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Abstract

Gene-based analyses offer a useful alternative and complement to the usual single nucleotide

polymorphism (SNP) based analysis for genome-wide association studies (GWASs). Using

appropriate weights (pre-specified or eQTL-derived) can boost statistical power, especially for

detecting weak associations between a gene and a trait. Because the sparsity level or association

directions of the underlying association patterns in real data are often unknown and access

to individual-level data is limited, we propose an optimal weighted combination (OWC) test
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applicable to summary statistics from GWAS. This method includes burden tests, weighted

sum of squared score (SSU), weighted sum statistic (WSS), and the score test as its special

cases. We analytically prove that aggregating the variants in one gene is the same as using

the weighted combination of Z-scores for each variant based on the score test method. We also

numerically illustrate that our proposed test outperforms several existing comparable methods

via simulation studies. Lastly, we utilize schizophrenia GWAS data and a fasting glucose GWAS

meta-analysis data to demonstrate that our method outperforms the existing methods in real

data analyses. Our proposed test is implemented in the R program OWC, which is freely and

publicly available.

Introduction

Even though genome-wide association studies (GWASs) have been remarkably successful in

identifying a large number of genetic variants associated with complex traits and diseases, these

identified variants can only explain a small to modest fraction of the heritability (Manolio et

al., 2009). Larger sample sizes and more powerful statistical tests are needed to boost power,

especially for weakly associated variants with small effect sizes or low frequency variants. Due

to various reasons, it is often difficult for researchers to obtain access to individual level data,

and thus difficult to obtain a sufficient sample size for reliable analysis. The increasingly public

availability of genome-wide association study (GWAS) summary statistics, e.g. p-values, effect

sizes, directions of effects, or estimated statistics for individual single nucleotide polymorphisms

(SNPs) motivates us to develop methods for further analyzing GWAS by integrating the results

from standard single variant analysis using GWAS summary data. Methods based on summary
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statistics can also be viewed as a complementary approach to the traditional single variant

single trait association test.

The power of different gene-based tests depends on the underlying genetic architecture,

which can differ in number, effect size, and effect direction of the causal variants in different

genes. The proposed weighted combination method is a general and flexible method that

performs significantly better when testing for weak association due to small effect sizes or low

frequency variants. When testing for genetic associations, a proper choice of weights can boost

power substantively in gene-based analysis. For instance, the burden test (Li and Leal, 2008;

Morgenthaler and Thilly, 2007) and weighted sum of squared score (SSU) test (Pan 2009) can

be viewed as weighted combination methods, where the burden test and SSU test set the same

weight and use the Z-score as a weight for each variant, respectively. A statistical challenge

is that, due to unknown true association patterns, there is no uniformly most powerful test to

detect single trait associated genes; an association test may perform well for one dataset, but

not necessarily for another (Kwak and Pan 2015). For example, the presence of non-associated

SNPs will largely diminish the power of a standard test if no effective SNP selection or weighting

is adopted (Petersen et al., 2013). Additionally, SSU provides a robust test that is particularly

powerful in the presence of protective, deleterious, and null variants, but is less powerful than

the burden test when a large number of variants in a region are causal and in the same direction.

In the Method section of this paper, we show that using a score test to test the aggregated

variants in a gene is the same as using the weighted combination of Z-scores for the variants

in the considered region. Thus, existing popular weighted combination methods based on

individual genotype and phenotype data can be modified and implemented based on summary

data. In this paper, we propose a new gene based genetic association test method, the optimal
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weighted combination (OWC) test, which can use GWAS summary statistics as input. More

importantly, OWC includes the burden test, SSU, WSS, and score test as its special cases, and

OWC is an optimally weighted combination test that can reach maximized power.

To evaluate the performance of the proposed method, we conducted extensive simulation

studies and real data analysis. We compared our method OWC with five existing gene-based

methods: gene-based association test that uses extended Simes procedure (GATES) (Li et al.,

2011), adaptive sum of powered score tests (aSPU) (Kwak and Pan 2015), and three methods

proposed by Guo and Wu (2018a): sum test (ST), squared sum test (S2T), adaptive test (AT).

All methods are designed for single trait association study. GATES adopts an extended Simes

procedure to correct multiple testing issues while calculating the p-value quickly based on SNP

summary statistics. The aSPU method estimates and selects the most powerful test among

a class of so-called sum of powered score (SPU) tests. ST is a type of burden test statistic

(Madsen and Browning, 2009), S2T is a type of SKAT statistic (Wu et al., 2011) and AT is

equivalent to the SKAT-O statistic (Lee, Wu and Lin 2012). Simulation results demonstrate

that our proposed method OWC outperforms the five comparable methods. Application to

the schizophrenia GWAS summary data obtained from the Psychiatric Genomics Consortium

(PGC) and fasting glucose GWAS meta-analysis summary data obtained from the UK Biobank

component of the European DIAMANTE study indicate that our method performs better than

existing methods.
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Material and Methods

Inference

Consider a raw data set of a sample including n individuals, where each individual has been

genotyped at M variants in a genomic region (gene or pathway). Denote yi as the trait value of

the ith individual for either a quantitative or qualitative trait (1 for cases and 0 for controls for

a qualitative trait) and denote Xi = (xi1, · · · , xiM)
′

as the genotypic score of the ith individual,

where xim ∈ {0, 1, 2} is the number of minor alleles that the ith individual has at the mth

variant. xim can also be imputated doseage or the number of minor alleles in dominant or

recessive coding of genotypes that the ith individual has at the mth variant.

We use the generalized linear model to model the relationship between the trait ( quantita-

tive or qualitative trait) and the genetic variants in the considered region:

g(E(yi|Xi)) = β0 + βcXi

where g(·) is a monotone “link” function and βc is the parameter of interest. Testing the

association of the genetic variants in the considered region is equivalent testing the effect of the

weighted combination of variants xi =
∑M

m=1 w
0
mxim. Under the generalized linear model, we

can use the score test statsitic to test the null hypothesis H0 : βc = 0, which is given by

S(w0
1, · · · , w0

M) = n

(∑n
i=1(yi − ȳ)(xi − x̄)

)2∑n
i=1(yi − ȳ)2

∑n
i=1(xi − x̄)2

where the score test statistic S can be viewed as a function of weight W0 = (w0
1, · · · , w0

M)
′
.

Let X = (X1, · · · , Xn)
′
, Y = (y1, · · · , yn)

′
and P = In − 1

n
1n1

′
n where 1n represents a column
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vector containing all ones. Then, we have xi = X
′
iW0. We can rewrite the score test as:

S(w0
1, · · · , w0

M) = n
W

′
0X

′
PY Y

′
PXW0

W
′
0X

′PXY ′PYW0

Derivation of the aforementioned score test can be found in the Appendix section. To test

the association between a single trait and a single variant, a Z test is generally employed. To test

the main effect of the mth variant in the considered region, we use the Z test: Zm = Y
′
PXm·

σ
√
X
′
m·PXm·

where σ =
√

1
n
Y ′PY , Xm· = (xm1, · · · , xmn). Let LD matrix R = diag(D)−1/2Ddiag(D)−1/2

where D = X
′
PX and diag(D) denote the diagonal matrix of D. When GWAS summary

statistics such as the Z-statistics and the LD matrix for SNP-SNP correlations are available,

the score test can be written as:

S(w1, · · · , wM) =
W

′
ZZ

′
W

W ′RW
(1)

where Z = (Z1, · · · , ZM)
′

and W = (w1, · · · , wM)
′

= diag(D)1/2W0 (see Appendix). From

Equation (1), the score test statistic S is equivalent to a linear weighted test statistic based on

Z-scores:

L(w1, · · · , wM) =
M∑
m=1

wmZm = W
′
Z (2)

where Z follows multivariate normal distribution with mean 0 and covariance matrix R under

null hypothesis (Zhang et al. 2018). This conclusion clearly demonstrates that testing the

weighted combination of variants in a considered region using the score test is the same as

using the weighted combination of Z-scores for those variants.

Gene-based tests

The true value of the aforementioned weight function W = (w1, · · · , wM)
′

is unknown and

must be determined biologically or empirically. Therefore, in real data analysis, we should give
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reasonable values of weights in advance for a gene-based test. If all or most of the variants have

nearly equal effect size in the same direction of association, we set wm = 1 for m = 1, · · · ,M ,

and the test becomes the burden test LB = L(1, · · · , 1), which sums up the association signals

across all the variants and obtains high power. If we believe that the causal SNPs would be

subject to ”purifying selection” and thus appear less frequently in the population than neutral

SNPs, we set wm = 1/
√
pm(1− pm), where pm denotes the minor allele frequency (MAF)

of the mth variant, and obtain LW = L(1/
√
p1(1− p1), · · · , 1/

√
pM(1− pM)), which is the

weighted sum statistic (WSS) (Madsen and Browning, 2009). If we assume that the values of

the weights W come from gene expression or functional annotation data, the test degenerates

into the PathSPU(1) test (Wu and Pan 2018). We know that S(w1, · · · , wM) follows central

chi-square distribution with 1 degree of freedom (χ2
1) and L(w1, · · · , wM) follows multivariate

normal distribution with mean 0 and covariance matrix W
′
RW under the null hypothesis

when the choice of the weight function W is not proportional to Z.

As a function of W = (w1, · · · , wM)
′
, we can also choose an optimal W that maximizes

either the score test S(w1, · · · , wM) or the linear weighted test statistic L(w1, · · · , wM). In

particular (Li and Lagakos 2006), we have

sup
W
{S(w1, · · · , wM)} = sup

W
{ L(w1, · · · , wM)2

Var(L(w1, · · · , wM))
}

= sup
W
{W

′
ZZ

′
W

W ′RW
}

= Z
′
R−1Z

When Ŵ = R−1Z, the score test statistic S(w1, · · · , wM) reaches its maximum. Based on

the asymptotic null distribution of Z in Equation (2), we define the score test LS = Ŵ
′
Z =

Z
′
R−1Z which follows central chi-square distribution with M degrees of freedom (χ2

M). The
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optimal weights can be obtained when the linear weighted test statistic reaches its maximum

(Basu and Pan 2011). If we consider the correlation matrix R as a diagonal matrix A =

diag(a1, · · · , aM), R = A, where 0 < ai ≤ 1, then W = A−1Z. The score test in Equation

(1) or the linear weighted test in Equation (2) will reach its maximum when W = A−1Z. To

test the association between SNPs in a considered region and a trait, Kwak and Pan (2015)

proposed a class of sum of powered score (SPU) tests, along with its data-adaptive version

(aSPU), SPU(γ) =
∑M

i=1 Z
γ, and γ = 1, 2, · · · , 8,∞. The SPU method can also be viewed as

a special weighted combination test method with weight W = Zγ−1 and aSPU can be viewed

as an data-adaptive weighted combination test method.

When the diagonal matrix A is the identity matrix: A = I, we denote the test in Equation

(2) as LQ = Z
′
Z, which is the same as the sum of squared score test (SSU) (Pan 2011) or the

variance component test (Tzeng et al. 2011). Based on the asymptotic null distribution of Z

in Equation (2), the test LQ = Z
′
Z follows a mixture of chi square distribution under the null

hypothesis: LQ ∼
∑M

m=1 λmχ
2
1, where λ1, · · · , λM are the eigenvalues of R. Particularly, if we

set the diagonal element of A as the beta distribution density function with pre-specified shape

parameters as 1 and 25 evaluated at the corresponding sample MAF in the data, it degenerates

into the sequence kernel association test (SKAT) for rare variants (Wu et al., 2011). If the value

of the diagonal elements ofA comes from a set of gene expression derived weights, it degenerates

into PathSPU(2) test method (Wu and Pan, 2018). Naturally, these two methods (SKAT and

PathSPU(2)) all follow a mixture of chi square distribution under the null hypothesis. In our

paper, we only consider GWAS summary data for common variants, thus we set A as the

identity matrix for this case.
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To combine the strength of LB, LW , LS, and LQ , we consider their weighted average:

Lρ = ρ1(LB)2 + ρ2(LW )2 + ρ3LS + ρ4LQ

= Z
′
AZ

where A = ρ111
′

+ ρ2WW
′

+ ρ3R
−1 + ρ4I, 1 denotes a column vector containing all 1s,

ρ1 + ρ2 + ρ3 + ρ4 = 1, and 0 ≤ ρi ≤ 1 for i = 1, 2, 3, 4. For a fixed ρ, Lρ is distributed as a

linear combination of independent central χ2
1 random variables under the null hypothesis:

Lρ ∼
M∑
i=1

λiχ
2
1

where χ2
1 denotes a central χ2 random variable with 1 degrees of freedom and λi for i = 1, · · · ,M

are the eigenvalues of RA (Pan 2009). We propose a novel method which reaches the optimal

weighted combination (OWC) for a set of values of ρ using the minimum p-value across the

values of ρ

T = min
ρ
pLρ

where pLρ is the p-value computed based on Lρ. Naturally, T can be obtained by a sim-

ple grid search across a range of ρ: set a grid {ρ1, ρ2, ρ3, ρ4}, then the test statistic T =

min{pLρ1 , · · · , pLρ4}. In practice, we search over ρi ∈ (0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1)

for i = 1, 2, 3, 4. Specifically, if ρ2 = ρ3 = 0 in ρ, Lρ can be rewritten as ρ1(LB)2 + (1− ρ1)LQ,

which is equivalent to SKAT-O test method (Lee, Wu and Lin 2012).

P-value estimation

Monte Carlo simulations are used to obtain the p-values for T in a single layer of simulations.

Briefly, after obtaining R, we first simulate null scores of Z(b) ∼ N(0,R) for b = 1, · · · , B.
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Then, we use the null scores to calculate the null test statistic T b following the aforementioned

procedure for each b, and then the p-value of the test is the proportion of the number of the

null test statistic T b with T b ≤ T (Kwak and Pan, 2016). A larger B is needed to estimate a

smaller p-value.

The aforementioned vector Z(b) can be generated in the following way (Zhou, 2014): we

first generate a vector L with M elements where each element is independently generated from

a standard univariate normal distribution with mean 0 and variance 1; that is, L ∼ N(0, I).

We then have Z(b) = DL, where D is obtained from Cholesky decompositions of R with

R = DD
′
. Specifically, for the test statistic T (Z,R) as a function of Z and R, we can

estimate its p-value in detail as follows:

1. Generate independent Z(b) ∼ N(0,R) for b = 1, · · · , B.

2. Using asymptotic distribution of Lρ under null hypothesis, calculate the null test statistic

T by searching across a range of ρ for Z and Z(b), respectively.

3. Finally, the p-value for the T test, pT , the p-value of T (Z,R) is

pT =
[ B∑
b=1

I
(
T (Z(b),R) ≤ T (Z,R)

)
+ 1
]
/(B + 1)

If the Z statistic in the summary data is not provided, we need to first transform the p-value in

the summary data into a Z statistic using Z = sign(β)Φ−1(1− p/2), where Φ is the cumulative

distribution function of the standard univariate normal distribution. Then, a similar procedure

can be used to obtain the p-value of the test T .
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Comparison of methods

We compared the performance of our proposed method (OWC) with five aforementioned meth-

ods: 1) three methods proposed by Guo and Wu (2018a): sum test (ST), squared sum test

(S2T), adaptive test (AT), 2) a method proposed by Kwak and Pan (2015): adaptive sum of

powered score tests (aSPU), and 3) a method proposed by Li et al. (2011): gene-based asso-

ciation test that uses extended Simes procedure (GATES). We briefly introduce each of the

methods as follows:

1. Sum test (ST), B =
∑M

m=1 Zm, a type of burden test statistic (Madsen and Browning,

2009).

2. Squared sum test (S2T), Q =
∑M

m=1 Z
2
m, a type of SKAT statistic (Wu et al., 2010) and

equivalent to the weighted sum of squared score (SSU) test (Pan 2009).

3. Adaptive test (AT), T = minρ∈[0,1] P (Qρ), where Qρ = (1−ρ)Q+ρB2 and P (Qρ) denotes

the corresponding p-value.

4. Adaptive sum of powered score tests (aSPU), aSPUs=minγ∈Γ PSPUs(γ) where SPUs(γ) =∑M
m=1 Z

γ
m.

5. Gene-based association test that uses extended Simes procedure (GATES), pGATES =

min
(mep(j)
me(j)

)
where me is the effective number of independent p-values among the M

SNPs, p(j) is the jth smallest p-value and me(j) is the effective number of independent

p-values among the top j SNPs.

Because Z ∼ MVN(0,R), B=1
′
MZ ∼ N(0, 1

′
MR1M) where 1M denotes a column vector of

length M in which elements are all 1’s, B2

1
′
MR1M

follows χ1 distribution. Q=Z
′
Z is asymptoti-
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cally distributed as the weighted sum of independent χ1 random variables with the weights being

the eigenvalues of R. The p-value of T can be efficiently and accurately computed by a one-

dimensional numerical integration where we will search over ρ ∈ (0, 0.01, 0.04, 0.09, 0.16, 0.25, 0.5, 1)

following Wu et al. (2016). The p-value of the three statistics can be obtained using the “sat-

s” function in the “mkatr” package in R. For adaptive sum of powered score tests (aSPU),

Monte Carlo simulations are used to obtain the p-values, and this test can be obtained using

the “aSPUs” function in the “aSPU” package in R. To estimate the p-value of the gene-based

association test that uses extended Simes procedure (GATES), we use the “gates” function in

the “COMBAT” package in R.

Results

Simulations Studies

To evaluate the performance of the proposed method OWC, we conducted extensive simulation

studies to compare the type I error and power of OWC with the five comparable methods

following the simulation setting in Guo and Wu (2018b). The LD between SNPs are estimated

using the 1000 Genomes project (1000 Genomes Project Consortium, 2012) because Kwak and

Pan (2015) have shown that the performance using any reference data from the same ancestry

in estimating LD among SNPs is mostly satisfactory with an estimated inflation factor close to

1.
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Simulation of the Type I Error

For the type I error evaluation, instead of generating genotype and phenotype data, we sim-

ulate the test statistic Z from a multivariate normal distribution N(0,R) where R denotes

the corresponding LD matrix of the gene EPB41 (erythrocyte membrane protein band 4.1)

which is used in our simulation studies. Gene EPB41 colocalizes with AMPA receptors at

excitatory synapses and is thought to mediate the interaction of the AMPA receptors with

the cytoskeleton (Shen et al., 2000). Numerous studies have demonstrated brain region- and

subunit-specific abnormalities in the expression of subunits of the AMPA subtype of glutamate

receptors in schizophrenia (Tucholski et al., 2013). We consider four different significance lev-

els: α = 10−3, 10−4, 10−5, and 2.80 × 10−6. The estimated type I error rates are summarized

in Table 1. In the simulation, p-values of our method and aSPU are estimated by performing

106 times permutations and type I error rates are calculated based on 106 replicates. From this

table, we can see that the type I error rates of all of the methods are well controlled. Thus, all

the tests are valid.

Power Simulation

To evaluate the power of the proposed method, we conducted extensive simulations using the

same gene EPB41. We simulate 104 summary statistics from N(A×4,R) where A denotes

the signs of associations which determine the risk or protective effects of causal variants, 4

denotes different settings which determine the effect sizes of causal variants, and R is the

corresponding LD matrix of the gene EPB41. We assume that there are 3 causal SNPs. The

effects of the three causal SNPs are randomly set by drawing 3 elements of A equal to 1 or

-1, and setting the effect of the rest of SNPs in the gene as 0. Table 2 shows the estimated
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power at 2.80 × 10−6 significance level under three combinations of A for different settings of

4: a set of fixed values of 4 and two randomly simulated 4, one from uniform distribution,

and the other from normal distribution. Overall, the proposed OWC test performs robustly

across all scenarios and has the best performance compared to the other five tests, which may

be attributed to the fact that our proposed method includes two kinds of burden tests and two

kinds of quadratic tests, and ultimately derives an optimal test incorporating the four classes

of methods. Thus, the OWC test reaches the maximal power. From the first three settings of

three fixed values of 4, we can clearly see that the power of the S2T and GATES methods

increases as the effect size increases, which implies their performance may suer when there are

weak eects, compared to the other methods. Because S2T is a quadratic method and GATES

is a p-value based method, they are all robust to the direction of effects among causal SNPs.

The results of the last three settings from the same normal distribution of 4 also verify this

conclusion. Comparing the results of the middle three settings from a uniform distribution of

4, the burden test ST has the worst performance when there are different directions of effects.

Even though the adaptive methods AT and aSPU all consider the combination of the burden

test and quadratic test methods, they also suffer a relatively small loss of power when weak

effect size and different directions of effects are considered. Our proposed test OWC is robust

in the presence of different directions as well as weak effect sizes.

Application to the Schizophrenia GWAS Summary Data

We applied the proposed method OWC and the other five tests to two schizophrenia (SCZ)

summary datasets, which were downloaded from the Psychiatric Genomics Consortium (PGC)

website (see URL https://www.med.unc.edu/pgc/results-and-downloads/): a meta analy-
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sis of SCZ GWAS dataset with 13,833 cases and 18,310 controls, denoted as SCZ1 (Ripke et al.,

2013), and a more recent and larger dataset with 36,989 cases and 113,075 controls, denoted as

SCZ2 (Schizophrenia Working Group, 2014). The summary data consists of MAF, estimated

effect size, odds ratio, and p-value for 560,833 SNPs on 17,866 genes in SCZ1 and 557,511 SNPs

on 17,824 genes in SCZ2. We define a gene including all of the SNPs from 20 kb upstream to

20 kb downstream of the gene by following Wu et al. (2010) and test the association between

the gene and the trait using OWC and other five tests. We use the 1000 Genomes project

reference panel (1000 Genomes Project Consortium, 2012) to compute the LD for SNPs within

each gene contained in the two datasets. In order to make fair comparsions among the six

tests, we remove SNPs with MAF< 0.05 as well as one of a pair of SNPs with pairwise LD

r2 > 0.5. After SNPs pruning, 174,648 SNPs on 17,467 genes in SCZ1 data and 174,275 SNPs

on 17,420 genes in SCZ2 data remained in our final analysis. P-values of our method OWC and

aSPU are estimated by performing 106 permutations. The genome-wide significance level for

the gene-based genome-wide association test is ≈ 2.80× 10−6, which is the Bonferroni correct-

ed significance level. First, we applied our method and the other comparable methods to the

SCZ1 data (Ripke et al., 2013) of 20,899 individuals to identify SCZ-associated genes. We then

searched for genome-wide significant genes in the larger SCZ2 dataset (Schizophrenia Working

Group, 2014) of 150,064 individuals for partial validation. Figure 1 shows a Venn diagram of

the number of significant genes identified in SCZ1 by our proposed method OWC compared to

aSPU, GATES, and Guo and Wu’s three methods (denoted as GW, which represents the ag-

gregate of genes identified by S2T, ST and AT combined). OWC identified 37 significant genes,

aSPU identified 21 significant genes, GATES identified 17 significant genes, and GW identified

23 significant genes in total. Among these 37 significant genes identified by OWC, 13 (around
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35%) and 21 (around 57%) contained the genome-wide significant SNPs (p-value< 5 × 10−8)

within 20 kb in the SCZ1 data and the SCZ2 data, respectively, offering significant validation

of the identified genes. Clearly, our method identified more associated genes than the other

methods.

Overall, a total of 52 significant (and unique) genes were identified in the SCZ1 data across

all four tests. Supplementary Table S1 shows the significant genes, with associated p-value and

minimum p-value, identified by OWC, aSPU, GATES, or GW in SCZ1 and SCZ2, respectively.

Next, we applied the four methods to the SCZ2 data in which OWC identified 135 significant

genes, aSPU identified 110 significant genes, GATES identified 116 genes, and GW identified

125 significant genes in total. As expected, because the sample size of the SCZ2 dataset is much

larger than that of SCZ1, more genes were identified as significant by all of the methods. The

number of significant genes identified by OWC compared to aSPU, GATES and GW can be seen

in Figure 2. Again, our method is more powerful than the other methods in terms of the number

of significant genes identified. However, each test identified some unique genes missed by the

others, highlighting that different tests may be more powerful in different scenarios. Combined,

the four methods identified 188 significant and unique genes in the SCZ2 data (Supplementary

Table S2).

Application to the T2D GWAS Summary Data

We also conducted a comprehensive analysis of fasting glucose GWAS summary data for type 2

diabetes (T2D) from the UK Biobank component of the European DIAMANTE study (denoted

as UKB), which included over 440,000 individuals of European ancestry with 19,119 cases

and 423,698 controls. The analysis for the dataset was restricted to HRC variants and was
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conducted using the UK Biobank Resource under Application Number 9161 (McCarthy). The

GWAS summary data can be downloaded from http://www.type2diabetesgenetics.org/

informational/data. Similar to the SCZ dataset, the UKB summary data also consists of

MAF, effect size estimate, odds ratio, and p-value for approximately 17,850 genes. We applied

the same procedure used to filter and analyze the SCZ data on the UKB data. We used

0.05/17, 850 ≈ 2.80 × 10−6 as the significance level and performed 106 permutations for our

proposed method OWC and aSPU.

Figure 3 shows the Venn diagram comparing the number of significant genes identified by

our proposed method compared with aSPU, GATES and GW: OWC identified 133 significant

genes, whereas aSPU, GATES, and GW identified 99, 94, and 95 significant genes, respectively.

Among these 133 significant genes identified by OWC, 66 (around 50%) contained the genome-

wide significant SNPs (p-value < 5× 10−8) within 20 kb in the UKB data. Based on the UKB

analysis, we can further conclude that our OWC method performed the best compared to the

other test methods in terms of the number of significant genes identified. The 155 significant

and unique genes identified by all four methods can be seen in Supplementary Table S3.

Summary of Real Data Analaysis

Several genes that contain highly significant SNPs in the SCZ and UKB datasets were identified

by all four methods, giving credence to the power and validity of OWC. Many of the genes

identified as significant also have important biological implications regarding the etiology of

the associated disease. For example, all four methods identified several genes in the SCZ

data which encode for micro RNA (miRNA), such as MIR137/MIR2682: Altered miRNA

expression has been considered a plausible mechanism for development of schizophrenia and
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other psychiatric disorders such as bipolar disorder (BD) and major depression (MD) (Duan

et al., 2014; Maffioletti et al., 2014; Kwon et al., 2013). Likewise, NUBPL is a gene involved

with respiratory complex I, a mitochondrial enzyme which may also be associated with the

development of schizophrenia (Calvo et al., 2010; Karry et al., 2004; Ben-Shachar, 2017). In

the UKB dataset, all four methods identified V EGFB as significant, a gene which has been

considered a potential target in T2D therapy due to its elusive role in modulating insulin

resistance (Hagberg et al., 2012), as well as RCAN2 and MTRNR2L1, both of which have

been implicated in other studies (Xin et al., 2016; Veilleux et al, 2015).

The OWC method also identified biologically relevant genes that were missed by the other

methods. For instance, OWC was the only method to identify SGTA as significant in the UKB

dataset. SGTA plays a role in poly-cystic ovary syndrome (PCOS) in women, an endocrine dis-

ease involving insulin resistance and co-morbidity with T2D (Goodarzi et al., 2011), indicating

that this gene may also be involved with T2D pathogenesis.

Additionally, only OWC identified gene GRM7 in the SCZ data as significant. This gene

produces a type of glutamate receptor, dysfunction of which has long been implicated in

schizophrenia (Ohtsuki et al., 2008; Li et al., 2016), and studies regarding individualized thera-

py have considered GRM7 as a potential biomarker for risperidone response (Sacchetti, et al.,

2017). The p-value for most significant SNP in GRM7 was 1.12E-06 for both SCZ1 and SCZ2,

highlighting OWC’s ability to identify weakly associated variants, which are often overlooked

by traditional methods.
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Discussion

The weighting of genetic variants plays an important role in boosting the power of a test in

genetic association studies. In this paper, we propose a novel gene based genetic association

test, the optimal weighted combination (OWC) test, which is a general linear weighted test

statistic which incorporats four different weighting schemes (two constant weights and two

weights proportional to normal statistic Z). Four well-known methods: burden test, WSS,

SSU, and the score test are included in OWC as special cases. If we focus on the summary data

obtained from rare variants analysis, we can set the elements on the diagonal of matrixA as the

beta distribution density function with pre-specified shape parameters as 1 and 25 evaluated at

the corresponding sample MAF in the data. In this situation, the method SSU contained in our

method OWC becomes the SKAT method. Thus, both the SKAT and SKAT-O methods can

additionally be viewed as special cases of our method. If we focus on data from transcriptome-

wide association studies, we can set the weights of WSS and the elements of the diagonal of

matrix A as the corresponding estimated cis-effects on gene expression. Then, the two methods

WSS and SSU contained in our method become PathSPU(1) and PathSPU(2) method proposed

by Wu and Pan (2018). Therefore, the OWC is an optimally weighted combination test that

can reach maximized power.

We analytically derive that a score test based on the aggregated variants in a gene is the

same as a score test based on the weighted combination of Z-scores of SNP based association

tests in the gene. Additionally, we show that the general optimal weight can be obtained when

the general linear weighted test statistic reaches its maximum. For example, the score test, a

special case of OWC, reaches its maximum when we consider the correlation matrix R among
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SNPs. When we ignore the correlation among SNPs (it means that we set R = I), OWC

becomes the SSU test, which reaches its maximum. Through simulation studies and real data

analyses, we demonstrate that the proposed optimal test often outperforms other comparison

methods such as ST, S2T, AT, aSPU, and GATES, which are some of the most popular methods

based on summary data.

When we perform association tests based on a large number of genes in whole-genome

sequencing studies, different disease models may exist: some of the models are likely to include

many causal variants whose effects are in the same directions while other models may include

few causal variants or the causal variants whose effects are in different directions; or some of

the models are likely to include many weakly associated variants while others may include

a few of strongly associated variants. Because the true disease model is usually unknown,

there is no uniformly most powerful test to detect single trait associated genes; an association

test may perform well for one dataset, but not necessarily for another. For example, both

schizophrenia and type 2 diabetes are representative of complex diseases with common, often

weakly associated variants in which many of these variants may be working in tandem to

produce the disease. A robust, flexible method such as OWC may better elucidate these

weakly associated variants so that their role in disease etiology can be understood further.

Indeed, the proposed OWC can be an attractive tool for many situations, because it adapts to

the underlying biological disease model by selecting ρ based on the data.

Our proposed method provides an alternative approach with extreme scalability and robust

performance. This method only needs the publicly available GWAS summary statistics as input,

without the need to access raw genotype and phenotype data. We expect that researchers will be

able to identify novel disease associated genes by employing the proposed method to analyze
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publicly available GWAS summary data and shed more light onto underlying mechanism of

disease. In this paper, we focus on the application of our proposed method using single trait

GWAS summary data, however OWC can be easily extended to multiple traits GWAS summary

data. We have implemented the proposed method in an R program which is publicly available

online at github.

Appendix

Use the notation in the Method section. Consider a raw data set of a sample including n

individuals, where each individual has been genotyped at M variants in a genomic region

(gene or pathway). Denote yi as the trait value of the ith individual for either a quantitative

or qualitative trait (1 for cases and 0 for controls for a qualitative trait) and denote Xi =

(xi1, · · · , xiM)
′

as the genotypic score of the ith individual, where xim ∈ {0, 1, 2} is the number

of minor alleles that the ith individual has at the mth variant.

We use the generalized linear model to model the relationship between the trait ( quantita-

tive or qualitative trait) and the genetic variants in the considered region:

g(E(yi|Xi)) = β0 + βcXi

where g(·) is a monotone “link” function and βc is the parameter of interest. Testing the

association of the genetic variants in the considered region is equivlent testing the effect of the

weighted combination of variants xi =
∑M

m=1 w
0
mxim. Under the generalized linear model, we

can use the score test statsitic to test the null hypothesis H0 : βc = 0, which is given by

S(w0
1, · · · , w0

M) = n

(∑n
i=1(yi − ȳ)(xi − x̄)

)2∑n
i=1(yi − ȳ)2

∑n
i=1(xi − x̄)2
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where the score test statistic S can be viewed as a function of weight W0 = (w0
1, · · · , w0

M)
′
.

Let X = (X1, · · · , Xn)
′
, Y = (y1, · · · , yn)

′
and P = In − 1

n
1n1

′
n where 1n represents a column

vector containing all ones. Then, we have xi = X
′
iW0. We can rewrite the score test as:

S(w0
1, · · · , w0

M) = n
(PY )

′
PXW0(PY )

′
PXW0

(PY )′PY (PXW0)′PXW0

= n
W

′
0X

′
PY Y

′
PXW0

Y ′PYW
′
0X

′PXW0

= n
W

′
0X

′
PY Y

′
PXW0

W
′
0X

′PXY ′PYW0

where the second equation holds because we have P = P
′
and PP

′
= P , and the third equation

holds because Y
′
PY is a constant.

To test the association between a single trait and a single variant, we usually employ a

Z test. To test the main effect of the mth variant in the considered region, we use the Z

test: Zm = Y
′
PXm·

σ
√
X
′
m·PXm·

where σ =
√

1
n
Y ′PY , Xm· = (xm1, · · · , xmn). Let LD matrix R =

diag(D)−1/2Ddiag(D)−1/2 where D = X
′
PX and diag(D) denote the diagonal matrix of

D. When GWAS summary statistics such as the Z-statistics and the LD matrix for SNP-SNP

correlations are available, the score test can be written as:

S(w1, · · · , wM) =
W

′
0diag(D)1/2 diag(D)−1/2√nX′PY√

Y ′PY

√
nY
′
PXdiag(D)−1/2√

Y ′PY
diag(D)1/2W0

W
′
0diag(D)1/2diag(D)−1/2X ′PXdiag(D)−1/2diag(D)1/2W0

=
W

′
0diag(D)1/2ZZ

′
diag(D)1/2W0

W
′
0diag(D)1/2Rdiag(D)1/2W0

=
W

′
ZZ

′
W

W ′RW

where Z = (Z1, · · · , ZM)
′

and W = (w1, · · · , wM)
′

= diag(D)1/2W0. From Equation (1), the

score test statistic S is equivalent to a linear weighted test statistic based on Z-scores:

L(w1, · · · , wM) =
M∑
m=1

wmZm = W
′
Z
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where Z follows multivariate normal distribution with mean 0 and covariance matrix R under

null hypothesis (Zhang et al. 2018). This conclusion clearly demonstrates that testing the

weighted combination of variants in a considered region using the score test is the same as

using the weighted combination of Z-scores for the variants in the considered region.

Supplemental Data

Supplemental Data includes three tables: Supplementary Table S1: the OWC and the other

comparison methods are applied to the SCZ1 data and significant genes identified are reported

in Supplementary Table S1; Supplementary Table S2: the OWC and the other comparison

methods are applied to the SCZ2 data and significant genes identified are reported in Supple-

mentary Table S3; Supplementary Table S3: the OWC and the other comparison methods are

applied to the UKB data and significant genes identified are reported in Supplementary Table

S3.
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Figure Legends

Figure 1. Venn diagram of the number of significant genes identified by OWC, aSPU, GATES,

and GW for SCZ1.

Figure 2. Venn diagram of the number of significant genes identified by OWC, aSPU, GATES,

and GW for SCZ2.

Figure 3. Venn diagram of the number of significant genes identified by OWC, aSPU, GATES,

and GW for UKB.
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Table 1: Estimated type I error rates for different test methods.

α-level ST S2T AT GATES aSPU OWC

1× 10−3 1.02× 10−3 0.97× 10−3 1.04× 10−3 1.05× 10−3 1.00× 10−3 1.00× 10−3

1× 10−4 1.09× 10−4 0.91× 10−4 1.06× 10−4 0.99× 10−4 1.02× 10−4 1.00× 10−4

1× 10−5 1.10× 10−5 0.95× 10−5 1.00× 10−5 0.90× 10−5 1.10× 10−5 1.00× 10−5

2.8× 10−6 4.00× 10−6 3.00× 10−6 2.50× 10−6 2.00× 10−6 3.00× 10−6 3.00× 10−6

28

.CC-BY-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 20, 2019. ; https://doi.org/10.1101/709808doi: bioRxiv preprint 

https://doi.org/10.1101/709808
http://creativecommons.org/licenses/by-nd/4.0/


Table 2: Estimated power (%) under 2.8 × 10−6 significance level for different tests. Data are

simulated from N(A×4,R). A has 3 nonzero elements with different signs.

nonzero 4 nonzero A AT S2T ST GATES aSPU OWC

(4,2,1) (1,1,1) 68.0 8.5 68.5 16.5 83.5 95.0

(4,4,2) (1,1,-1) 69.0 45.0 45.0 28.5 65.6 93.5

(2,5,4) (1,-1,-1) 92.5 74.5 76.0 65.5 62.0 99.5

U(1,5) (1,1,1) 86.0 37.0 87.0 24.0 86.0 97.0

U(2,6) (1,1,-1) 71.5 71.5 19.0 58.0 68.0 85.5

U(2,6) (1,-1,-1) 70.0 70.5 19.5 65.5 64.5 88.5

N(3,4) (1,1,1) 83.0 60.0 83.5 74.5 88.5 94.5

N(3,4) (1,1,-1) 68.0 70.0 33.0 72.5 69.5 82.5

N(3,4) (1,-1,-1) 66.0 61.5 33.0 78.0 73.5 87.0
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Figure 1: Venn diagram of the number of significant genes identified by OWC, aSPU, GATES,

and GW for SCZ1.
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Figure 2: Venn diagram of the number of significant genes identified by OWC, aSPU, GATES,

and GW for SCZ2.
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Figure 3: Venn diagram of the number of significant genes identified by OWC, aSPU, GATES,

and GW for UKB.
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