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Abstract

The growth and division of eukaryotic cells are regulated by complex, multi-scale networks. In this
process, the mechanism controlling cell cycle progression has to be robust against inherent noise in the
system. In this paper, a hybrid stochastic model is developed to study the effects of noise on the control
mechanism of the budding yeast cell cycle. The modeling approach leverages, in a single multi-scale
model, the advantages of two regimes: 1) the computational efficiency of a deterministic approach, and
2) the accuracy of stochastic simulations. Our results show that this hybrid stochastic model achieves
high computational efficiency while generating simulation results that match very well with published
experimental measurements.

1 Introduction

The eukaryotic cell cycle is a complex process by which a growing cell replicates its DNA and divides into
two cells, each capable of repeating the process. Progression through the cycle is controlled by networks
of genes, mRNAs, and proteins, with interactions that can be modeled as chemical reaction channels. To
unravel the complex dynamics of multi-scale reaction networks in higher organisms such as human cells, it is
advisable to study single-cell organisms with molecular regulatory networks that are similar yet simpler. For
instance, experimental studies and mathematical models of frog eggs [1, 2], fission yeast [3, 4], and budding
yeast [5, 6] have shed light on mechanisms of cell cycle regulation in the cells of higher organisms. Extensive
experimental studies have been conducted particularly on the budding yeast (Saccharomyces cerevisiae)
to explore gene regulation and signaling pathways of relevance to cell growth and division [7–9]. Moreover,
various modeling approaches, such as deterministic models [10–12], Boolean networks [13–19], and stochastic
models [20–27], have been adopted to explore the roles of different gene and protein interactions in robust
progression through the cell cycle.

Among these models, a deterministic approach is most common. In this approach, the time-dependent
variation of each molecular species in the biochemical reaction network is described by a nonlinear ordi-
nary differential equation (ODE), in which the concentration of the substance is considered as a continuous
quantity that evolves deterministically over time. However, the time-evolution of molecular species within
the confined volume of a budding yeast cell (about 30 fL at birth) is not deterministic. Therefore, in
spite of being able to reproduce certain average characteristics of cell cycle progression in yeast cell pop-
ulations, a continuous-deterministic model cannot reproduce the cell-to-cell variability observed in wet-lab
experiments [28, 29]. For instance, Di Talia et al. [29] have reported that the coefficient of variation
(CV = standard deviation

mean ) for G1 time of budding yeast cells (growing on glucose) is 50%.
To capture such high levels of variability, stochastic models have been built using different strategies to

incorporate intrinsic and extrinsic sources of noise. In an early stochastic model of the fission yeast cell
cycle proposed by Sveiczer et al. [30], extrinsic noise was introduced by assuming some sloppiness in the
partitioning of cell volume and nucleus volume to daughter cells at division. A later model by Steuer [31]
examined the roles of intrinsic noise in cell cycle progression by adding Gaussian noise to reaction rate
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equations in a deterministic model. These approaches, however, do not adequately explain the root source of
cell-cycle variability in yeast cells, which lies in molecular fluctuations at the level of gene expression [32–34].
To capture such molecular-level noise, more accurate stochastic methods are required to explicitly model
fluctuations in molecular interactions. For this purpose, the best method to implement fluctuating molecular
interactions is the stochastic simulation algorithm (SSA) proposed by Gillespie [35]. Gillespie’s algorithm is
a Monte-Carlo approach that numerically simulates the temporal firing of every single reaction in a chemical
reaction network. An assumption of Gillespie’s method is that the propensity of every reaction in the model
is described by mass-action kinetics. This becomes an issue for us because most deterministic models of
cell cycle regulation, such as those presented in [5, 11, 12, 36], incorporate complex rate laws including
Michaelis-Menten kinetics, Hill functions, and ultra-sensitive switches. These complex phenomenological
rate laws are used in deterministic models to provide sufficient nonlinearity in reaction kinetics to create
bistable switches that flip on and off during progression through the cell cycle. Converting a deterministic
model into a stochastic model suitable for Gillespie’s SSA by ‘unpacking’ complex rate laws into elementary
reactions is a difficult problem fraught with uncertainties [37].

To address this challenge, several approaches have been tried. The simplest approach, used for example
by Mura & Csikasz-Nagy [38], treats all complex rate laws directly as propensity functions of reactions and
then applies the SSA. This approximation is subject to considerable errors [37, 39]. For example, Ball et
al. [21] found that the variability they observed in wet-lab measurements could not be generated by this
greatly simplified stochastic approach, unless some unrealistic parameter values were chosen. Later Kar et
al. [20] tried to unpack Michaelis-Menten rate laws in a small (three-variable), deterministic model of the
budding yeast cell cycle [5]. Unpacking resulted in a much more complicated system with 19 species and 47
reactions. Although this simple model (with only a few key cell-cycle genes) could generate noise levels that
match wet-lab measurements for a few key characteristics of the cell cycle, it is not feasible (in our experience)
to apply this approach to more complex models with substantially more genes and proteins. Instead, we have
pursued an approach in which the molecular controls of the budding yeast cell cycle are modeled directly
in terms of elementary reactions (governed by the law of mass-action) [25, 26]. A great advantage of this
approach is that the newly designed deterministic model can be converted into its corresponding stochastic
version without any approximation. A disadvantage of this approach is that we cannot re-purpose our
original deterministic models, which had been carefully designed and parametrized to explain a broad scope
of experimental observations. Furthermore, to model the phosphorylation and dephosphorylation reactions
that play such important roles in cell cycle progression introduces substantial complexity into the system.
Recently we have considered a new approach that sidesteps the complications of elementary reactions and
mass-action rate laws and that employs a Langevin-type simulation of noisy gene expression [23]. This
approach, though promising, also requires an overhaul of the original deterministic models. In order to
take advantage of existing deterministic models in a framework that permits accurate stochastic simulations
without ‘unpacking’, we explore a particular hybrid approach in this paper.

Gillespie’s SSA simulates every single reaction firing. In general, the time complexity of this algorithm
scales proportionally with the number of reaction firings. Consequently, SSA-based models involve sub-
stantial computational complexity if a reaction network involves many fast reactions. To reduce the high
computational cost of the SSA, many optimization methods [40–44] and approximation methods [45–49] have
been proposed. Among them the hybrid stochastic approach, originally proposed by Haseltine and Rawling
(HR) [47], performs well because it takes advantage of the multi-scale features common in biochemical reac-
tion networks. The main idea of the HR hybrid approach is to partition the dynamical system into fast and
slow reactions, based on the relative time scale of each reaction and the abundances of the reactants. Fast
reactions, which fire frequently and often involve high-abundance species, are partitioned into the determin-
istic (ODE) regime. Meanwhile, slow reactions, which are often found at the gene-expression level, fire much
less frequently and are therefore simulated using the SSA. This approach was first applied by Liu et al. [22]
on the simple three-variable model of the budding yeast cell cycle, originally studied by Kar et al. [20].
By partitioning all gene-expression reactions into the slow (SSA) regime and all protein-level dynamics into
the fast (ODE) regime, Liu et al. [22] were able to reproduce the noise levels that Kar et al. [20] achieved
by unpacking the original system into a much more complex one. This success motivated us to apply this
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approach to the very comprehensive, accurate, and complex deterministic model of Chen et al. [11].
Simulation results demonstrate that, while achieving high computational efficiency, our hybrid model

still matches up well with experimental measurements of the variability of cell-cycle-related properties (cycle
time, cell size, correlation coefficients), protein and mRNA abundances, and phenotypes of more than 100
mutant strains of budding yeast. Moreover, our simulations shed light on the ‘partial’ viability of mutant
strains such as CLB2db∆ clb5∆.

2 Model

2.1 Deterministic model

A comprehensive continuous-deterministic model of the budding yeast cell cycle was developed by Chen et
al. [11] in 2004. By integrating the findings of decades of experimental studies the Chen model provides an
accurate mathematical description of the cell division cycle of budding yeast. The protein regulatory network
of Chen’s model focuses primarily on the mutual antagonism between mitotic B-type cyclins (Clb1-6) and
G1 phase stabilizers (Cdh1, Sic1, and Cdc6). During the growth and division of yeast cells, this antagonism
leads to transitions between two coexisting steady states called START (G1→ S) and EXIT (M→ G1). A
detailed description of the budding yeast cell cycle model is given in Supplementary Information.

Chen’s mathematical model reproduces the average cell-cycle properties (including cycle time, G1 dura-
tion, and cell size at division) of wild-type budding yeast cells and the variant cell-cycle phenotypes of more
than 100 mutant strains. Our goal is to develop a hybrid (stochastic-deterministic) version of this large
regulatory network, in order to quantify the variabilities observed in cell cycle characteristics and mutant
phenotypes within a computationally efficient framework.

Since Chen’s model is formulated in terms of normalized (dimensionless) concentrations of proteins, the
first step to this goal is to convert the state variables of Chen’s model into integer numbers of molecules
per cell. This conversion facilitates comparison of our numerical simulation results with observed data from
single-cell experiments. Furthermore, it is necessary because, in Gillespie’s SSA, state variables are discrete
(species populations) rather than continuous (species concentrations). Since a hybrid model involves both
SSA and ODEs, it is important that we assure consistency between units of state variables in both the
stochastic and deterministic regimes. Therefore, we calculate Si, the number of molecules of species i in a
cell, from the corresponding normalized concentration, [Si]n, by (1):

Si(t) = NA · [Si](t) · V (t) = 0.6 · Ci · [Si]n(t) · V (t), (1)

where [Si] is the actual concentration of species i (in nanomoles/liter = 10−9 mol/L), Ci is the ‘characteristic’
concentration of species i (used to convert between actual concentration and ‘normalized’ concentration),
V (t) is the volume of the cell (in femtoliters = 10−15 L), and NA = 0.6 is Avogadro’s number (when
concentration is expressed in nM and volume in fL). One simplifying assumption made in published models
[21, 23] is to use a constant volume for the size of cell. However, this unrealistic assumption introduces errors
into the model because cell size (V ) increases exponentially during a cycle (V (t) = V (0)ekgt, where kg is the
specific growth rate of yeast cells).

Second, we extend the protein regulatory network in Chen’s model to include the dynamics of 11 regulated
and 8 unregulated mRNAs. This extension is necessary because the major source of intrinsic noise in yeast
cells is the small number of mRNA molecules per cell per gene [28]. Experimental observations [29] in yeast
cells with increased dosage of genes suggest that the dominant source of variability with respect to cell-cycle
time and cell size at division is the low copy number of mRNA and protein molecules in a cell, specifically in
G1 phase. However, Chen’s model did not incorporate the turnover of mRNA molecules, and thus it cannot
account for fluctuations stemming from transcriptional noise. For these reasons, Chen’s original model must
be supplemented with appropriate synthesis and degradation rates for each mRNA, as well as realistic rates
of translation from mRNA to protein. In our model, based on experimental observations in [50], we assigned
half-life times for mRNAs in the range of 5-10 min, except for mCln2 and mClb2, which were assigned
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shorter half-lives (3 and 2 min, respectively). The synthesis rate of each mRNA was then estimated to
match the mRNA average-abundance measurements in Ball et al. [28].

Third, we modified Chen’s model by introducing ODEs for the concentrations of Cln3 and Bck2 proteins.
In Chen’s original model, the normalized concentration of Cln3 and Bck2 were assumed to be given by
steady-state algebraic equations (2) and (3),

[Cln3]n =
C0 ·Dn3 ·mass
Jn3 +Dn3 ·mass

, (2)

[Bck2]n = B0 ·mass, (3)

where C0 determines the maximum concentration of Cln3, Dn3 is the dosage of the CLN3 gene, Jn3 and B0

are constants, and mass is the ‘size’ of a cell. We replaced the algebraic equations (2) and (3) by ODEs in
(4) and (5).

dCln3

dt
= ks,n3 · V 2(t)− kd,n3 · Cln3, (4)

dBck2

dt
= ks,k2 · V 2(t)− kd,k2 ·Bck2. (5)

The synthesis (ks,n3, ks,k2) and degradation (kd,n3, kd,k2) rate constants were estimated so that the half-
lives and average abundances of these proteins match with experimental data [51]. The reason for this
change is to model the unbalanced partitioning of Cln3 molecules between daughter and mother cells at cell
division. According to experimental observations, the concentration of Cln3 in a new-born daughter cell is
about 3 times less than its concentration in the mother cell [52, 53], indicating that mother cells get more
than their ‘fair share’ of Cln3 molecules at cell separation. As a consequence of this unequal partitioning of
Cln3 between mother and daughter cells at division, the G1 time of mother cells is much shorter and the
G1 time of daughter cells is much longer (on average) than would otherwise be expected. By including Cln3
and Bck2 as state variables in the model, we can apply an asymmetric partitioning rule with ratio of 20:80
to daughter and mother cells at cell division. We note that this ratio is set to 40:60 for all other proteins
and mRNAs, according to observations in [29].

Finally, we comment that the quadratic dependence of Cln3 and Bck2 synthesis rates on cell size is
introduced to account for the major influence that these two proteins have on cell size at the G1/S transition
[54, 55]. Because the rate of synthesis of these two proteins increases quadratically with cell volume, there
is a strong size control on the G1/S transition in our model.

In summary, the variables, equations, parameter values and reaction propensities in our model are pro-
vided in Supplementary Tables S1-S4 in Supplementary Text.

2.2 Hybrid Stochastic Model

As we mentioned in Section 1, the regulatory network of the budding yeast cell cycle is a multi-scale system:
both the numbers of molecules of mRNAs and proteins and the propensities of individual reactions vary
by orders of magnitude. For instance, in budding yeast cells, there are 500-5,000 copies of each protein
encoded by only 5-10 copies of the corresponding mRNA. Furthermore, the synthesis and degradation of
mRNA species occur much less frequently than the phosphorylation and dephosphorylation of proteins in
the cell. The HR hybrid method leverages these large scale differences to improve the efficiency of stochastic
simulations without sacrificing accuracy of the computations. The HR method divides the system into
subsystems, each including species and reactions with similar scales, and applies an appropriate simulation
method to each subsystem. This partitioning is done by using predefined thresholds for propensities of
reactions and abundances of reactants. In this way the system is divided into four disjoint regions: (I)
slow reactions with low-abundance reactants, (II) slow reactions with high-abundance reactants, (III) fast
reactions with low-abundance reactants, and (IV) fast reactions with high-abundance reactants. Then an
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Algorithm 1 Hybrid Stochastic Simulation Algorithm

HY BRID(Rfast,Rslow)

1: t← 0
2: while t < T do
3: Calculate the propensity function, ai, for all reactions in slow subset i = 1, ..., k.
4: Calculate total propensity function: a0(s, t) =

∑k
j=1 aj(s, t).

5: Generate two uniform random variables r1 and r2 in U(0, 1).
6: Integrate the ODE system until an event occurs at time t+ τ such that∫ t+τ

t

a0(s, x)dx+ lg(r1) = 0. (6)

7: Select the smallest µ such that:
∑µ
i=1 ai(s, t) > r2a0(s, t).

8: Update the state variables according to µth reaction in Rslow.
9: end while

Hybrid Stochastic Simulation Algorithm: Consider a well-stirred system with N species in a set S that interact
with each other through M reaction channels in a set R. The reactions in R are partitioned into two disjoint subsets
of fast and slow reactions denoted by Rfast and Rslow, respectively. The subset Rslow includes k reactions which
are simulated using SSA, while the remaining M -k fast reactions in Rfast are governed by ODEs. Let aj(s, t) be
the propensity function of the j-th reaction in Rslow, where s = (S1(t), . . . , SN (t)) is the state vector with each
element Si(t) representing the number of molecules of species i at time t. In addition, let vj = (vj1, . . . , vjN ) be the
state-change vector of the j-th reaction, where vji denotes the change in the population of species i when reaction j
fires. Let τ be the jump interval to the next slow reaction and µ be the index of the reaction that fires. The algorithm
only needs to simulate the firings of slow reactions, while integrating the fast subset of ODEs simultaneously in (6).
When a slow reaction fires, the corresponding state variables are updated. In this way the hybrid algorithm generates
trajectories of state variables as the system proceeds in time. More details on implementation can be found in [56–59].

appropriate simulation method is chosen for each region [22, 41, 47]. We follow the strategy proposed Liu
et al. [22] where the dynamics of all mRNAs (region I) is simulated by SSA, and the other three regions (II,
III, and IV) are modeled with ODEs. We shall refer to this partitioning as the ‘Liu strategy’.

In order to demonstrate the scale difference in our partitioning strategy, we approximate the propensity
function of every reaction by its corresponding rate law function (obtaining a stochastic model with 145
reactions) and track the firing frequency of each of these reactions in a test run of Gillespie’s SSA. Of
18 million reactions fired in one cell cycle, only about 34,000 (0.2%) involve mRNA turnover, and 99.8%
represent fast reactions of protein post-translational modifications. Based on this test run, we estimate
that our HR hybrid scheme will run at least 100 times faster than a brute-force Gillespie simulation of a
fully stochastic model. In section 3 we show that our hybrid stochastic model, using the Liu strategy, still
generates accurate results that agree well with experimental observations.

Algorithm 1 proposed in Liu et al. [22] describes the hybrid ODE/SSA algorithm adopted in this
paper, which is a variant of the original HR hybrid method [47]. Our hybrid stochastic simulation code that
implements algorithm 1 (a FORTRAN file) is available in Supplementary Code.

3 Results

Our hybrid stochastic model of the budding yeast cell cycle, consisting of 45 proteins and 19 mRNAs, is
simulated by Algorithm 1 to generate sufficiently large populations of mother and daughter cells to estimate
the statistical distributions of various cell-cycle-related properties of wild-type cells as well as 122 mutant
strains of yeast. We evaluate our model by comparing numerical simulation results with experimental
observations from the published literature.
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Figure 1: Deterministic and hybrid stochastic simulations of the model. A and B: The temporal dynamics
of representative proteins (A) and mRNAs (B) generated by the deterministic model. The volume of the cell increases
exponentially and is divided (at the arrows) asymmetrically between mother (55%) and daughter cell (45%). C and
D: Stochastic simulation of the same proteins (C) and mRNAs (D) as in panels A and B, generated by a representative
run of the hybrid stochastic model. Similar to the deterministic model, the cell grows exponentially; however, at the
time of division all species in the cell, except for Cln3 and Bck2, are partitioned between daughter and mother cells
with a 40:60 ratio, according to observations by Di Talia et al. [29]. Cln3 and Bck2, which are preferentially retained
in mother cells [52, 53], are partitioned with a ratio 20:80 between daughter and mother cells. The daughter cell is
tracked from division to division in the this simulation.

3.1 Wild-type cell

Figure 1 A and B show a deterministic simulation of several protein and mRNA species, respectively, in our
model of wild-type budding yeast cells. In early G1 phase, once the cell grows to a critical size, Cln3 and
Bck2 initiate the START event, i.e., the activation of transcription factors for Cln2 and Clb5 production. Cln2
is the cyclin responsible for bud formation. In addition, Cln2 phosphorylates Sic1 and Cdc6, a pair of cyclin-
dependent kinase inhibitors (CKIs). Consequently, Clb5-dependent kinase activity rises and initiates DNA
replication in S phase. As CKIs are removed, Clb2 level rises, because Clb2 activates its own transcription
factor, Mcm1, in an autocatalytic fashion. Clb2-dependent kinase activity turns off the transcription factors
for Cln2 and Clb5 production and is responsible for driving the cell into mitosis (M phase). Clb2 level
remains high until metaphase, when the proper attachment of chromosomes to the mitotic spindle activates
Cdc20. Cdc20 promotes anaphase (the separation of the two strands of replicated chromosomes to opposite
poles of the mitotic spindle). At the same time, Cdc20 promotes degradation of Clb2 and Clb5 and activation
of a phosphatase, Cdc14. Cdc14 plays a major role (in budding yeast) in re-establishing the dominance of
CKIs in G1 phase, and in replacing Cdc20 by Cdh1 (the protein responsible for Clb2 and Clb5 degradation
in G1 phase).

Figure 1 C and D show the corresponding stochastic trajectories of our hybrid stochastic model. The
stochastic trajectories in panel C correctly simulate the sequence of events predicted by the deterministic
trajectories in panel A. Panel D shows considerable fluctuations in the numbers of molecules per cell of five
mRNA species: three of which (mClb2, mCdc20, and mCln2) undergo periodic transcription during the
cell cycle, and two of which (mCdc14 and mNet1) are synthesized continuously throughout the cell cycle.
Such high variability is expected, due to the stochastic nature of gene expression and the low abundances of
mRNA molecules per cell.
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Table 1: Mean and coefficient of variation (CV) for cell cycle properties. Summary statistics including mean
and CV computed from a simulation of the hybrid stochastic model are compared with experimental observations
reported by Di Talia et al. [29]. Tdiv, TG1, TSG2M, and Vbirth are, respectively, cell cycle duration or the time between
two divisions, time from division to next emergence of bud, time from onset of bud to next division, and volume of
the cell at birth.

 

 Mother Cell : (mean , CV) Daughter Cell : (mean , CV) 

Hybrid model  Experiment Hybrid model   Experiment 

T
div

(min) (87.33 , 0.26) (87 , 0.14) (111.66 , 0.33) (112.0 , 0.22)

T
G1

(min)  ( 18.23 , 0.36) (16 , 0.5)  (37.51 , 0.59) ( 37.0 , 0.5) 

T
SG2M

 (min)  ( 69.10 , 0.30) (72 , 0.17) (74.15 , 0.36) (76.0 , 0.2) 

V
birth

 (fL) (40.89 , 0.28)   (40 , 0.18) ( 27.26 , 0.28) (28.0 , 0.20) 

We used our hybrid stochastic model to generate more than 10,000 asynchronous wild-type cells growing
in glucose medium (mass doubling time about 100 min). This large collection of simulated cells is then
used to estimate the distributions of important characteristics of the budding yeast cell cycle, including
inter-division time, duration of unbudded phase (G1), duration of budded phase (S-G2-M), and size at birth.
Table 1 compares the computed summary statistics of these cell cycle-related properties with experimental
data reported by Di Talia et al. [29]. The results in Table 1 show that the model accurately reproduces the
mean and coefficient of variation of these important properties of the wild-type budding yeast cell cycle.

Next, we compare our simulations to the observed distributions of mRNA molecules in wild-type yeast
cells. Figure 2 shows the histograms of 10 unregulated (mCdh1, mTem1, mCdc15, mCdc14, mNet1,
mCdc55, mEsp1, mSBF , mMBF , mMcm1, mAPC) and 8 transcriptionally regulated (mClb5, mCln2,
mClb2, mSic1, mCdc6, mSwi5, mCdc20, mPds1) mRNAs, in comparison to the distributions measured
by Ball et al. [28]. Generally, there is a good agreement between the observed and simulated mRNA
distributions, except for mCln1 + mCln2 and mCdc20. As expected, the unregulated transcripts follow
Poisson distributions, which are consistent with experimental measurements. The cell-cycle regulated tran-
scripts, which follow long-tailed, non-Poisson distributions, are well-fit by two-component Poisson distri-
butions as reported by [26, 28]. (We note that in our model mClb2 represents both mClb1 and mClb2,
and mCln2 = mCln1 +mCln2, whereas in the experiment these cyclin mRNAs are tracked independently.
Therefore, we do not expect a particularly good match between the computed and observed distributions
for these transcripts.)

Table 2 compares the average abundances of proteins as observed in [51] and simulated by our model.
The agreement is quite good, except for the Sic1.

3.2 Mutant Cases

3.2.1 Viability Criteria

Our hybrid stochastic model is used to simulate 122 mutant strains listed in Supplementary Table S5 in
Supplementary Text. Prior to presenting simulation results of these mutants, we discuss the criteria for
determining viability in a general stochastic model.

In the original deterministic model, a cell is considered viable if the following conditions are met:

1. certain events, listed in [36], take place in a proper sequence,

7

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 21, 2019. ; https://doi.org/10.1101/709691doi: bioRxiv preprint 

https://doi.org/10.1101/709691
http://creativecommons.org/licenses/by-nc-nd/4.0/


0

0.1

0.2

0.3
mTem1

N
o

rm
a
li
z
e
d

 c
e
ll
 c

o
u

n
ts

 

 

mCdc15 mNet1 mEsp1 mMcm1 mCln1 & mCln2

0

0.1

0.2

0.3

mSic1 mCdc6 mCdc20 mClb2 mCdh1 mCdc14

0 10 20
0

0.1

0.2

0.3

mCdc55

0 10 20

mSBF

0 10 20

mAPC

0 10 20

mClb5

0 10 20

mSwi5

0 10 20

mPds1

Number of mRNA molecules

 

 

Model Experiment

3.01

3.08

3.06

3.24

6.08

6.25

3.04

3.29

5.84

5.95

4.26

3.03

4.45

9.696.784.52

2.99

5.17

4.44.07

4.393.30

3.34

6.84 6.52 6.7 6.92 9.39 6.43

Figure 2: Histograms of mRNAs for a population of wild-type cells growing in glucose medium. The
histograms of mRNA molecules generated from a stochastic run of the hybrid model (in green) are compared with
experimental observations [28] (in red and blue colors) for a population of wild-type cells growing in glucose. (In
the simulation the growth rate is set to 0.0072 min−1 to reproduce the 96 min mass-doubling time of wild-type cells
growing in glucose culture medium.) The histograms in red are reproduced from the experimental data reported by
Ball et al.[28]. The average number of mRNA molecules is reported on the histogram and compared with experiment
where available. In our model mCln2 stands for both mCln1 +mCln2. In experiment, however, they are measured
separately. Here, the histograms in red and blue are, respectively, mCln1 and mCln2. Similarly, in our model mClb2
describes the abundances of both mClb1 and mClb2. However, the histogram reproduced from the experimental data
refers only to mClb2.

2. in particular, cell division occurs after budding, and

3. cell mass does not exceed a predetermined threshold (mass at division < 10).

The same set of rules should also apply to the stochastic model. A division is considered successful if the
aforementioned viability criteria are met; otherwise, the cell is considered to be inviable. From our numerical
simulations, the probability of successful division p is estimated by

p =
number of successful divisions

number of successful divisions + number of failures
.

Using this metric, we consider a mutant strain viable if p > 0.75, inviable if p < 0.65, and partially viable
otherwise. This viability criterion is based on the following considerations.

Let N0 be the initial population of cells in an experiment. After one cycle, the average number of cells
that divide is pN0, while (1 − p)N0 cells exit the cycle and stop dividing. Thus, after one cycle, the total
population of cells is (1 + p)N0, of which 2pN0 cells completed the previous cell cycle and (1 − p)N0 cells
have ceased to divide (we call them dead cells). In our simulations, we disregard the (1 − p)N0 dead cells;
hence, the number of actively dividing cells in the second cycle is N1 = 2pN0, and the expected number of
actively dividing cells after k cycles will be Nk = (2p)kN0.

In cell-viability experiments, colony formation is typically assessed after 24 h growth of a series of ten-fold
diluted inocula. For wild-type yeast cells (p ≈ 1) growing on rich glucose medium (cycle time ≈ 12 h), each
inoculum should increase by a factor of about 212 = 4096. The colony sizes after 24 h growth of ten-fold
serial dilutions would be (4000 N0, 400 N0, 40 N0, 4 N0), of which the first would be too dense to quantify,
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Table 2: Average abundances of protein molecules per cell. The average abundance of protein molecules per
cell, calculated from a simulation of the hybrid stochastic model, is compared with experimental observations reported
in [51]. In our model Clb5 stands for Clb5 and Clb6, Clb2 stands for Clb1 and Clb2, and Cln2 stands for Cln1 and Cln2.
We are reporting the total abundance of each protein, which includes protein molecules that are either phosphorylated
or unphosphorylated, and that are bound in complexes or free. That is, Clb5T = Clb5 + C5 + C5P + F5 + F5P,
Clb2T = Clb2 + C2 + C2P + F2 + F2P.

 

 
Protein 

Average abundance  
Protein 

Average abundance 

Experiment Hybrid model Experiment Hybrid model 

Cln3 108 128  Swi5T 688  661 

Cln2T  

= Cln1 + Cln2 
1589 

= 319 + 1270 
1527 Tem1 573  542 

 Clb5T  420  463 Cdc15  238  245 

Clb2T 693  700 Net1T  1590  1810 

Sic1T  768  471 Cdc55  3170  3203 

 
 

the last would be too sparse to see, and the middle two would be used to assess viability of mutant strains.
For a mutant cell with p < 0.5, no visible colony will grow from the initial inoculum, and the mutant will
be scored ‘inviable’. For mutant strains with 0.5 < p < 1, we must consider how the colony growth assay
compares to wild-type cells. For p = 0.8 the initial inoculum grows to 280 N0, which is comparable to the
first dilution of the wild-type cells, and we would score this mutant strain as ‘viable’. For p = 0.75 the initial
inoculum grows to 130 N0, which is denser than the second dilution of the wild-type cells, and we would
score this mutant strain as ‘probably viable’. For p = 0.65 the initial inoculum grows to 23 N0, which is
less dense than the second dilution of the wild-type cells, and we would score this mutant strain as ‘hardly
viable’. These calculations suggest that a mutant strain be considered viable if p ≥ 0.75 and nonviable if
p ≤ 0.65. For 0.65 < p < 0.75, the strain is identified as partially viable.

Based on these criteria, we assessed the viability of 122 mutant strains of budding yeast that were studied
in the modeling paper of Chen et al. [11]. To demonstrate the significant roles of noise in some of these
mutants, we discuss two multiple-mutant strains, cln1∆ cln2∆ bck2∆ and cln3∆ bck2∆ multi-copy CLN2
(Fig. 3), in some detail. According to experimental observations, the cln1∆ cln2∆ bck2∆ strain [60] is
viable. However, due to deletion of START cyclins Cln1 and Cln2, the cell requires a longer time than normal
to form a bud and hence grows to a larger size at division, in comparison with wild-type cells. Figure 3A
shows that in the deterministic model the cell consistently exits mitosis and divides successfully with size
larger than normal, as observed experimentally [60]. In the hybrid stochastic simulation, however, due to
the stochastic nature of the process there is a finite probability that a cell may exit the cycle and become
arrested in some phase of the cell cycle. In Fig. 3B for instance the cell grows too large in G1 phase and
never divides again, while in Fig. 3C, it exits mitosis and divides successfully. The probability of successful
completion of the cell division cycle, in this case, is computed to be p ≈ 0.84. As shown in Fig. 3D, the total
number of cells in our computational culture increases exponentially, with a number-doubling time (NDT) of
140 min, which is slower than the number-doubling time NDT (approx 100 min) of a fully viable wild-type
culture. Therefore, we conclude that the hybrid stochastic simulation correctly confirms the viability, but
the reduced growth rate, of the cln1∆ cln2∆ bck2∆ strain.

Next we consider the inviable mutant strain cln3∆ bck2∆ multi-copy CLN2 [61]. Figure 3E shows that
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Figure 3: Comparison of deterministic and stochastic trajectories in two different double-mutant
strains. A: Deterministic trajectories of cln1∆ cln2∆ bck2∆; the cell consistently exits mitosis and divides (the
divisions are indicated by arrows). B-C: Stochastic trajectories of cln1∆ cln2∆ bck2∆ from two independent runs.
In panel B the cell becomes arrested in G1 phase while in panel C the cell divides successfully. D: The total number
of cells as a function of time; we start each simulation with one cell and count the total number of cells over time for
2000 min. The probability of division is calculated as p ≈ 0.84 which indicates that the cln1∆ cln2∆ bck2∆ strain is
viable according to our definition. The semilog plot in panel D shows that the number of cells increases exponentially
(NDT ≈ 140 min) in our computational culture. E: Deterministic trajectories of cln3∆ bck2∆ multi-copy CLN2;
the cell arrests permanently in G1 phase. F-G: Stochastic trajectories of cln3∆ bck2∆ multi-copy CLN2 from two
independent runs. In panel F the cell becomes arrested in G1 phase after one cycle, while in panel G the cell exits
mitosis and divides successfully several times. H: The total number of cells as a function of time; we start the
simulation with 1000 cells and count the total number of viable cells over time for 2000 min. The probability of
division is calculated as p ≈ 0.40 which indicates that the cln3∆ bck2∆ multi-copy CLN2 strain is inviable. The
semilog plot in panel H shows that the total number of cells decreases exponentially in our computational culture.
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Figure 4: Stochastic phenotypes of two more mutant strains. A: Comparison of wild-type and
CLB2db∆ clb5∆ mutant cells growing in raffinose. The probability that a cell divides with a cycle time longer
than a specific time T is plotted for wild-type cells (solid lines) and mutant cells (dotted lines). The black lines are
generated by our hybrid stochastic model and the red-blue-green lines are the results of three independent experimen-
tal runs by Ball et al. [21]. To model growth on raffinose medium in our simulation, the specific growth rate of cells
is set to 0.00433 min−1 (MDT = 160 min). B: Comparison of cell proliferation for colonies of CLB1 clb2∆ cdh1∆
cells growing in glucose (blue) or galactose (red). The probability of division in our computational culture is given in
the boxes next to each simulation. To mimic growth in glucose and galactose media, respectively, the specific growth
rates are set to 0.0072 and 0.004621 min−1, i.e., MDT = 96 and 150 min, respectively.

in the deterministic model the mutant cell is arrested in G1 phase and grows without dividing until it dies.
In the hybrid stochastic simulation, although many of the cells become arrested in G1 (see Fig. 3F), some
cells manage to exit G1 phase, complete the cell cycle, commence a new cycle and divide a few times (see
Fig. 3G). Nonetheless, according to Fig. 3H the total number of cells in our computational culture declines
with time, because the probability of cell division is only p ≈ 0.40. Therefore, we conclude that the hybrid
stochastic simulation correctly confirms the inviability of cln3∆ bck2∆ multi-copy CLN2 strain.

Based on our hybrid stochastic simulations of all 122 mutant strains in Chen’s data base, we find that
the model successfully reproduces the phenotypes of 103 of these strains. Our results for all mutant strains
are reported in Supplementary Table S5 in Supplementary Text.

CLB2db∆ clb5∆ is a mutant with an interesting stochastic phenotype: it is inviable when grown on
glucose medium but ‘partially viable’ when grown on raffinose (a sugar that supports a slower growth rate
than glucose) [62]. Due to deletion of the destruction box of CLB2, Clb2 protein is in excess at telophase
and the cell is unable to exit mitosis and divide, even in the absence of Clb5 protein (due to deletion of the
CLB5 gene). When growing on raffinose, however, many of these mutant cells (approximately 60%-75%)
are able to exit mitosis and commence a new cycle, whereas the remaining cells (25%-40%) are arrested in
telophase and never re-enter the cell cycle [21]. In fact, the NDT of the double-mutant cells (250 - 300 min)
is observed to be much longer than the NDT of wild-type cells (160 min) growing in raffinose medium [21].

Simulation results of Chen’s deterministic model predict that CLB2db∆ clb5∆ cells are inviable on
glucose and viable on galactose and raffinose media. Clearly, we cannot expect a deterministic model to
capture the stochastic properties of such a ‘partially viable’ mutant strain. Our hybrid stochastic model,
however, describes the phenotype in exquisite detail. The probability of division for CLB2db∆ clb5∆ strain
is p ≈ 0.65 confirming the partial viability of the mutant according to our viability criterion. Figure 4A shows
the cumulative probability, P (T ), of cycle times for wild-type and CLB2db∆ clb5∆ mutant cells growing in
raffinose. (P (T ) is the probability that the cycle time of a randomly chosen cell is longer than a specified
time, T .) As shown in Fig. 4A, P (T ) for the mutant cells levels off at approximately 35% as T increases,
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whereas, for wild-type cells, P (T ) drops steadily (below 5%) as T increases beyond 250 min. Cumulative
distributions of cycle times computed by our hybrid stochastic model (black lines) are in excellent agreement
with the experimental distributions (red-blue-green lines) for both wild-type and the double-mutant cells.

Another interesting mutant strain is CLB1 clb2∆ cdh1∆, for which the CLB1 gene is intact and CLB2
and CDH1 genes are deleted. Due to the mutual antagonism between Clb2 and Cdh1, deletion of both
genes, CDH1 and CLB2, might be consistent with viability of the double-mutant strain, provided Clb1 is
still functional. Indeed, experimental observations show that CLB1 clb2∆ cdh1∆ cells are poorly viable in
glucose medium and viable when growing on galactose [62]. Chen’s deterministic model does not capture this
phenotype; the model predicts the mutant cells to be viable in both media. However, simulation results of
our hybrid stochastic model (Figure 4B) can reproduce the observed phenotype. The probability of division
computed for a population of cells growing in glucose is ≈ 0.62, which suggests poor viability. In galactose the
corresponding probability of division is ≈ 0.79, which indicates that the mutant grows well in this medium.
Figure 4B confirms a faster increase in cell number in the slower growth medium (galactose) which is in
agreement with experimental observations.

4 Discussion

In this paper we present a hybrid stochastic model of the molecular mechanism controlling progression
through the budding yeast cell cycle. Our model provides a good match with experimental observations of
many important characteristics of the budding yeast cell cycle, including inter-division time, cell size, and
the phenotypes of more than 100 mutant strains. Compared with other approaches to stochastic modeling,
our hybrid stochastic approach has several advantages. In a multi-scale regulatory network such as cell
cycle controls, the major source of intrinsic noise can be attributed to low copy numbers of mRNA species
in the gene-protein regulatory network. In fact, in budding yeast cells there are only 5-10 copies of each
mRNA species encoding the production of corresponding proteins at levels of 500-5,000 molecules per cell.
In such circumstances, small fluctuations in the population of mRNAs will result in substantial fluctuations
in the corresponding protein levels. With this in mind, the key idea of the hybrid scheme is to partition
the dynamics of mRNA species into the stochastic regime, in order to capture the major effects of random
fluctuations in mRNA numbers, and to keep the protein dynamics in the deterministic framework, to achieve
greater simulation efficiency. In addition, in this scheme it is not necessary to reformulate the complex rate
laws governing protein interactions as elementary mass-action rate laws, which is a great advantage from a
modeling standpoint.

In this paper, we have applied our hybrid stochastic method to a detailed molecular mechanism of cell
cycle controls in budding yeast [11]. To apply our scheme to Chen’s model, which is a deterministic model
of protein interactions, we first had to extend the model to include mRNA species that are transcribed from
cell-cycle genes and translated into proteins. Then we carried out comprehensive simulations of wild-type
yeast cells and more than 100 mutant strains, using both the deterministic and hybrid ODE/SSA mod-
els. Our stochastic model predicts the statistical properties of many different cell-cycle variables, including
inter-division times, size at birth, and the abundances of specific mRNAs and proteins, and our stochastic
simulations are in accord with most experimental observations, including detailed phenotypic characteristics
of 103 out of 122 mutant cases. (Although Chen’s deterministic model may seem to ‘score’ better on the
‘viability’ of mutant strains, it is not so highly constrained as our stochastic model by consideration of the
statistical properties of these mutant cells, especially the characteristics of ‘partially viable’ mutants.) In ad-
dition, our results prove that our hybrid approach to stochastic/deterministic simulations can achieve a good
trade-off between accuracy and efficiency of numerical simulations. FORTRAN code takes about 15 min to
simulate 10,000 cell cycle on an Intel i7-3770 processor with 16G memory running a Linux environment. A
similar system using a fully stochastic model may take more than one day (the FORTRAN code by Barik
et al.[26] is run using the same work station; it takes more than 30 hours to generate similar computational
population of yeast cells).
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Supplementary Information

Supplementary information includes two files: one for the Supplementary Text and one for the Supple-
mentary Code. In the Supplementary Text, we present more details for the cell cycle model used in this
paper. Supplementary Tables S1-S4 list the time-dependent variables, differential equations, reactions and
propensity functions, and parameter values. In Supplementary Table S5 we compare simulation results of
122 mutant strains with the observed phenotypes in experiment. The Supplementary Code file includes our
hybrid model code in FORTRAN and statistical analysis code in MATLAB.
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