1 Conformational Dynamics of Nonenveloped Circovirus Capsid to the Host Cell Receptor

- 2 Jiarong Li^{1,2¶}, Jinyan Gu^{1,2¶}, Shengnan Wang¹, Cui Lin², Jianwei Zhou², Jin Lei¹ and Jiyong Zhou^{2,3*}
- ³ ¹MOE International Joint collaborative Research Laboratory for Animal Health and Food Safety, Institute of
- 4 Immunology, Nanjing Agricultural University, Nanjing, China.
- ⁵ ²MOA Key Laboratory of Animal Virology, Zhejiang University, Hangzhou, China.
- ⁶ ³Collaborative Innovation Center and State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The
- 7 First Affiliated Hospital, Zhejiang University, Hangzhou, China.
- 8 [¶]Two authors are equal to this work

9 *Correspondence

10 jyzhou@zju.edu.cn(J.Y.Z)

11 Abstract

12	Circovirus, comprising one capsid protein, is the smallest nonenveloped virus and induces lymphopenia. Circovirus
13	can be used to explore the cell adhesion mechanism of nonenveloped viruses. We developed a single-molecule
14	fluorescence resonance energy transfer (smFRET) assay to directly visualize the capsid's conformational feature. The
15	capsid underwent reversible dynamic transformation between three conformations. The cell surface receptor heparan
16	sulfate (HS) altered the dynamic equilibrium of the capsid to the high-FRET state, revealing the HS binding region.
17	Neutralizing antibodies restricted capsid transition to a low-FRET state, masking the HS binding domain. The lack of
18	positively charged amino acids in the HS binding site reduced cell surface affinity and attenuated virus infectivity via
19	conformational changes. These intrinsic characteristics of the capsid suggested that conformational dynamics is critical
20	for the structural changes occurring upon cell surface receptor binding, supporting a dynamics-based mechanism of
21	receptor binding.
22	
23	Importance

Viral proteins were commom working as ligand to interacte with cell surface glycosaminoglycan receptors to achieve the virus attachment, during which the conformational dynamics of the protein ligand are also vital for the binding properties. In this study, PCV2 capsid and heparin sulfate were used to study the protein conformational dynamics of nonenveloped and icosahedral circovirus capsid during triggering to cell surface receptor. we demonstrated the PCV2 capsid could acts as a dynamic machine, spontaneously adopting multiple conformations with reversible interconversion and intrinsic conformational features could be regulated by glycosaminoglycan receptors and neutralizing antibodies. These increased our understanding of the mechanism by which nonenveloped virus attach to cells.

32 INTRODUCTION

33	Virus attachment to the host cell surface is the initial step in establishing effective infection. The host cell membranes
34	are abundantly decorated with proteoglycans, which comprise a core protein and several types of covalently attached
35	glycosaminoglycan chains (GAGs) that are capable of binding protein ligands (1, 2). GAGs include heparan sulfate (HS),
36	chondroitin sulfate (CS), and keratan sulfate, which are characterized by disaccharide repeating units that form
37	the blocks of the polysaccharides (3-5). Epimerization and terminal sulfation are the most common modification patterns
38	during the processing of GAG chains, and are also vital for the binding properties of the ligands (6, 7). Among these
39	GAGs, HS is utilized by numerous viruses for attachment to cell surfaces, such as the hepatitis C virus (8), human
40	enterovirus 71(9), rabies virus(10), human papillomavirus type 11(11), porcine epidemic diarrhea virus(12), and porcine
41	circovirus type 2 (PCV2)(13). The canonical HS binding motif has been identified as "XBBXBX" or "XBBBXXBX"
42	("B" represents a basic amino acid and "X" represents a neutral/hydrophobic amino acid) through molecular
43	modeling based on authenticated HS binding protein receptors (14). However, the regulation of virus-ligand
44	conformational features and the mechanism of binding to HS are unknown.
45	Since 1996, single-molecule Fluorescence Resonance Energy Transfer (smFRET) has been used to analyze replication,
46	transcription, translation, RNA folding, non-canonical DNA dynamics, and protein conformational changes (15-17). The
47	envelope glycoprotein of enveloped viruses is a membrane fusion machine that promotes viral entry into host cells. To
48	date, the conformation dynamics of the envelope glycoproteins of HIV-1 and flu virus have been analyzed. The
49	glycoprotein gp120 of the HIV-1 envelope was shown to have three distinct pre-fusion conformations, whose relative
50	occupancies were remodeled by receptor CD4 and antibody binding (18). In addition, the hemagglutinin of the flu virus
51	envelope was revealed to undergo reversible exchange between the pre-fusion and two intermediate conformations (19).
52	However, for the numerous nonenveloped viruses, the direct visualization and conformational dynamic assessment of the
53	capsid remain unreported.

54	Circovirus is the smallest nonenveloped icosahedral virus, with a circular, single-stranded genomic DNA, which infects
55	a variety of species ranging from animals to plants with different pathogenicities (20). PCV2, with an unique structural
56	capsid protein, is a representative circovirus that causes significant morbidity and mortality in swine (21-23). The crystal
57	structure of the PCV2 virus-like particle (VLP) revealed that the capsid protein comprises two β -sheets, each containing
58	four antiparallel β -strands, which were labeled as B to I (24). The residues between the β -strands form eight loops,
59	among which the CD and C-terminal loops are exposed on the VLP exterior and can accommodate the insertion of short
60	foreign peptides (25-27). The capsid protein was also reported to have the neutralizing and non-neutralizing epitope sites,
61	and the putative canonical HS binding motif ⁹⁸ IRKVKV ¹⁰³ (13, 28, 29). Recently, Dhindwai et al. also proposed the
62	existence of multiple weak binding sites that interact with HS of the PCV2 VLP surface. However, as the simplest
63	nonenveloped virus, in which the capsid is only composed of one protein, what are conformational features of the
64	circovirus capsid during binding to the cell surface receptor? Does the binding motif move toward to the exterior face of
65	the virus particle to achieve the interaction with the GAG molecules? What is the key factor of the motif and the GAGs
66	that facilitate the interaction by adjusting of the capsid's conformational behavior? In the present study we aimed to
67	answer some of these using the PCV2 Capsid and HS as a model to explore the conformational dynamics of
68	nonenveloped viruse invasion of cells.
69	In the present study, we developed an smFRET-imaging assay to detect the conformational dynamics of the virus
70	capsid protein (Figure 1a). Our results revealed that the Capsid worked in a dynamic manner, undergoing spontaneous
71	and reversible transitions between three distinct conformations. The binding of the GaGs and that of neutralizing
72	antibodies shifted the dynamic equilibrium associated with the virus binding to the host cells. Both the negatively and
73	positively charged distribution of the receptor and the binding motif peptides played a critical role in the capsid's
74	conformational dynamics, and ultimately influenced the affinity for the cell surface receptor. The allostery of the capsid

75 occurs during direct interactions with the GAG molecules might provide a strategy by which the circovirus strengthen its

76 attachment to the host cells, ultimately resulting in infection.

77

78 **RESULTS**

79 Site-specific Attachment of Fluorophores to the Capsid Protein

80	To develope an smFRET-imaging assay to visualize the conformational dynamics of the PCV2 capsid (Figure 1a), we
81	attached the Cy5 fluorophore (acceptor fluorophore) at position ¹⁰⁸ Cysteine in the DE loop of the capsid(Figure S1a)(30).
82	To install the donor fluorophore, we inserted the A1 Tag peptide (GDSLDMLEWSLM) at position ⁸⁰ Leucine of the CD
83	Loop or at position ²³³ Proline of the C-terminal Loop, which are relatively non-conserved regions of capsid. Thus, the
84	Alexa 547 fluorophore was labeled using holo-acyl carrier protein synthetase (ACPs), which catalyzed serine
85	hydroxylation of the A1 peptide and the 4'-phosphopantetheine moiety of CoA to form a phosphodiester bond (31). The
86	Avi-peptides were attached at the C-terminus of the capsid to accomplish biotinylation processing via the BirA
87	catalyzation (Figure S1a) (32). According to previously reported structure of the capsid, these two designed models,
88	termed Capsid 3XA (3XA) and Capsid 3XC (3XC), were used to demonstrate that the distances between the donor and
89	acceptor fluorophores was 68 Å (3XA) and 59 Å (3XC) (Figure 1b), which satisfied the demand of the smFRET
90	experiment (30). Western blotting and typhoon assays confirmed Cy5 was co-localized with Alexa 547, demonstrating
91	that 3XA and 3XC were specifically labeled with fluorophore pair and biotin (Figure S1b).
92	After optimization of the labeling reaction in vitro, the labeling efficiencies of Alexa 547 and Cy5 were approximately
93	45% and 71%, respectively, indicating that approximately 32% of molecules would be suitable for smFRET analysis
94	using total internal reflection fluorescence (TIRF) microscopy. To assess whether the secondary structure of the capsid
95	was disturbed by the insertion of exogenous peptides, we performed a circular dichroism (CD) assay of soluble wild-type
96	(WT) capsid, 3XA, and 3XC over the spectrum of 200–300 nm. The CD spectrum curves of 3XA and 3XC were
97	identical to that of the WT capsid (Figure 1c), indicating that the insertion of exogenous peptides in 3XA and 3XC had a

98	negligible effect on the protein secondary structure. Using transmission electron microscopy, we also observed that the
99	3XA and 3XC monomers could self-assembly into a hexagonal virus-like particle with a diameter of almost 17 nm
100	(Figure 1d), similar to the PCV2 virion, indicating that the intermolecular interaction of the capsid monomers was still
101	viable. Taken together, 3XA and 3XC, with short amino acid modifications, retained the intrinsic structural features
102	similar to the WT capsid, and could also be imaged using TIRF microscopy.
103	Capsids Spontaneously Interconvert between Three Distinct Conformations
104	To disperse the capsid into monomer and minimize the disturbance of oligomerization to imaging on the TRIF
105	microscopy, we treated 3XA and 3XC with imaging buffer containing different concentrations of NaCl for 30 min. The
106	capsids treated with 1500 mM NaCl were immobilized on the covered quartz microscope slide in a single molecule
107	state (Figure S1c). We first visualized the conformational landscape of 3XA and 3XC, the smFRET trajectories of 3XA
108	displayed a spontaneous reversible model with fluctuations between three conformations characterized by distinct
109	FRET values of approximately 0.29, 0.48, and 0.68. Similarly, 3XC exhibited a conformational distribution with
110	distinct FRET values of approximately 0.39, 0.59, and 0.78 (Fig. 2a). Both the smFRET trajectories displayed a
111	predominant low-FRET state with a low frequency of transitions to the intermediate- and high-FRET states,
112	corresponding to 77% and 79% low-FRET state occupancies in the histograms of the 3XA and 3XC FRET trajectories,
113	respectively (Figure 2b). The FRET values of the low-FRET state were consistent with the 68Å and 59Å
114	inter-fluorophore distance predicted based on the structure of the of 3XA and 3XC. Moreover, a direct
115	transition between the low- and high-FRET states of the capsid was hardly observed (Figure 2a). Collectively, these
116	data demonstrated that the low-FRET state was the predominant conformation for 3XA and 3XC, and the intermediate
117	FRET state could be essential for the transition between low- and high-FRET states.
118	Binding to Heparan Sulfate Alters the Conformational features of the Capsid

119 Heparan sulfate (HS) is the cell surface receptor for PCV2 attachment (13). The negative charges on the GAGs are

120	acquired through N- and O-sulfation of the carbohydrate moieties and are crucial for their interactions (33). To determine
121	if the conformational equilibrium of the capsid changed during binding to cell receptor HS, we performed smFRET
122	analysis of 3XA and 3XC with the addition of heparin, an analog of heparan sulfate with a similar structure to HS's
123	sulfated domain. Compared with the smFRET data of free 3XA and 3XC, the trajectories of capsids with heparin
124	exhibited a high-FRET-preponderant model and intermittently dropped to an intermediate state or low state for both 3XA
125	and 3XC. The occupancy of the high-FRET state was significantly elevated to ~70% from ~6.3%, and the occupancy of
126	the low-FRET state significantly decreased to ~4% from ~77% (Figures 2, 3A and S2A; $P < 0.001$), demonstrating that
127	the high-FRET state is the preponderant state of the smFRET trajectory for the capsid-heparin binding complex.
128	Interestingly, in contrast to the capsid-heparin complexes, the mixture of capsid and De-N-sulfated acetylated heparin
129	(DeN heparin, a highly sulfated HS analog without N-sulfation used to represent the incompletely negative charged HS)
130	exhibited an marked increase in the intermediate FRET state (47%) and high-FRET state (37.7%), as well as a decrease
131	in the low-FRET state (Figures 2B, 3B and S2B). However, as a negative control, a mixture of capsid and chondroitin
132	sulfate A (CSA, another member of the cell surface glycosaminoglycans but does not act as a binding receptor during the
133	PCV2 infection) exhibited a similar conformational distribution to the free capsid (Figures 2, 3c and S2c). These findings
134	demonstrated that the binding of negatively charged heparin altered the conformational features of the capsid and that the
135	high-FRET state of the capsid is the main conformation during the HS interaction.
136	To verify whether the changes in capsid conformation affected the affinity to host cells, we performed GAGs
137	competitive binding experiments with PK-15 and 3D4/31 cells. The results of immunoblotting and quantitative real-time
138	PCR (qPCR) assays showed that both the level of bound VLPs and attached PCV2 particles to host PK15 and 3D4/31
139	cells in the presence of added soluble heparin decreased significantly compared with those of free VLPs and PCV2;
140	however, the addition of DeN heparin or CSA had no significant effect (Figure 3d-e and S2d-e). In addition, in the flow
141	cytometry assay, cell adhesion of VLP and PCV2 in the presence added GAGs showed that for PK15 cells, 70.3% bound

142	VLP and 30.4% bound PCV2, which was an obvious decrease compared with free VLP and PCV2, VLP and PCV2 with
143	added DeN heparin, and VLP and PCV2 with added CSA (Figure 3f-g). Surprisingly, the addition of DeN heparin to
144	VLP and PCV2 showed almost similar occupancies to those of VLP and PCV2 attached to cells compared with the CSA
145	addition as a negative control. This result demonstrated that heparin without a negative charge acquired from N-sulfation
146	is a nonfunctional HS analog for binding VLP and PCV2 virions. The results obtained using 3D4/31 cells were similar to
147	those gained using PK15 cells (Figure S2f-g). In summary, soluble heparin can bind to the capsid and promote the
148	high-FRET state, simultaneously block the binding of the capsid to the host cells.
149	Capsid-targeting Neutralizing Antibodies Facilitate Stable Low-FRET Conformations
150	To investigate whether anti-capsid neutralizing monoclonal antibodies (mAbs) could block the virus binding to the cell
151	surface by modifying the conformational transitions of the capsid protein, we incubated 3XA and 3XC with the mAbs
152	3F6, 5E11, 6H9, and 8A12 before smFRET imaging (29). Interestingly, the neutralizing mAb 3F6 induced an absolute
153	occupancy of the low-FRET state (94%) of the capsid and resulted in the almost compete disappearance of the
154	intermediate-FRET and high-FRET states compared with the trajectories of the antibody-free capsid (Figures 4a and 2a).
155	Another neutralizing mAb, 6H9, displayed similar effects to 3F6 (Figure S3a). Interestingly, although transition to the
156	intermediate-FRET state and high-FRET state were obviously inhibited, they were not entirely abolished, implying that
157	the mobility of the capsid was maintained. In contrast, the conformation of the capsid after treatment with
158	non-neutralizing mAbs 5E11 and 8A12 was similar to that of the antibody-free Capsid, with only a slight increase in the
159	intermediate-FRET state, demonstrating the negligible effect of nonneutralizing mAbs in altering the antigen's
160	conformation (Figures 4b, S3b and 2a). Based on these results, we concluded that neutralizing antibodies could restrict
161	the conformation of the capsid to the low-FRET state by inducing an almost complete conversion of the capsid's
162	conformation from the intermediate- and high-FRET states to the low-FRET state without impairing the mobility of the
163	antigen.

164 The Positively Charged Residues ⁹⁹R¹⁰⁰K within the HS Binding Motif of the Capsid Enhance the High-FRET

165 State During Interaction with Heparan Sulfate

166	The motif ⁹⁸ IRKVKV ¹⁰³ within the capsid protein is predicted to be the binding site of HS, and is located in the interior
167	of the three-dimensional crystal structure of the capsid (13). The interaction between the GAGs and a protein mainly
168	depended on the positively charged properties of the amino acids in the binding motif (34). Amino acid sequence
169	alignment revealed that the predicted HS binding motif ⁹⁸ IRKVKV ¹⁰³ is highly conserved among different subtypes of
170	PCV2 (Figure S4a). To investigate the contribution of positively charged amino acids to conformational changes during
171	the interaction with HS, we performed ⁹⁹ arginine (R) to alanine (A) single-point mutation (SM), and ⁹⁹ R ¹⁰⁰ lysine (K) to
172	A double-point mutations (DM) within the HS binding site of the capsid (Figure S4b). We subjected the dual-labeled
173	Capsid-SM and Capsid-DM to smFRET analysis, which displayed similar conformational dynamics to Capsid-WT
174	(Figures 2a, 5a-b and S4c-d), such as the interconversion between the three intrinsic states and a predominant occupancy
175	of the low-FRET state with occasional transition to intermediate- and high- states. This result implied that the positively
176	charged residues ⁹⁹ R ¹¹⁰ K within the HS binding motif did not directly regulate capsid conformational dynamics in the
176 177	charged residues ⁹⁹ R ¹¹⁰ K within the HS binding motif did not directly regulate capsid conformational dynamics in the absence of receptor.
177	absence of receptor.
177 178	absence of receptor. To further verify the role of the positively charged amino acids during the capsid's interaction with HS, we observe the
177 178 179	absence of receptor. To further verify the role of the positively charged amino acids during the capsid's interaction with HS, we observe the smFRET landscapes of Capsid-SM and Capsid-DM in the presence of heparin. The trajectories of Capsid-SM and
177 178 179 180	absence of receptor. To further verify the role of the positively charged amino acids during the capsid's interaction with HS, we observe the smFRET landscapes of Capsid-SM and Capsid-DM in the presence of heparin. The trajectories of Capsid-SM and Capsid-DM still displayed the three independent states; however, the trajectories were shifted toward increased
177 178 179 180 181	absence of receptor. To further verify the role of the positively charged amino acids during the capsid's interaction with HS, we observe the smFRET landscapes of Capsid-SM and Capsid-DM in the presence of heparin. The trajectories of Capsid-SM and Capsid-DM still displayed the three independent states; however, the trajectories were shifted toward increased intermediate- and high-FRET states (Figure 5c-d and S4e-f). The data acquired from Capsid-SM in the presence of
177 178 179 180 181 182	absence of receptor. To further verify the role of the positively charged amino acids during the capsid's interaction with HS, we observe the smFRET landscapes of Capsid-SM and Capsid-DM in the presence of heparin. The trajectories of Capsid-SM and Capsid-DM still displayed the three independent states; however, the trajectories were shifted toward increased intermediate- and high-FRET states (Figure 5c-d and S4e-f). The data acquired from Capsid-SM in the presence of heparin demonstrated that the occupancy of the high-FRET was ~54%, which was significantly lower than that for

186	more frequent transitions to the intermediate and low-FRET states compared with Capsid-SM and Capsid-WT (Figures
187	5d, 3a, S2a and S4f), resulting in a further reduction of high-FRET state occupancy (~38%), accompanied by a slight
188	increase in the intermediate-FRET state occupancy and increased low-FRET state occupancy. This data indicated that
189	replacement of the positive charge amino acids within the HS binding motif decreased the occupancy of the high-FRET
190	state significantly during the interaction with heparin. We further delineated the relationship between the numbers of
191	positively charged amino acids and the occupancy fluctuation of each state. Figure 5e shows that decreasing high-FRET
192	occupancy correlated positively with the decreasing number of positively charged amino acids. By contrast, the
193	occupancies of intermediate- and low-FRET states correlated negatively with the number of positively charged amino
194	acids (Figure 5e). Taken together, these findings indicated that the positively charged residues ${}^{99}R^{100}K$ within the
195	HS binding motif of the capsid associating with the maintaining of high-FRET state during the interaction with HS.
196	Residues ⁹⁹ R ¹⁰⁰ K of the HS Binding Site are Critical for The Affinity of the Capsid to the Host Cell
197	To further investigate the contribution of positively charged amino acid residues within the HS binding motif of the
198	capsid to receptor binding, we performed binding force and cell adhesion tests of Capsid-SM and Capsid-DM. As
198 199	capsid to receptor binding, we performed binding force and cell adhesion tests of Capsid-SM and Capsid-DM. As expected, the amount of Capsid-SM and Capsid-DM that bound to the HiTrap [™] Heparin-Sepharose HP Column was
199	expected, the amount of Capsid-SM and Capsid-DM that bound to the HiTrap [™] Heparin-Sepharose HP Column was
199 200	expected, the amount of Capsid-SM and Capsid-DM that bound to the HiTrap [™] Heparin-Sepharose HP Column was significant decreased compared with that of the WT capsid (Figure 6a). Simultaneously, the dissociation constants (K _d)
199 200 201	expected, the amount of Capsid-SM and Capsid-DM that bound to the HiTrap TM Heparin-Sepharose HP Column was significant decreased compared with that of the WT capsid (Figure 6a). Simultaneously, the dissociation constants (K _d) of SM (821 \pm 18.1 μ M) and DM (883 \pm 15.8 μ M) displayed an obvious increase compared with that of WT Capsid (252
 199 200 201 202 	expected, the amount of Capsid-SM and Capsid-DM that bound to the HiTrap TM Heparin-Sepharose HP Column was significant decreased compared with that of the WT capsid (Figure 6a). Simultaneously, the dissociation constants (K _d) of SM (821 ± 18.1 μ M) and DM (883 ± 15.8 μ M) displayed an obvious increase compared with that of WT Capsid (252 ± 18.7 μ M) measured by microscale thermophoresis (Figure 6b). This indicated that the lack of ⁹⁹ R ¹⁰⁰ K within the
 199 200 201 202 203 	expected, the amount of Capsid-SM and Capsid-DM that bound to the HiTrap TM Heparin-Sepharose HP Column was significant decreased compared with that of the WT capsid (Figure 6a). Simultaneously, the dissociation constants (K _d) of SM (821 ± 18.1 μ M) and DM (883 ± 15.8 μ M) displayed an obvious increase compared with that of WT Capsid (252 ± 18.7 μ M) measured by microscale thermophoresis (Figure 6b). This indicated that the lack of ⁹⁹ R ¹⁰⁰ K within the HS binding motif ⁹⁸ IRKVKV ¹⁰³ would critically impair the affinity of the capsid for heparin.
 199 200 201 202 203 204 	expected, the amount of Capsid-SM and Capsid-DM that bound to the HiTrap TM Heparin-Sepharose HP Column was significant decreased compared with that of the WT capsid (Figure 6a). Simultaneously, the dissociation constants (K _d) of SM (821 ± 18.1 μ M) and DM (883 ± 15.8 μ M) displayed an obvious increase compared with that of WT Capsid (252 ± 18.7 μ M) measured by microscale thermophoresis (Figure 6b). This indicated that the lack of ⁹⁹ R ¹⁰⁰ K within the HS binding motif ⁹⁸ IRKVKV ¹⁰³ would critically impair the affinity of the capsid for heparin. Given that the affinity of the capsid for heparin was weakened by partial replacement of positively charged amino acids,

208	the TCID50 assay (35). The one-step growth curve indicated the genomes with the SM or DM mutations could be
209	rescued; however, the infectivity of the rescued virus was weakened compared with that of the WT virus (Figure 6c),
210	demonstrating that the replacement of these positive charged residues within the HS binding site of the capsid could
211	attenuated the replication ability of PCV2. To further validate whether the weakened replication ability of PCV2 particles
212	with SM or DM involves cell attachment, we attempted single cell adhesion assays of SM- and DM-Capsid proteins
213	using flow cytometry. It showed the number of adhesive cells presenting Capsid-SM or Capsid-DM molecules was
214	significant decreased compared with that of the WT Capsid (Figures 6d and 6e). However, the number of adhesive cells
215	in the presence of HS was not significantly different to that of free Capsid-SM or Capsid-DM (figures 6f, 6g, 6h and 6i),
216	suggesting that the positive charge deficiencies in the HS binding motif caused the capsid non-sensitive to HS and
217	reduced the cell binding ability. Thus, these in vivo and in vitro experiments demonstrated that the positively charged
218	residues ⁹⁹ R ¹⁰⁰ K within the HS binding motif of the capsid are critical to enhance virus attachment to the host cell
219	surface and to regulate virus infectivity.

220

221 DISCUSSION

222 Heparan sulfate, a GAG present on the cell membrane, was identified as the cell surface receptor for various proteins and 223 enveloped and nonenveloped viruses (36-38). In the present study, PCV2 was used as a model nonenveloped virus, who 224 is the smallest DNA virus with capsid comprises one unique capsid protein, and used HS as the receptor for attachment 225 to host cells (13, 24). The direct observation of the capsid conformational changes for nonenveloped viruses has been not 226 yet been achieved because of the lack of methodology to probe such dynamics on a relevant timescale. In the present 227 study, the usage of smFRET imaging provided the first real-time visualization of the conformational dynamics of the 228 capsid. The results of the present study indicated that the Capsid may be regarded as a dynamic machine, undergoing 229 spontaneous, reversible fluctuations between multiple conformations during attachment to the cell surface. Our results

230 suggested that receptor binding regulates the intrinsic conformational dynamics of the capsid, allowing the virus to

invade the host cells.

232 The Multiple Conformations of the Capsid with Spontaneous Reversible Interconversion

- 233 The crystal structure of the PCV2 VLP revealed that the HS-binding motif ⁹⁸IRKVKV¹⁰³ was deeply hidden in the
- interior of the VLP(13, 24). In the present study, Cy5 and A547 were labeled at ¹⁰⁸cysteine (Cys) near the HS-binding
- site and at the CD loop or C-terminal loop far from the HS-binding site of the capsid (Figure S1a). The smFRET
- approach presented a landscape in which the capsid spontaneously transited among at least three conformations,
- 237 represented by the low-, intermediate- and high-FRET states and the low-FRET state of the capsid, corresponds to the
- 238 previously described crystal structure of PCV2 VLP (24). However, the current three-dimensional structure of the VLP
- 239 does not depict the conformations corresponding to the intermediate- and high- FRET states, which we captured using
- 240 the smFRET assay. The capsid displayed a predominantly low-FRET landscape, with some transitions to the
- 241 intermediate- or high-FRET states (Figure 2a). Notably, the structural proteins of enveloped viruses, such as glycoprotein
- 242 gp120 subunit of the HIV-1 envelope trimmers (18) and hemagglutinin of influenza virus (19), show similar dynamic
- 243 interconversions between multiple distinct conformations. Thus, for the first time, we demonstrated that the capsid of a
- 244 nonenveloped circovirus could spontaneously and reversible interconvert among multiple conformations. Technical
- 245 limitations meant that we could not detect the conformational dynamics of capsid in real-time in the form of icosahedral
- virus particles or VLPs; therefore, unfortunately, we could not verify that the conformational features of the Capsid
- 247 monomer were recapitulated in the assembled virus particle.

248 GAGs and Neutralizing Antibodies Alter the Capsid's Conformational feature

249 Heparan sulfate acts as the principal GAG receptor for the attachment of PCV2 capsid, which is partially mediated by

electrostatic binding between the negatively charged chains of HS and basic amino acids within the target proteins(1, 39).

251 Indeed, our binding experiments emphasized the superiority of HS over CSA and further demonstrated the requirement

252	for N-sulfation of heparin for interaction with the capsid. The dynamic equilibrium of the capsid was entirely
253	rearranged by negatively charged heparin, ultimately triggering the emergence of the high-FRET state (Figures 3a and
254	S2a). Notably, the negative charge-deficient heparan analog DeN heparin could induce transition from the low-FRET
255	state to the intermediate-FRET sate, but was insufficient to induce the high FRET state (Figures 3b and S2b). However,
256	the competitive binding assay showed that DeN heparin was incapable of binding to the capsid protein or the virus
257	(Figures 3d-g), indicating that the intermediate-FRET state was not an effective conformation for receptor interaction.
258	Therefore, we hypothesized that the high-FRET state is indispensable to the efficient interaction between the capsid and
259	the GAG receptor, and the hidden HS binding site might be exposed on the virion surface when negatively charged
260	heparan sulfate is encountered (Figures 7). However, the current technique could not distinguish if the capsid
261	conformational transitions occurred after the receptor binding to sustain the interaction or if the conformational
262	transitions were induced by the receptor molecule before the binding event (40).
263	In contrast to the effect of HS, the capsid showed a tendency to stabilize in the low-FRET state in the presence of the
264	anti-capsid neutralizing mAbs (Figures 4a and S3a), indicating that the neutralizing antibodies prevented the capsid from
265	attaching to the cell surface by restricting the conformational dynamics and consequently disrupting the
266	interaction between the capsid and HS. Interestingly, the antigenic epitope of the capsid recognized by neutralizing mAb
267	3F6 is ¹⁵⁶ YHSRYFT ¹⁶² (29), but not the HS-binding site. So we hypothesized that the interaction with the neutralizing
268	mAb prevented the conformational transitions and restricted the capsid to the low-FRET state, thereby blocking the
269	allosteric effects that expose the HS binding site to allow interaction with cell receptor (Figures 7). This could be
270	considered as indirect evidence for the significance of the high-FRET state during the capsid-cell receptor interaction.
271	Charge Distribution of the Binding Motif Dictated the Effective Receptor-ligand Binding
272	The key factors that produce a hydrophilic pocket producing a complementary structure for the heparin-protein

273 interaction are clusters of basic amino acids, especially arginine and lysine. The mutants with 99R or 100K displayed the

274	markedly attenuated affinity for heparin and reduced the binding capacity to the cell (Figures 6), subsequently impaired
275	the infectivity of the rescued viruses. Likewise, the occurrence of the high-FRET state also decreased markedly as the
276	number of positively charged amino acids in the binding motif decreased. Nonetheless, the conformational transition
277	could still occur in the mutants in the presence of heparin (Figure 5c-d and S3e-f) and the binding of the mutants was not
278	completely abolished, indicating that the interaction could be supported by the remaining positively charged amino
279	acid(s) within the motif or by the existence of other binding sites, such as the weak HS binding sites on the surface of the
280	PCV2 VLP.
281	Biological significance of Conformational Feature Regulation During Virus Attachment
282	The high-FRET state was revealed to be the crucial configuration during the Capsid-HS interaction for virus binding.
283	This state reflected a distinct conformation in which the hidden HS binding site is vicinal to the exterior area of the virus
284	particle. Besides, the existence of the intermediate-FRET state was especially conspicuous during the smFRET
285	assays, but ultimately could not accomplish the receptor-ligand interaction. The existence and maintenance of the
286	intermediate-FRET state could be quite meaningful and important for the biochemical events of the virus. It might
287	prevent the conformational transition to the ultimate structure occurring too quickly when induced by an incomplete
288	interforce and other biochemical attractive forces, thus minimizing meaningless binding to inappropriate receptors.
289	
290	Materials and Methods
291	Protein Purification and Fluorophore Labeling
292	Purified proteins were dissolved in labeling buffer (50 mM HEPES, 10 mM MgCl2, 10 mM CaCl2, 150 mM NaCl,

pH 7.5), preincubated with a 50-fold molar excess of Tris (2-carboxyethyl) phosphine(T2556, Thermo Fisher) to reduce

inter-molecular disulfide bond for 30 min at room temperature, then mixed with 10-fold molar excess CoA-Alexa 547

(S9349S, New England Biolabs) and 5 µM ACPS at 37 °C for 90 min, followed by mixing with 20-fold molar excess of

293

294

- 296 Cy5-maleimide(PA25031, GE healthcare) at room temperature overnight (25, 34). Dual-labeled capsid proteins were
- separated using a PD Mini-Trap G-25 desalting column (GE healthcare) with imaging buffer (50 mM Tris, 150 mM
- 298 NaCl, 1 mM Trolox(238813, Sigma-Aldrich), 0.8% glucose (w/v)(G8270, Sigma-Aldrich), 0.8% glucose oxidase
- 299 (w/v)(G3660, Sigma-Aldrich), 0.8% catalase (w/v)(SRE0041, Sigma-Aldrich), pH 7.5). The labeling efficiency was
- 300 calculated from protein concentration measured using BCA and fluorescence concentration estimated based on
- 301 Lambert-Beer equation with absorbance at 550 & 630 nm. Finaly sample was stored at -80 °C until use.

302 Circular Dichroism Spectrum Analysis

- 303 Purified Capsids were measured using a ChirascanTM-Circular Dichroism (CD) Spectrometer (Applied Photophysics)
- 304 with a path length of 0.1 mm. The CD spectra of the capsids were acquired between 200 and 300 nm with a 1-nm
- 305 increment, and the spectrum of the free buffer solution was subtracted as background.

306 Self-assembly of PCV2 Virus-like Particles

- 307 Purified capsids were dialyzed in assembly buffer (NaH2PO4 0.1 M, Na2HPO4 0.1 M, Imidazole 20 mM, Tris base 0.01
- 308 M, NaCl 0.15 M, KCl 0.05 M, MgCl 0.002 M, ammonium 0.1 M, glycerol 5%, Triton-X100 0.5%, β-mercaptoethanol 5
- 309 mM, and PMSF 0.1 mM, PH-7.6) at 4 °C overnight, then subjected to an ÄKTA Purifier UPC 100 system (GE
- Healthcare) equipped with a prepacked HiPrep[™] 16/60 Sephacryl[™] S-300 HR column (GE Healthcare). The formation
- 311 of PCV2 VLPs was observed using transmission electron microscopy (H-7650 TEM, Hitachi-Science & Technology,
- 312 Japan).

313 Single-molecule FRET Assay

- 314 The smFRET experiment was performed based on a custom-built prism-based total internal reflection fluorescence
- 315 (TIRF) microscopy method (Olympus IX81 microscope, Photometric Evolve 512 EMCCD, 50 mW, Coherent 532 nm
- solid-state laser). 10 µM of samples was immobilized on a PEG(900393, Sigma-Aldrich)-passivated, streptavidin(85878,
- 317 Sigma-Aldrich)-coated, quartz slide, pretreated with NaCl imaging buffer for 30 min to minimize the oligomerization.

318	The surface-bound capsid proteins were illuminated using the evanescent field generated by the total internal reflection
319	of a 532-nm laser. Fluorescence emission was collected through a 1.49 NA 100 \times oil-immersion objective (Olympus),
320	and passed through a filter to remove Rayleigh scattering. Acceptor and Donor emissions were separated using a dichroic
321	mirror into green and red emissions and projected onto the EMCCD. The single-molecule time traces of around 100s
322	were collected at a rate of 10 frames/second using Micro-Manager(µManager, https://micro-manager.org).
323	Flow Cytometry
324	Trypsin digested cells were suspended, incubated with mAb 5E11 for 1.5 h at 37 °C, stained with FITC- goat
325	anti-mouse IgG (ab6785, Abcam) for 1 h, and evaluated using a BD Accuri™ C6 Plus flow cytometer (BD Bioscience),
326	and the ratio was analyzed using Flow Jo X 10.0.7 software(FlowJo, LLC, https://www.flowjo.com).
327	High Performance Liquid Chromatography with Heparin-Sepharose
328	Purified capsids (100 µg) were loaded onto a 5-ml HiTrap [™] Heparin-Sepharose HP Column (GE Healthcare), which
329	then washed with Ca2+ and Mg2+-free PBS to remove unbound molecules and eluted with gradually linear increasing
330	concentrations of NaCl. The original sample, flow through, and elution fractions were collected, diluted to same
331	concentration, and then analyzed using SDS-PAGE and immunoblotting.
332	Microscale Thermophoresis Assay
333	The Cy5-labeled capsid was incubated at a constant concentration of 20 nM with two-fold serial dilutions of heparin in
334	MST-optimized buffer (50 mM Tris-HCl, pH 7.4, 150 mM NaCl, 1 mM MgCl2, 0.05% Tween-20). The mixtures were
335	incubated for 15 min and added into glass capillaries and loaded into a Monolith NT.115 instrument (NanoTemper
336	Technologies, Germany), the Kd values were determined using NanoTemper Analysis software (NanoTemper
337	Technologies, https://nanotempertech.com).
338	Construction of a PCV2 Infectious Clone and Virus Rescue
339	Site-specific mutagenesis to construct the 99R (SM) and 99R100K (DM) mutants was performed directly using PCR.

340	The linear genomes were extracted, cyclized using T4 DNA ligase (Takara), and transfected into PK15 cells with the
341	jetPRIME® in vitro transfection reagent (CPT114vJ Polyplus-transfection). The transfected cells were cultured for 72 h
342	and continuously passaged. The rescued samples were evaluated using indirect immunofluorescence assay and virus
343	titers were calculated according to the Reed-Muench method.
344	Analysis of smFRET Data.
345	Using custom made IDL software (Exelis Visual Information Solutions, https://www.exelisvis.com), hundreds of
346	dual-labeled single-molecule spots were picked from the images of an acceptor detection channel by alternating the 532
347	and 633 nm laser excitations. The intensities of Alexa 547 and Cy5 were analyzed by running the VBFRET software
348	package script(The Gonzalez Laboratory, http://www.columbia.edu/cu/chemistry/groups/gonzalez/software) using a
349	custom-made MATLAB algorithm (Mathworks, https://www.mathworks.com). The FRET efficiencies were calculated
350	using the equation IA/ (IA + ID). All observed FRET data points were compiled into histograms using origin 9.0
351	software (Originlab, https://www.originlab.com/), and histograms were fitted using three Gaussian distributions. The
352	occupancy of each Gaussian peak was calculated as the ratio of peak covering area.
353	Statistical Analysis.
354	All results are presented as means ± the standard deviation (SD). Significant differences between treated and control
355	groups were analyzed using Student's t test. The differences were considered significant and extremely significant at P
356	values < 0.05 and < 0.01 , respectively.
357	
358	Acknowledgments
359	This work was supported by the National Key Research & Development Program of China (2016YFD0500102,
360	2015BAD12B01) and the National Natural Science Foundation of China (grant numbers 31230072, 31402198).
361	

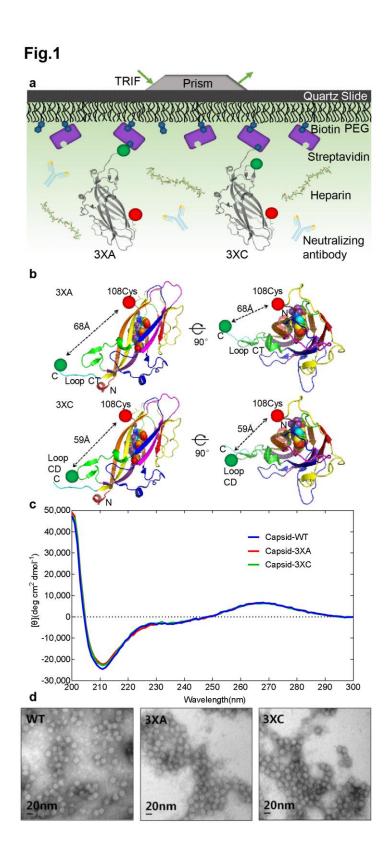
362 Author Contributions

- 363 J.Y.Z., J.R.L and J.Y.G. conceived the experiments. J.R.L and J.Y.G. prepared the samples and conducted most
- 364 experiments. S.N.W and J.L. performed immunoblotting assays and constructed the infectious clone. J.W.Z., C.L.
- 365 performed the purification of virus-like particles and observation of TEM. J.Y.Z. and J.R.L. analyzed and interpreted the
- 366 data and wrote the manuscript.
- 367

368 Declaration of Interests

369 The authors declare no competing interests.

371 References.


- 1. Kjellen L, Lindahl U. 1991. Proteoglycans: structures and interactions. Annu Rev Biochem 60:443-75.
- 2. Rostand KS, Esko JD. 1997. Microbial adherence to and invasion through proteoglycans. Infect Immun 65:1-8.
- 374 3. Prydz K, Dalen KT. 2000. Synthesis and sorting of proteoglycans. J Cell Sci 113 Pt 2:193-205.
- 4. Li JP, Spillmann D. 2012. Heparan sulfate proteoglycans as multifunctional cell regulators: cell surface receptors.
- 376 Methods Mol Biol 836:239-55.
- 5. Sarrazin S, Lamanna WC, Esko JD. 2011. Heparan sulfate proteoglycans. Cold Spring Harb Perspect Biol 3.
- 378 6. Zautner AE, Jahn B, Hammerschmidt E, Wutzler P, Schmidtke M. 2006. N- and 6-O-sulfated heparan sulfates mediate
- 379 internalization of coxsackievirus B3 variant PD into CHO-K1 cells. J Virol 80:6629-36.
- 380 7. Bernfield M, Gotte M, Park PW, Reizes O, Fitzgerald ML, Lincecum J, Zako M. 1999. Functions of cell surface
 381 heparan sulfate proteoglycans. Annu Rev Biochem 68:729-77.
- Xu Y, Martinez P, Seron K, Luo G, Allain F, Dubuisson J, Belouzard S. 2015. Characterization of hepatitis C virus
 interaction with heparan sulfate proteoglycans. J Virol 89:3846-58.
- Tan CW, Poh CL, Sam IC, Chan YF. 2013. Enterovirus 71 uses cell surface heparan sulfate glycosaminoglycan as an
 attachment receptor. J Virol 87:611-20.
- 386 10. Sasaki M, Anindita PD, Ito N, Sugiyama M, Carr M, Fukuhara H, Ose T, Maenaka K, Takada A, Hall WW, Orba Y,
- 387 Sawa H. 2018. The Role of Heparan Sulfate Proteoglycans as an Attachment Factor for Rabies Virus Entry and
- 388 Infection. J Infect Dis 217:1740-1749.
- 389 11. Joyce JG, Tung JS, Przysiecki CT, Cook JC, Lehman ED, Sands JA, Jansen KU, Keller PM. 1999. The L1 major
- 390 capsid protein of human papillomavirus type 11 recombinant virus-like particles interacts with heparin and
- 391 cell-surface glycosaminoglycans on human keratinocytes. J Biol Chem 274:5810-22.
- 392 12. Huan CC, Wang Y, Ni B, Wang R, Huang L, Ren XF, Tong GZ, Ding C, Fan HJ, Mao X. 2015. Porcine epidemic

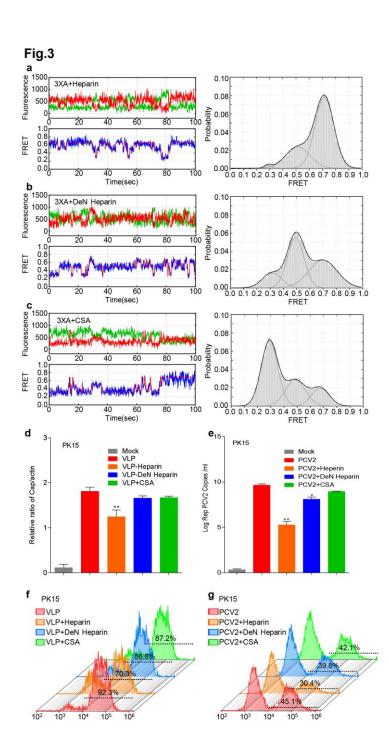
diarrhea virus uses cell-surface heparan sulfate as an attachment factor. Arch Virol 160:1621-	393	diarrhea virus uses	cell-surface heparai	n sulfate as an atta	chment factor. Arch	Virol 160:1621-8
--	-----	---------------------	----------------------	----------------------	---------------------	------------------

- 13. Misinzo G, Delputte PL, Meerts P, Lefebvre DJ, Nauwynck HJ. 2006. Porcine circovirus 2 uses heparan sulfate and
- 395 chondroitin sulfate B glycosaminoglycans as receptors for its attachment to host cells. J Virol 80:3487-94.
- 14. Cardin AD, Weintraub HJ. 1989. Molecular modeling of protein-glycosaminoglycan interactions. Arteriosclerosis
- *397 9:21-32.*
- 398 15. Ha T, Enderle T, Ogletree DF, Chemla DS, Selvin PR, Weiss S. 1996. Probing the interaction between two single
- 399 molecules: fluorescence resonance energy transfer between a single donor and a single acceptor. Proc Natl Acad Sci U
- 400 S A 93:6264-8.
- 401 16. Ha T. 2001. Single-molecule fluorescence resonance energy transfer. Methods 25:78-86.
- 402 17. Michalet X, Weiss S, Jager M. 2006. Single-molecule fluorescence studies of protein folding and conformational
 403 dynamics. Chem Rev 106:1785-813.
- 404 18. Munro JB, Gorman J, Ma X, Zhou Z, Arthos J, Burton DR, Koff WC, Courter JR, Smith AB, 3rd, Kwong PD,
- 405 Blanchard SC, Mothes W. 2014. Conformational dynamics of single HIV-1 envelope trimers on the surface of native
- 406 virions. Science 346:759-63.
- 407 19. Das DK, Govindan R, Nikic-Spiegel I, Krammer F, Lemke EA, Munro JB. 2018. Direct Visualization of the
- 408 Conformational Dynamics of Single Influenza Hemagglutinin Trimers. Cell 174:926-937 e12.
- 409 20. Dennis TPW, Flynn PJ, de Souza WM, Singer JB, Moreau CS, Wilson SJ, Gifford RJ. 2018. Insights into Circovirus
- 410 Host Range from the Genomic Fossil Record. J Virol 92.
- 411 21. Allan GM, Ellis JA. 2000. Porcine circoviruses: a review. J Vet Diagn Invest 12:3-14.
- 412 22. Finsterbusch T, Mankertz A. 2009. Porcine circoviruses--small but powerful. Virus Res 143:177-83.
- 413 23. Nawagitgul P, Morozov I, Bolin SR, Harms PA, Sorden SD, Paul PS. 2000. Open reading frame 2 of porcine
- 414 circovirus type 2 encodes a major capsid protein. J Gen Virol 81:2281-7.

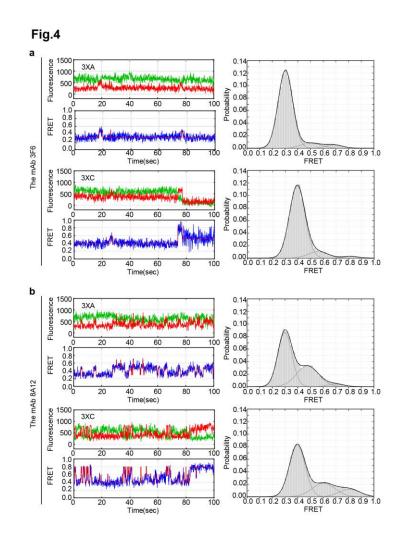

- 415 24. Khayat R, Brunn N, Speir JA, Hardham JM, Ankenbauer RG, Schneemann A, Johnson JE. 2011. The 2.3-angstrom
- 416 structure of porcine circovirus 2. J Virol 85:7856-62.
- 417 25. Liu Z, Guo F, Wang F, Li TC, Jiang W. 2016. 2.9 A Resolution Cryo-EM 3D Reconstruction of Close-Packed Virus
- 418 Particles. Structure 24:319-28.
- 419 26. Wang N, Zhan Y, Wang A, Zhang L, Khayat R, Yang Y. 2016. In silico analysis of surface structure variation of PCV2
- 420 capsid resulting from loop mutations of its capsid protein (Cap). J Gen Virol 97:3331-3344.
- 421 27. Wang D, Zhang S, Zou Y, Yu W, Jiang Y, Zhan Y, Wang N, Dong Y, Yang Y. 2018. Structure-Based Design of Porcine
- 422 Circovirus Type 2 Chimeric VLPs (cVLPs) Displays Foreign Peptides on the Capsid Surface. Front Cell Infect
- 423 Microbiol 8:232.
- 424 28. Mahe D, Blanchard P, Truong C, Arnauld C, Le Cann P, Cariolet R, Madec F, Albina E, Jestin A. 2000. Differential
- 425 recognition of ORF2 protein from type 1 and type 2 porcine circoviruses and identification of immunorelevant
- 426 epitopes. J Gen Virol 81:1815-24.
- 427 29. Shang SB, Jin YL, Jiang XT, Zhou JY, Zhang X, Xing G, He JL, Yan Y. 2009. Fine mapping of antigenic epitopes on
- 428 capsid proteins of porcine circovirus, and antigenic phenotype of porcine circovirus type 2. Mol Immunol 46:327-34.
- 429 30. Roy R, Hohng S, Ha T. 2008. A practical guide to single-molecule FRET. Nat Methods 5:507-16.
- 430 31. Zhou Z, Cironi P, Lin AJ, Xu Y, Hrvatin S, Golan DE, Silver PA, Walsh CT, Yin J. 2007. Genetically encoded short
- 431 peptide tags for orthogonal protein labeling by Sfp and AcpS phosphopantetheinyl transferases. ACS Chem Biol
- 432 2:337-46.
- 433 32. Fairhead M, Howarth M. 2015. Site-specific biotinylation of purified proteins using BirA. Methods Mol Biol
 434 1266:171-84.
- 435 33. O'Donnell CD, Kovacs M, Akhtar J, Valyi-Nagy T, Shukla D. 2010. Expanding the role of 3-O sulfated heparan
 436 sulfate in herpes simplex virus type-1 entry. Virology 397:389-98.

- 437 34. Samsonov SA, Pisabarro MT. 2016. Computational analysis of interactions in structurally available
- 438 protein-glycosaminoglycan complexes. Glycobiology 26:850-861.
- 439 35. He J, Cao J, Zhou N, Jin Y, Wu J, Zhou J. 2013. Identification and functional analysis of the novel ORF4 protein
- 440 encoded by porcine circovirus type 2. J Virol 87:1420-9.
- 441 36. Feldman SA, Audet S, Beeler JA. 2000. The fusion glycoprotein of human respiratory syncytial virus facilitates virus
- 442 attachment and infectivity via an interaction with cellular heparan sulfate. J Virol 74:6442-7.
- 443 37. Zaiss AK, Foley EM, Lawrence R, Schneider LS, Hoveida H, Secrest P, Catapang AB, Yamaguchi Y, Alemany R,
- 444 Shayakhmetov DM, Esko JD, Herschman HR. 2016. Hepatocyte Heparan Sulfate Is Required for Adeno-Associated
- 445 Virus 2 but Dispensable for Adenovirus 5 Liver Transduction In Vivo. J Virol 90:412-20.
- 446 38. Meneghetti MC, Hughes AJ, Rudd TR, Nader HB, Powell AK, Yates EA, Lima MA. 2015. Heparan sulfate and
- 447 heparin interactions with proteins. J R Soc Interface 12:0589.
- 448 39. Bartlett AH, Park PW. 2010. Proteoglycans in host-pathogen interactions: molecular mechanisms and therapeutic
- 449 implications. Expert Rev Mol Med 12:e5.
- 450 40. Kim E, Lee S, Jeon A, Choi JM, Lee HS, Hohng S, Kim HS. 2013. A single-molecule dissection of ligand binding to a
- 451 protein with intrinsic dynamics. Nat Chem Biol 9:313-8.
- 452 41. Shriver Z, Capila I, Venkataraman G, Sasisekharan R. 2012. Heparin and heparan sulfate: analyzing structure and
- 453 microheterogeneity. Handb Exp Pharmacol doi:10.1007/978-3-642-23056-1_8:159-76.
- 454 42. Zhou JY, Chen QX, Ye JX, Shen HG, Chen TF, Shang SB. 2006. Serological investigation and genomic
- 455 characterization of PCV2 isolates from different geographic regions of Zhejiang province in China. Vet Res Commun
- 456 30:205-20.

459 Figure 1. Single-molecule FRET Method for Direct Capsid Visualization


- 460 (a) Schematic of the smFRET-imaging assay. Capsid 3XA or 3XC protein monomers containing a single pair of dually
- 461 labeled fluorophores were immobilized on quartz microscope slides, and imaged using TIRF microscopy at room
- 462 temperature.
- 463 (b) Structural molecular models of Cy5/Alexa 547-labeled Capsid. Fluorophores Cy5 (red ball) and Alexa 547
- 464 (green ball) were placed at the 108cysteine residue and at C-terminal loop (3XA) or at the CD loop (3XC), respectively.
- 465 These labeled models reflected the conformation transitions by their changes in FRET efficiency. The putative
- 466 HS binding site within the capsid is represented as a sphere. All the structures were adapted from PDB accession
- 467 ID:3R0R.
- 468 (c) Circular dichroism assay of the secondary structure of soluble WT, 3XA, and 3XC capsids. The spectrum curve of the
- samples was acquired from the ellipticity data measured at a wavelength of 200–300 nm.
- 470 (d) Transmission electron microscopy imaging of PCV2 virus-like particles. Capsid-WT, Capsid-3XA and Capsid-3XC
- 471 assembled into a hexagonal particle with a diameter of 17 nm.

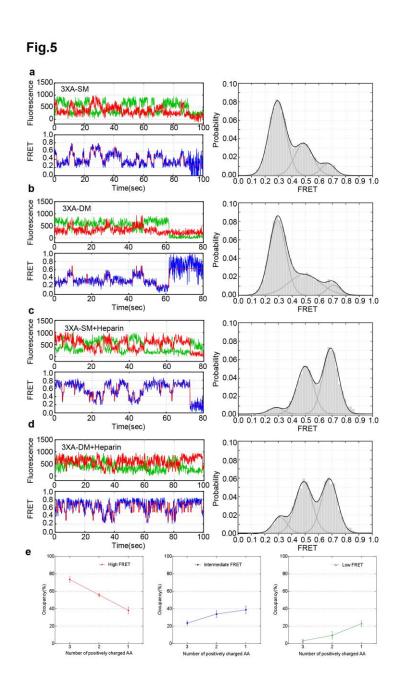
472


473 Figure 2. The Multiple Conformational Distributions of the Capsid Protein

- 474 (a) The landscapes of the capsid's conformational features. Representative fluorescence intensities of the donor and
- 475 acceptor are shown as green and red, respectively, in the time trace; the original and idealized FRET values are shown
- 476 as blue and red, respectively, in the FRET trajectories (left). The distinct FRET values of the main states fitted using
- 477 HMM were approximately 0.29, 0.48, 0.68 (3XA) and 0.39, 0.59, 0.78 (3XC), corresponding to population FRET
- 478 histograms fitted with three Gaussian distributions overlaid (black) (right).
- (b) Occupancy of the smFRET state in Figures 2A and 3A-C. Student's t test was performed. *, P < 0.05; **, P < 0.01.

486 Figure 3. Interaction with Heparin Regulates the Capsid Conformational landscape.

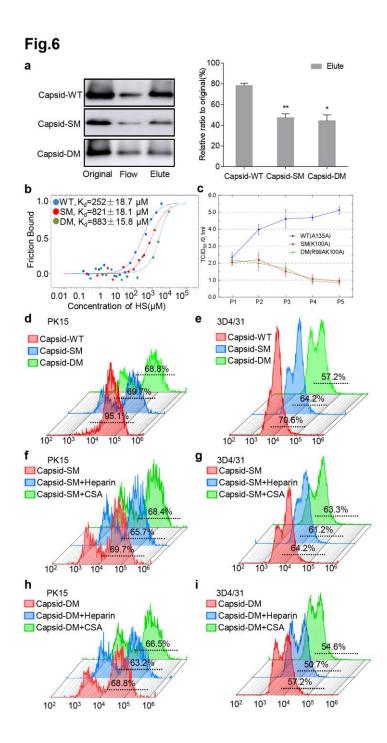
- 487 (a-c) The histogram distribution and representative fluorescence time trace of the capsid protein's interaction with GAGs.
- 488 a, Capsid mixed with heparin. b, Capsid mixed with De-N-sulfated acetylated heparin. c, Capsid mixed with chondroitin
- sulfate A. The concentration of GAGs was fixed at 2500 µg/ml.
- 490 (d-g) GAGs competitive binding experiments to host cells. Equal amounts of capsid-VLPs or PCV2 virions were
- 491 preincubated with heparin, De-N-sulfated acetylated heparin, and chondroitin sulfate A at 37 °C for 90 min, respectively.
- 492 The mixtures were then seeded onto PK-15 cells for 60 min at 4 °C. (d), the total amount of capsid protein bound to the
- 493 cell surface was analyzed using SDS-PAGE and western blotting. (e), the number of copies of attached PCV2 virions
- 494 was quantified using qPCR. (f), capsid-VLPs bound to PK15 cells as assessed using flow cytometry. (g), PCV2 attached
- 495 to PK15 cells as assessed using flow cytometry.



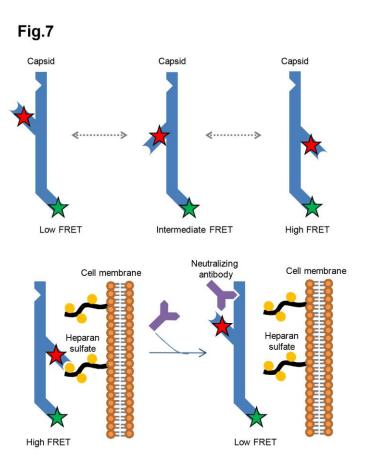
498

499 Figure 4. Neutralizing Antibodies Restrict smFRET Conformations of the Capsid Protein

500 Representative fluorescence time trace and histogram distribution of the anti-Capsid mAbs reaction with capsids 3XA


- and 3XC. (a) Capsid binding to the neutralizing mAb 3F6 reveals an absolute predominance of the low-FRET state. (b)
- 502 Capsid binding to the non-neutralizing mAb 8A12 reveals a similar conformational feature to free capsids.

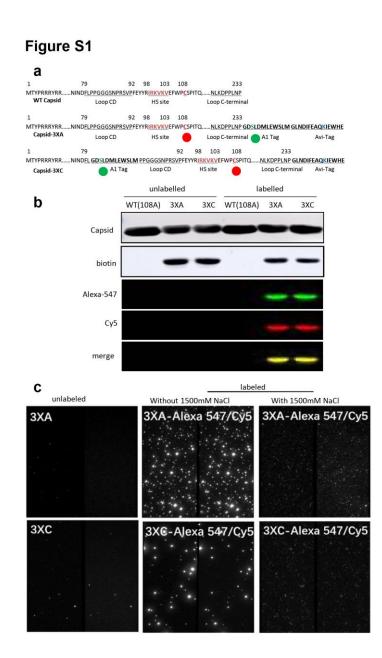
505 Figure 5. Deficiency in Positively Charged Amino Acids in the Heparan Sulfate Binding Site Alters the smFRET


506 Conformational Feature of the Capsid Under the Effect of Heparin

- 507 (a-b) Conformational features of capsids deficient in positively charged amino acids. The smFRET trajectories of
- 508 Capsid-SM and Capsid-DM showed the conformational feature of interconversion between the three intrinsic states. The
- 509 histogram shows the distribution of the distinct states, similar to the landscape of Capsid-WT.
- 510 (c-d) Representative fluorescence trajectories and histogram distributions of Capsid-SM and Capsid-DM mixed with
- 511 heparin.
- 512 (e) Curve of each state occupancy in relation to positively charged amino acid numbers within the binding motif based
- 513 on the histogram data in Figure 5a-d.

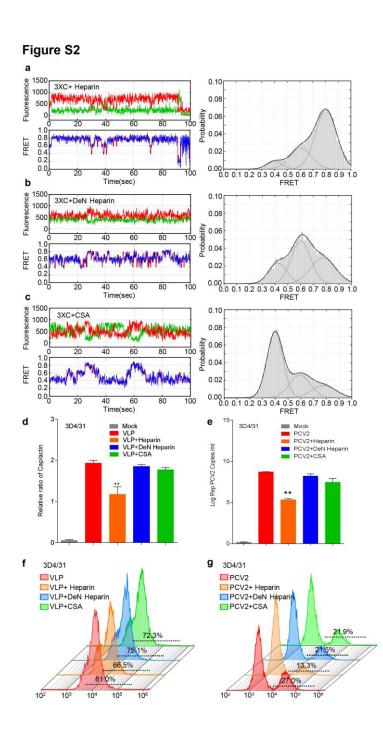
Figure 6. The Charged Amino Acids withi	n the Binding Site Regulate th	he Affinity of Capsid & Vi	rion for the Host
	Figure 6. The Charged Amino Acids within	Figure 6. The Charged Amino Acids within the Binding Site Regulate the	Figure 6. The Charged Amino Acids within the Binding Site Regulate the Affinity of Capsid & Vin

- 517 Cells
- 518 (a) Relative affinity of the WT, SM, and DM capsids to heparin was measured using HiTrap[™] Heparin-Sepharose HP
- 519 Column chromatography. The ratio of eluted to original amount was calculated to evaluate the relative affinity to
- 520 Heparin-Sepharose of each sample.
- 521 (b) The dissociation constant (K_d) between the capsid and heparin was measured using microscale thermophoresis. The
- 522 Cy5 labeled WT, SM, and DM capsids were mixed at equal amounts with various concentration of heparin for 15 min at
- 523 room temperature, and the K_d values were determined using microscale thermophoresis.
- 524 (c) Infectivity decrease of rescued viruses with deficient in positively charged amino acids in the binding motif. TCID₅₀
- 525 titration was performed according to the Reed-Muench method.
- 526 (d-i) Capsid-bound cells measured by flow cytometry. The PK15 and 3D4/31 cells were incubated with Capsid-WT,
- 527 Capsid-SM, Capsid-DM, or mixtures of Capsid-SM/Heparin, Capsid-DM/Heparin, Capsid-SM/CSA, and
- 528 Capsid-DM/CSA, separately. The resultant cells were assessed by flow cytometry. (d), Capsid positive PK15 cells; (e),
- 529 Capsid positive 3D4/31 cells; (f), Capsid-SM positive PK15 cells; (g), Capsid-SM positive 3D4/31 cells; (h), Capsid-DM
- 530 positive PK15 cells; and (i), Capsid-DM positive 3D4/31 cells.

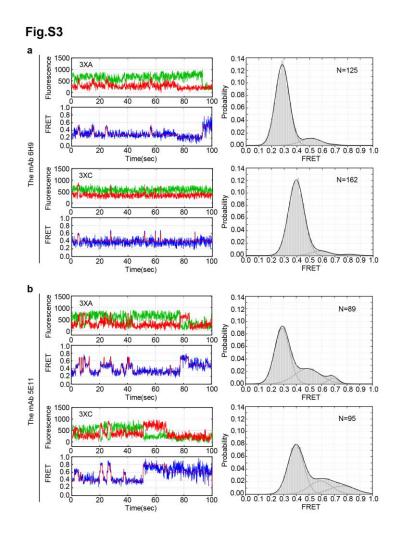


531

532 Figure 7. Model of Capsid Conformational changes associated with attachment to the cell surface


533 Interaction with the receptor HS promotes the preponderance of the high-FRET state and exposes the hidden HS binding 534 site. By contrast, interaction with the anti-Capsid neutralizing mAb results in prevention of the conformational transition 535 and restriction to the low-FRET state, thereby blocking exposure of the HS binding site and preventing the interaction

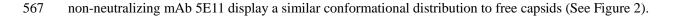
536 with the cell receptor heparan sulfate.

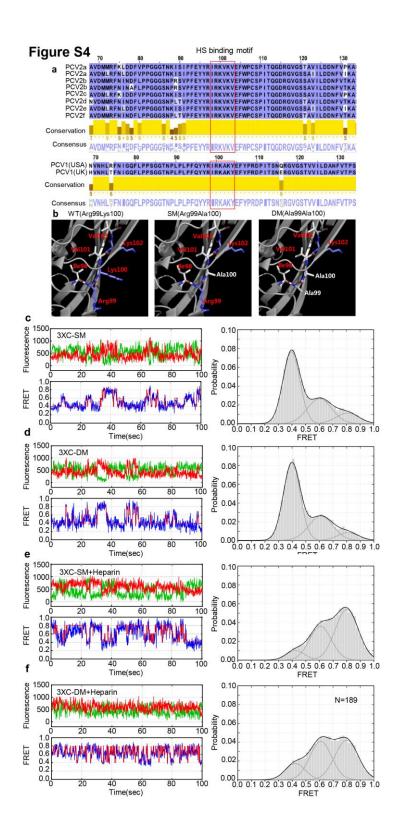

539 Figure S1. Strategy for Site-specific Attachment of the Donor & Acceptor Fluorophore Pair.

- 540 (a) Schematic of the engineered capsids 3XA and 3XC, based on the WT capsid sequence of the PCV2 HZ0201 isolate.
- 541 The putative heparin binding motif 98IRKVKV103 is highlighted in crimson. 108cysteine is highlighted in red and
- 542 labeled by Cy5 (red ball). The A1-tag peptide (GDSLDMLEWSLM) was inserted at the C-terminus (3XA) or between
- 543 the 80Leucine and 81Proline residues (3XC) to attached Alexa-547 (green ball). The Avi-tag peptide
- 544 (GLNDIFEAQKIEWHE) was added at the C-terminus for the adhesion of D-biotin.
- 545 (b) Western blotting assay of Cy5/Alexa 547 labeled capsid-3XA and capsid-3XC. Alexa-547 and Cy5 were excited by
- lasers at 520 nm and 630 nm, respectively. The conjugated biotin was identified using HRP-streptavidin.
- 547 (c) Capsids were subjected to the fluorescent labeling reaction, surface immobilized, and imaged using TRIF. The donor
- and acceptor channels view of the passivated slides immobilized with unlabeled dCapsid 3XA or 3XC (left); with
- 549 labeled dCapsid 3XA or 3XC (middle); or with labeled dCapsid 3XA or 3XC pretreated with 1500 mM NaCl
- 550 imaging buffer for 30 min to eliminate oligomerization (right).

553 Figure S2. Interaction with Heparin Induced the High-FRET Conformation of Capsid.

- 554 (a-c) Typical Capsid-3XC fluorescence time trace and the histogram distribution with exogenous soluble GAGs. (a),
- 555 Capsid-3XC mixed with heparin. (b), Capsid-3XC mixed with De-N-sulfated acetylated heparin. (c), Capsid-3XC mixed
- 556 with chondroitin sulfate A. The concentration of GAGs was fixed at 2,500 μg/ml.
- 557 (d-g) Competitive binding assay of VLPs and PCV2 particles for 3D4/31 cells. The experimental protocol is identical to
- that detailed in Figure 3. (d), Western blotting analysis of VLPs bound to soluble GAGs. E, qPCR assay of PCV2
- virions bound with soluble GAGs. (f), percentage of VLPs bound to 3D4/31 cells, as assessed using flow cytometry. (g),
- 560 Percentage of PCV2 bound to 3D4/31 cells, as measured using flow cytometry.




563

564 Figure S3. The Conformational Landscapes of Capsids Treated with Anti-Capsid Antibodies.

565 The typical fluorescence time trace and histogram distribution of capsids 3XA and 3XC reacting with mAbs. (a), Capsids

treated with neutralizing mAb 6H9 reveal an absolute predominance of the low-FRET state. (b), Capsids treated with

570	Figure S4. Deficiency of Positively Charged Amino Acids of the Binding Site Affects the Affinity to Heparin.
571	(a) The conservation of the putative heparin sulfate binding motif in the capsid sequence. All the amino acid sequence
572	data were obtained from GenBank. The location and sequence of the canonical putative heparin sulfate binding motif is
573	highlighted using a red frame.
574	(b) Schematic of the predicted local structure of the heparan binding site in the positively charged amino acid deficient
575	mutants. The positively charged amino acids are labeled in blue and the uncharged amino acids are labeled in white. Left,
576	the abundant side chain powered by the basic amino acids in capsid-WT. Middle, the side chain was reduced because of
577	the K100A mutation in Capsid-SM. Right, the side chain was reduced because of the 99R100K to 99A100A mutations in
578	Capsid-DM. This local structural prediction was performed on the basis of the revealed capsid structure (PDB:3R0R)
579	and presented using the PyMOL software.
580	(c-d) Typical smFRET trajectories and histogram distributions of Capsid-3XC- SM (c) and DM (d). Conformational
581	features of the positively charged amino acids deficiency mutants are similar to those of free Capsid-WT.
582	(e-f) Representative Capsid-3XC fluorescence time trace and the histogram distribution of Capsid-SM(e) and
583	Capsid-DM(f) with added exogenous heparin.