). 27 

 28 

In summary, across participants’ sensitivity to changes in the foreground were not quite 29 

optimal, but on average participants adjusted leaving times in response to changes in the 30 

background environment in a manner that closely matched the actual changes in background 31 

reward rate. They also adjusted their leaving behaviour such that the reward rate at leaving 32 

did not differ between low and medium yield patches, although they tended to leave high 33 

yield patches later (i.e., after patch reward rate had dropped further). Thus, human behaviour 34 

on this task broadly conformed to MVT principles, and was close to being optimally 35 
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influenced by background and foreground reward rates, although people were not precisely 1 

optimal. This is despite no instructions of what pattern of behaviour would maximise rewards 2 

in the task. 3 

 4 

Study ONE  5 

A. PE T stat F stat DF* P  

Intercept 18.4 19.3 371 38.9 <0.00001  

Patch (P) 3.9 23.0 528 74.6 <0.00001  

Environment 
(E) 

1.8 6.3 40 37.5 <0.00001  

P × E 0.1 1.3 1.6 1928 0.2  

 6 
Study TWO 7 
B. PE T stat F stat DF* P  
Patch (P) 3.63 20.6 425 57.3 <0.00001  
Environment 
(E)  

0.76 4.1 16.9 28.1 0.0003  

Dopamine 
(D) 

-0.34 -1.37 1.86 29.3 0.18  

E × D -0.18 -2.29 5.22 200.1 0.023  
P × E 0.01 0.17 0.03 197.1 0.86  
P × D -0.09 -1.14 1.29 186.6 0.26  
P × E × D -0.04 -0.56 0.31 186.4 0.58  

 8 
Table 1. Linear mixed effects models from each experiment  9 
* DF were calculated using the Satterthwaite correction method. 10 
 11 

Cabergoline alters the use of background reward information to guide patch leaving 12 

Having demonstrated that healthy human patch leaving behaviour is aligned with the 13 

predictions of MVT, particularly in response to changes in background reward rate, we next 14 

examined whether dopamine modulates the effect of background reward rate (environment) 15 

on patch leaving behaviour. Using a within-subjects design, in Study 2, leaving times for 29 16 

healthy older people on placebo or following administration of the D2 receptor agonist 17 

cabergoline were analysed using a LME model. 18 

 19 

Firstly, the main effects reported in Study 1 were replicated. Both foreground (patch) and 20 

background (environment) reward rates significantly influenced patch leaving time, and there 21 

was no interaction between the two (Foreground: F(1,57) = 425, p < 0.0001; Background: 22 

F(1,28) = 16.9, p = 0.0003; Foreground x Background: F(1,197) = 0.03, p = 0.86; Figure 3A 23 
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and 3B). Furthermore, the magnitude of effect of both background and foreground reward 1 

rate on leaving time did not significantly differ between the young and older groups [mean 2 

difference (young – old) Foreground = 0.2s, t66 = 0.49, p = 0.62; mean difference (young – 3 

old) Background = 1.2s, t66 = 1.77, p = 0.08].  4 

 5 

There was a significant interaction between drug state and the effect of background reward 6 

rate on leaving time (F(1,200) = 5.22, p = 0.023, Table 1B). When ON cabergoline, people 7 

were less sensitive to the difference between poor and rich environments than when OFF 8 

drug even though they still showed a significant effect of background environment both ON 9 

and OFF the drug (Figure 3A & 3B). Post-hoc analysis suggests this interaction was driven 10 

by people leaving patches in the poor environment much earlier ON cabergoline than OFF, 11 

but only leaving patches in the rich environment slightly earlier ON compared to OFF (mean 12 

difference (OFF – ON) poor environment = 1.2s, t28 = 1.75, p = 0.009; mean difference (OFF 13 

– ON) rich environment = 0.3s, t28 = 0.59, p = 0.56; Figure 3C). 14 

 15 

We hypothesised that modulating dopamine levels would not alter the effect of foreground 16 

reward rate on patch leaving, if manipulating tonic levels predominantly affects the 17 

processing of average reward rates. In line with this hypothesis, there was no significant drug 18 

× patch interaction (F(1,187) = 1.29, p = 0.26): cabergoline did not lead to a significant 19 

change in the way participants used foreground reward rate information to guide leaving 20 

decisions (Figure 3B). There was also no statistically significant difference in leaving times 21 

overall on drug compared to placebo (mean difference = 0.73s, F(1,29) = 1.86, p = 0.18), nor 22 

did the reward rate at leaving vary as a function of drug state (mean difference = 0.39, t28 = 23 

0.8, p = 0.41).  24 

 25 

As would also be predicted within MVT, there was no interaction in leaving times between 26 

foreground and background reward rate. Moreover, the observed drug × background reward 27 

rate interaction was present across all patch types, with no 3-way interaction (F(1,186) = 28 

0.31, p = 0.58). All of these results remain significant after controlling for weight, height and 29 

BMI. Although the experiment was designed to minimise the effects of any learning, because 30 

the dopaminergic manipulations could in theory lead to differential learning effects between 31 

states we analysed the data from experiment two for session or order effects. The inclusion of 32 

session (1st or 2nd) worsened model fit (change in BIC 7.6), and the parameter estimate for 33 
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session effect was not significant (PE=-0.16, F(1,29) = 0.36, p = 0.56). Similarly, including 1 

order (the session * drug interaction) also worsened model fit (change in BIC 14.2) and again  2 

 3 

 4 

 5 

Fig 3. Cabergoline alters use of background reward information to guide patch leaving 6 

(A) Mean patch leaving times for each patch-type, split by environment and drug state. (B) ThereAAnfinanf was 7 
a significant interaction between drug and background (environment) reward rate on leaving time, with a 8 
reduced effect of background environment ON cabergoline compared to OFF (p = 0.023). Green dotted lines in 9 
(A) and (B) represent the predicted magnitude of effect of the manipulation, based on the marginal value 10 
theorem. (B) In contrast, there was no significant interaction between drug and the effect of foreground (patch) 11 
reward rate on patch leaving (p = 0.26). (C) Raw leaving times for the two groups, in rich (gold) and poor 12 
(green) environments (collapsed across patch-type). The reduced effect of drug seemed mainly driven by 13 
participants ON cabergoline leaving patches earlier – and therefore when the patch reward rate was higher – in 14 
poor environments. (D) There was no main effect of cabergoline on either the instantaneous reward rate at patch 15 
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leaving, or on raw leaving times (not shown) when collapsing across environments. N = 29, comparisons are 1 
within-subject, error bars are ± SEM. 2 
 3 

this term was not significant (PE=0.87, F(1,29) = 1.4, p = 0.25). Therefore session and order 4 

effects were not included in the final model. The inclusion of these effects did not change the 5 

significance (or otherwise) of the other model terms. 6 

 7 

Could participants be paying less attention when off medication? We analysed leaving time 8 

variability to examine whether participants’ decisions were more noisy as a function of drug 9 

state. There was no significant difference in the variance of each participant’s decisions 10 

between placebo and cabergoline conditions (Mean Difference PLAC-CAB = 0.31, t28 = 1.34, p = 11 

0.19 ). Therefore cabergoline had a specific rather than general effect on patch leaving 12 

behaviour, altering only the influence of background reward rate on leaving time.  13 

 14 

 15 

DISCUSSION 16 

When to move on and leave a specific rewarding activity or location is an essential decision 17 

problem for animals and humans alike. Here, we show that humans – both young and old – 18 

make dynamic foraging decisions that, although not optimal, broadly conform to ecological 19 

principles captured by Marginal Value Theorem (MVT) (Charnov, 1976; Stephens and 20 

Krebs, 1986). Furthermore, dopaminergic D2 receptor activity may play a crucial role in 21 

modulating such decisions. Specifically, the findings support the view that dopamine plays an 22 

important role in signalling the average value of alternative locations, influencing dynamic 23 

decisions of when to move on. Administration of cabergoline altered the effect of 24 

background – but not foreground – reward rate on patch leaving times. In particular, this 25 

interaction between cabergoline and background reward rate was driven mainly by people 26 

leaving all patches in poor environments earlier. 27 

 28 

The results provide new evidence for the role of dopamine in decision-making. Manipulation 29 

of dopamine levels modulated the influence of background reward rate on dynamic decisions 30 

about when to switch behaviour. Specifically, ON cabergoline people tended to leave all 31 

patch-types in the poor environment earlier than when OFF drug. In contrast, in the rich 32 

environment, there was a much smaller change in leaving times between the ON and OFF 33 
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drug states. The drug manipulations used here putatively alter tonic dopamine levels (Brooks 1 

et al., 1998), a component of the dopaminergic neuromodulatory system which has been 2 

ascribed, in the context of motor responses, a role in signalling background reward rates (Niv 3 

et al., 2007; Hamid et al., 2016). Of course, in this study we were not able to measure firing 4 

rates of dopamine neurons. Nevertheless, some existing evidence suggests tonic dopamine 5 

levels encode information about background reward rate, and therefore the opportunity cost 6 

(alternatives that are foregone) of chosen actions (Niv et al., 2007; Guitart-Masip et al., 7 

2014). However, others have argued that they encode a more specific signal for the value of a 8 

current action, independent of environmental context (Zenon et al., 2016). In addition, it has 9 

been argued that tonic dopamine signals the value of exploring alternative options.  10 

 11 

It is important to appreciate though that much of the previous research in this area has used 12 

binary choices, which may not always reflect real-world problems. Furthermore, in many 13 

experiments the value of exploring or exploiting are directly opposed and have an 14 

instrumentally predictive value of obtaining an immediate (foreground) reward (Daw et al., 15 

2006; Kayser et al., 2015; Westbrook and Frank, 2018). However, in ecological settings, 16 

choices to “leave” a patch and explore are not choices between two stimuli with a predictive 17 

value, but instead involve travelling to obtain rewards elsewhere, and the rewards available in 18 

a patch can be orthogonal to the environment one is in. Using a novel experimental paradigm, 19 

based on theories of animal foraging, we show the effect of D2 activity specifically on 20 

background reward rate, in a potentially more ecologically important decision process. These 21 

findings suggest dopamine is at the core of how foraging decisions are made. Furthermore, 22 

the specificity of cabergoline for D2 receptors suggests D2-mediated pathways may be of 23 

particular importance for signalling such contextual reward information (Beaulieu and 24 

Gainetdinov, 2011).  25 

 26 

What mechanisms might drive such changes? Recently it has been suggested that foraging 27 

problems share parallels with evidence accumulation, where the foreground reward rate 28 

serves as the evidence accumulating towards a decision bound, or threshold, set by the 29 

background environment. When the foreground rate reaches that threshold it triggers a 30 

decision to leave (Davidson and El Hady, 2019). Our results suggest that dopamine signals 31 

carry information about when to leave, by setting a threshold for the foreground reward rate, 32 

that is dependent on the richness of the environment. Thus, patches should be left in richer 33 

environments sooner, and at a higher foreground reward-rate, than in poor environments 34 
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because less evidence – or a higher reward rate – is needed in order to leave a patch. Such 1 

effects are consistent with the absence of an interaction between foreground and background 2 

reward rates that we find in healthy young participants, that is also a key principle of MVT. 3 

When D2 receptors were stimulated (ON state), people left patches earlier (at a higher 4 

foreground reward rate) in the poor environment, consistent with an increase in perceived 5 

richness of the environment. Thus, whilst the average reward rate may increase the vigour of 6 

movements or exploratory binary choices, in more abstract, ecological decision settings it 7 

serves to increase the perceived environmental richness, setting a higher threshold reward 8 

rate of when to leave.  9 

 10 

Importantly, these results appear to be driven by changes in sensitivity to the background 11 

reward rate, rather than alternative explanations.. Firstly, we used a continuously changing 12 

patch gain function where rewards were constantly accrued  – rather than stepped changes as 13 

has been used in previous studies (Hutchinson et al., 2008; Constantino and Daw, 2015). This 14 

approach has the advantage of minimising the use of simple heuristics to guide decisions 15 

while having the statistical advantage of leaving the dependent variable approximately 16 

normally distributed. Secondly, variance in patch leaving times did not change as a function 17 

of drug state. This makes it unlikely the results can be explained by a confounding factor 18 

such as reduced attention. Thirdly, as participants were explicitly informed of the current 19 

environment in which they were in, and had experienced the different background reward 20 

rates in a training phase, it is unlikely that such effects could be explained by differences in 21 

learning as a function of drug.  22 

 23 

Our results highlight that human behaviour in an ecologically-derived decision-making task 24 

is closely described by a model based on the principles of MVT (Charnov, 1976; Pearson et 25 

al., 2014). This accords with earlier field work in behavioural ecology (Stephens and Krebs, 26 

1986; Pearson et al., 2014) and anthropology (Smith et al., 1983; Metcalfe and Barlow, 1992) 27 

literatures, and more recent work beginning to explore the neural basis of such decisions 28 

(Hayden et al., 2011). In the current study, the use of a foraging framework informed by 29 

MVT enabled us to dissociate the effects of reward rates on different time scales, in a way 30 

that is not possible in reinforcement-learning based manipulations of average reward rates 31 

(Niv et al., 2007; Mobbs et al., 2018). In most reinforcement-based tasks examining 32 

foreground/background reward rates, the two are not independent. Firstly, receipt of an 33 

instrumental reward instantaneously increases average reward rate. Secondly, average reward 34 
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rate influences the probability of receiving an instantaneous reward. In contrast, In a patch-1 

leaving framework, the current foreground rate – the current value of a patch - is always 2 

declining, independent of the environment, and reward accrued in the current patch does not 3 

inform a participant about the background rate. Thus, the study design allows independent 4 

comparison of the effects of dopamine modulation on two different components of reward, 5 

compared to those used in reinforcement-learning based tasks. 6 

 7 

Grounding the experimental design within the framework of MVT also allowed for a direct 8 

comparison of behaviour against optimal predictions, that have previously shown to hold in 9 

animals both freely foraging in the wild, and within controlled experimental setups (Krebs et 10 

al., 1977; Hayden et al., 2011). Here, participants utilised the dissociable aspects of their 11 

reward environment to adjust patch leaving behaviour in close to optimal fashion. This 12 

provides evidence for a common decision principle guiding foraging-style behaviour in both 13 

humans and other animals, and allows further investigation of the specific neural mechanisms 14 

underlying it. It highlights the importance of considering reward – not as a single construct – 15 

but rather as a multi-dimensional reinforcer, with distinct effects occurring across different 16 

time scales, underpinned by dissociable neural and neuromodulatory mechanisms (Pearson et 17 

al., 2014).  18 

 19 

From a clinical perspective these findings may be significant when considering mechanisms 20 

underlying common disorders of motivated behaviour, such as apathy (Le Heron et al., 2019). 21 

Apathy is often associated with disruption of mesolimbic dopaminergic systems (Santangelo 22 

et al., 2015), and, at least in some cases can be improved with D2/D3 receptor agonists 23 

(Adam et al., 2013; Thobois et al., 2013). Accumulating evidence demonstrates altered 24 

reward processing in patients with apathy (Strauss et al., 2014; Le Heron et al., 2018a), and it 25 

is plausible – although as yet untested – that chronic underestimation of background 26 

environment reward leads to a state where it is never “worth switching” from a current 27 

activity, even if this activity is very minimal. Future work could profitably explore this 28 

hypothesis.  29 

 30 

Recent theoretical accounts of decision-making have called for a shift to more ecologically 31 

derived experiments to investigate the mechanisms of this fundamental neural process 32 

(Pearson et al., 2014; Mobbs et al., 2018). The current results highlight the utility of such an 33 

approach, demonstrating a role for D2 activity in signalling the average background reward 34 
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rate during foraging. This demonstrates the applicability of a model validated in wild and 1 

experimental animal populations to human behaviour. It links basic ecological models of 2 

animal behaviour to a mechanistic understanding of human decision making, highlighting the 3 

specific influence of dopaminergic systems as people decide when to move on as they pursue 4 

rewards in their environment.  5 

 6 
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 6 

FIGURE LEGENDS 7 

Figure 1. Patch leaving paradigm 8 
(A) Participants had to decide how long to remain in their current patch (field), in which reward (milk) was 9 
returned at an exponentially decreasing rate (displayed on the screen by continuous filling (white bar) of the 10 
silver bucket), before moving on to the next patch, which incurred a fixed cost of 6 seconds during which they 11 
could collect no reward. Their goal was to maximise milk return across the whole experiment. The 12 
instantaneous rate of bucket filling indicated the foreground reward rate, whilst the coloured frame indicated 13 
the distribution of different patch types, and thus the background reward rate. Participants were aware they 14 
had approximately 10 minutes in each environment, but were not shown any cues to indicate how much total 15 
time had elapsed. Following a leave decision, a clock ticking down the 6 second travel time was presented. (B) 16 
Three foreground patch-types were used, differing in the scale of filling of the milk bucket (low, medium and 17 
high yield), which determined the foreground reward rate. Two different background environments (farms) were 18 
used, with the background reward rate determined by the relative proportions of these patch-types. The rich 19 
environment contained a higher proportion of high yield fields, and a lower proportion of low yield ones, 20 
meaning it had a higher background reward rate than the green farm, which had a higher proportion of low yield 21 
fields. (C) According to MVT participants should leave each patch when the instantaneous reward rate in that 22 
patch (grey lines) drops to the background environmental average (gold and green dotted lines). Therefore, 23 
people should leave sooner from all patches in rich (gold dotted line) compared to poor (green dotted line) 24 
environments, but later in high yield compared to low yield patches. Crucially, these two effects are independent 25 
from each other. 26 
 27 

Figure 2. Healthy human foragers are guided by MVT principles. 28 
(A) Raw patch leaving times. Participants (N = 39) left patches later when the background environment was 29 
poor, compared to rich (p < 0.00001), and when patches had higher, compared to lower yields (p < 0.00001), 30 
with no interaction between patch-type and background environment (p = 0.2). (B) These effects of changing 31 
reward parameters were in the predicted direction, with participants leaving on average 4.7s later as patch-type 32 
varied, and 3.6s later in poor compared to rich environments. There was more variation between individuals in 33 
the effects of changing background, compared to foreground, reward rates. Dashed lines show predicted (MVT) 34 
effects of changing reward rate on leaving time. (C) & (D) Participants showed a bias to remain in patches 35 
longer than predicted by MVT. Mean leaving time for each environment, collapsed across patch-type is shown 36 
in (C), whilst (D) demonstrates mean leaving times for each patch-type in the rich environment. (E) The 37 
foreground (patch) reward rate at which participants chose to leave each patch varied as a function of 38 
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background environmental richness (rich vs poor). (F) The magnitude of this background environment effect 1 
was close to optimal (as predicted by MVT). Error bars are ± SEM. 2 

 3 

Fig 3. Cabergoline alters use of background reward information to guide patch leaving 4 

(A) Mean patch leaving times for each patch-type, split by environment and drug state. (B) There was a 5 
significant interaction between drug and background (environment) reward rate on leaving time, with a reduced 6 
effect of background environment ON cabergoline compared to OFF (p = 0.023). Green dotted lines in (A) and 7 
(B) represent the predicted magnitude of effect of the manipulation, based on the marginal value theorem. (B) 8 
In contrast, there was no significant interaction between drug and the effect of foreground (patch) reward rate on 9 
patch leaving (p = 0.26). (C) Raw leaving times for the two groups, in rich (gold) and poor (green) 10 
environments (collapsed across patch-type). The reduced effect of drug seemed mainly driven by participants 11 
ON cabergoline leaving patches earlier – and therefore when the patch reward rate was higher – in poor 12 
environments. (D) There was no main effect of cabergoline on either the instantaneous reward rate at patch 13 
leaving, or on raw leaving times (not shown) when collapsing across environments. N = 29, comparisons are 14 
within-subject, error bars are ± SEM. 15 
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