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ABSTRACT 

Motivation: Current technologies for single-cell transcriptomics allow thousands of cells to be 

analyzed in a single experiment. The increased scale of these methods led to a higher risk of cell 

doublets’ contamination. Available tools and algorithms for identifying doublets and estimating their 

occurrence in single-cell expression data focus on cell doublets from different species, cell types or 

individuals.  

Results: In this study, we analyze transcriptomic data from single cells having an identical genetic 

background. We claim that the ratio of monoallelic to biallelic expression provides a discriminating 

power towards doublets’ identification. We present a pipeline called BIRD (BIallelic Ratio for 

Doublets) that relies on heterologous genetic variations extracted from single-cell RNA-seq (scRNA-

seq). For each dataset, doublets were artificially created from the actual data and used to train a 

predictive model. BIRD was applied on Smart-Seq data from 163 primary fibroblasts. The model 

achieved 100% accuracy in annotating the randomly simulated doublets. Bonafide doublets from 

female-origin fibroblasts were verified by the unexpected biallelic expression from X-chromosome. 

Data from 10X Genomics microfluidics of peripheral blood cells analyzed by BIRD achieved in average 

83% (± 3.7%) accuracy with an area under the curve of 0.88 (± 0.04) for a collection of ~13,300 single 

cells.  

Conclusions: BIRD addresses instances of doublets which were formed from cell mixtures of identical 

genetic background and cell identity. Maximal performance is achieved with high coverage data. 

Success in identifying doublets is data specific which varies according to the experimental 

methodology, genomic diversity between haplotypes, sequence coverage, and depth.  
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1 INTRODUCTION  

Single-cell RNA sequencing (scRNA-seq) technology has evolved very rapidly in recent years 

(Kolodziejczyk, et al., 2015; Lan, et al., 2017; Zheng, et al., 2017; Zilionis, et al., 2017). scRNA-seq 

enables higher resolution of the expression profile of cells within cells tissue and enables accurate 

assessment of the single cells’ identity and variability. This new technology has been applied to a wide 

range of biological studies and across many organisms, including rodents and humans. Complex tissues 

were dissociated and sequenced by scRNA-seq resulting in cataloging cells by their types determining 

tissue composition (Usoskin, et al., 2015; Villani, et al., 2017; Zeisel, et al., 2015) and identifying 

overlooked cell types (Buettner, et al., 2015). 

All scRNA-seq studies rely on profiling cell transcriptomes. The main hurdle in obtaining reliable and 

high-quality data from scRNA-seq stems from the limited amounts of RNA per cell and the stochastic 

nature of transcription (Ilicic, et al., 2016). Specifically, the majority of current scRNA-seq methods 

suffer from low capture efficiency and high dropouts (Haque, et al., 2017). Additionally, all single-cell 

expression data are signified by a strong signal of monoallelic expression which is not detected from 

the sequencing pools of cells. The dominant monoallelic expression of single cells (Borel, et al., 2015; 

Jiang, et al., 2017) is attributed to allelic dropout of transcripts due to the insufficient coverage, and to 

the cellular phenomenon of “transcriptional burst” (Reinius and Sandberg, 2015). The latter means that 

each of the alleles has its kinetics, thus at any specific time expression mostly stems from a single allele 

(Larsson, et al., 2019).  

Innovative technologies for scRNA-seq were developed to increase high throughput while minimizing 

biological intrinsic and technical errors (discussed in (Bacher and Kendziorski, 2016; Chen, et al., 2019; 

Hashimshony, et al., 2016)). Some methods make use of fluorescence-activated cell sorting (FACS) 

(Kolodziejczyk, et al., 2015; Wagner, et al., 2018) and microfluidic-based platforms, such as the C1 

Single-Cell Auto Prep System (Fluidigm) (Xin, et al., 2016). These methods are usually followed by a 

full-length transcript sequencing as in Smart-seq2 (Picelli, et al., 2014). Others use droplet microfluidic 

procedures that combine a tagging step before cell lysis (reviewed in (Chen, et al., 2019; Klein, et al., 

2015). Advances in the droplet technique allow capturing beads with a single cell per droplet (dscRNA-

seq) thus increasing the scale for single-cell transcriptomic by two orders of magnitude (Fan, et al., 
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2015; Sheng, et al., 2017). These protocols primarily use only poly-A sequencing and are thus biased 

toward the 3’ side of the transcript. Most current-day protocols include additional steps of barcoding 

the transcripts by UMIs (unique molecular tag identifiers) (Klein, et al., 2015), and further improvement 

of the capturing efficiency (Sheng and Zong, 2019).  

One of the pitfalls in the field concern a faulty identification of a doublet of cells as a single cell. 

Doublets rate depends on the concentration of the input cells which is estimated from the dilution 

Poisson statistics (Macaulay, et al., 2017). An increase in doublets rate is also associated with the unique 

features of the subjected tissue and cells’ isolation protocols. New methods for increasing cell capturing 

that reduces costs include multiplexing protocols (Zheng, et al., 2017). By increasing the number of 

cells as input, the multiplexed droplet RNA-Seq (dscRNA-seq) benefits from reducing technical noise 

(Zhang, et al., 2019). However, as a byproduct, it leads to an unavoidable increase in the number of cell 

doublets. One of the methods to identify the rate of doublets in the data includes mixing cells from 

different origin (e.g., rodents and human (Zheng, et al., 2017)). Alternatively, the dscRNA-seq setting 

was carried over single cells from several individuals with a different genomic background that were 

intentionally mixed for estimating the fraction of doublets in the sample (Kang, et al., 2018). Benefiting 

from the SNP profile of each individual, the Demuxlet algorithm was applied to estimate mixed 

individual doublets (Kang, et al., 2018). A recently published Scrublet algorithm analyzes single cells 

for identifying problematic multiplets according to the nearest neighbor graph-based classifier (Wolock, 

et al., 2019). DoubletFinder (McGinnis, et al., 2019) makes use of the unique cell-state expression 

profiles for identifying doublets from transcriptionally distinct cells. While these set of methods can 

differentiate cell mixtures from distinct individuals and cell types, they do not attempt to differentiate 

cells that originate from the same source or cell type.  

In this study, we analyze data from scRNA-seq and dscRNA-seq for identifying doublets without any 

prior knowledge of cell-type composition. Instead, we take advantage of monitoring allele-specific 

expression biases. The method called BIRD (BIallelic Ratio for Doublets) relies on analyzing 

heterologous SNPs present in scRNA-seq data. We report on the accuracy of identifying doublets which 

is strongly dependent on sequencing methodologies, coverage, depth and the degree of allelic diversity 

in the genomic data.  
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2 MATERIALS AND METHODS  

2.1 Dataset of single cells  

Dataset 1. Primary human fibroblasts: A dataset of scRNA-seq of female fibroblast UCF1014 was 

downloaded from the European Genome-phenome Archive (https://www.ebi.ac.uk/ega/home) using 

accession number EGAD00001001083. The data consist of two sets of scRNA-seq: 104 cells (22 PCR 

cycles) and 59 cells (12 PCR cycles). The data was collected in a C1 Auto Prep System (Fluidigm) 

device and sequenced using full transcript Smart-seq2 (Picelli, et al., 2014). DNA-seq of UCF1014 was 

also downloaded from EGAD00001001084. The sequence data was produced and described by (Borel, 

et al., 2015). 

Dataset 2: Peripheral human blood mononuclear cells: The data was created and described in (Kang, et 

al., 2018). Peripheral blood mononuclear cells (PBMCs) scRNA-seq from 8 different individuals were 

downloaded from the Gene Expression Omnibus (GEO) database, accession number GSE96583. This 

dataset contains 3 different runs. Two of the runs include a mixture of scRNA-seq from 4 different 

individuals (run_a and run_b sets). The third run is a mixture of all 8 individuals scRNA-seq data 

(run_c). Cells were sequenced using 10X Genomics (Chromium instrument) methodology. Additional 

VCF files of exome sequencing of these individuals were extracted through Github link 

(https://github.com/yelabucsf/demuxlet_paper_code/tree/master/fig2). It shares also an additional file 

determining the individuals’ origin per each scRNA-seq as processed by the Demuxlet tool (Kang, et 

al., 2018). Only cells that were assigned by Demuxlet to belong to the same individual and therefore 

could not be explicitly annotated as singlets or doublets were used for further analysis by our 

methodology.  

2.2 Biallelic score for single cells 

To correctly estimate the Allelic Specific Expression (ASE) and specifically, the degree of biallelic 

expression of each cell, the DNA-seq of cell line UCF1014 was used to create a collection of all 

heterozygous SNPs (hSNPs) using Gene Analysis Toolkit (GATK (Van der Auwera, et al., 2013)). All 

the hSNPs were kept in a VCF file. The RNA-Seq reads were preprocessed using Trimmnomatic 

(Bolger, et al., 2014) with its default parameters. Using STAR (Dobin and Gingeras, 2015) each 
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scRNA-seq FastQ file was aligned against the GRCh37 (hg19) UCSC female reference (after excluding 

Y chromosome). The BAM output of the alignment and the hSNPs VCF were processed using 

Allelcounter-master (Castel, et al., 2015). The tool creates a table containing the number of reads for 

each SNP that matches the Reference (Ref) and the Alternative (Alt) alleles. Then we processed the 

table into two tables, one for the Ref alleles and the other for the Alt alleles. Both tables contain the 

number of reads assigned to each cell for each hSNP. An observation was considered for cells having 

≥6 reads for a specific hSNP in a specific cell. The same procedure was applied to all single cell datasets 

analyzed (described in 2.1).  

For the PMBC dscRNA-seq data (Dataset 2) BAM files of the 3 runs were split to single cell BAM files 

to maintain an individual-based BAM file per cell. Each single cell was identified according to its 

unique cell-based barcode. Each BAM file was coupled to its corresponding individual VCF according 

to the identification by the Demuxlet algorithm. (Kang, et al., 2018) and was preprocessed by 

Allelcounter-master (Castel, et al., 2015). We then unified all cells that share a specific run, for a 

specific individual into two tables containing the number of reads for each hSNP that matches the Ref 

and the Alt alleles. As each individual contains its own set of hSNPs, tables for the Ref, Alt were created 

for each of the 16 run-individual pairs. In this analysis, for an hSNP to be considered, we required the 

number of reads to be ≥3 per hSNP of the subjected cell. 

For both datasets we calculate for every available hSNP the Allelic Ratio (AR) of that hSNP in a specific 

cell as: 

𝐴𝑅#$ = 	 '
#𝐴𝑙𝑡	𝑟𝑒𝑎𝑑𝑠

#𝐴𝑙𝑡	𝑟𝑒𝑎𝑑𝑠 + #𝑅𝑒𝑓	𝑟𝑒𝑎𝑑𝑠
2
#$

 

Where h refers to hSNP and c to a specific cell. 

The AR ranges from 0 to 1. The value is zero when there was no observed expression from that hSNP. 

Values of 0.001 and 1 correspond to reads that were fully aligned to the Ref or Alt alleles respectfully. 

Genuine biallelic hSNP values are bounded by 0.1<=AR<0.9. 

An allele independent score for Biallelic Ratio (denoted BAR) was calculated as follows:	For a given 

cell and a given gene, let 𝑖 be an index of the informative (heterozygous) variants, and define by 𝑅𝑒𝑓4 

and 𝐴𝑙𝑡4 the number of reference and alternative reads each informative variant. Define by 𝑇𝑜𝑡4 =
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𝑅𝑒𝑓4 + 𝐴𝑙𝑡4 the total number of reads for the variant and by 𝑀𝑖𝑛4 = 𝑚𝑖𝑛	{𝑅𝑒𝑓4, 𝐴𝑙𝑡4} the  minimal 

number of reads out of the two alleles of the variant. Let  𝑖∗ = 𝑎𝑟𝑔𝑚𝑎𝑥4(𝑀𝑖𝑛4) be the most informative 

variant with the maximal biallelic ratio (for the given cell and gene combination). We then define the 

Biallelic Ratio (BAR) of the cell-gene as: 

 𝐵𝐴𝑅 = C4DE∗
FGHE∗

   

Then, for each cell we take the average BAR of all its expressed genes. Supplemental Fig. S1 shows 

examples for calculating BAR which ranges between 0 and 0.5. In a formal notation 

𝐵𝑖𝑎𝑙𝑙𝑒𝑙𝑖𝑐	𝑅𝑎𝑡𝑖𝑜$J =
CKLMC4D{#NOP	QOKRSET,#UVH	QOKRSET}WXT

{#NOP	QOKRSEXTY#UVH	QOKRSEXT}
 

i- Heterozygous SNP location (In the numerator stands for the specific SNP that was Max in the 

denominator), c stands for cell and g for a gene.  

2.3 Doublet simulation and validation 

To create a reference dataset of doublets, we created doublets in silico for each of the analyzed datasets 

separately (see 2.1). For the simulations we randomly sample 10% of the single cells to become cell 

doublets (creating a composed collection with 5% of the original cells being simulated doublets). We 

create pairs of cells, and for each pair we sum their corresponding reads from the Ref and Alt tables. 

Following summation, for the fibroblast data (Dataset 1), we randomly down-sample the reads to the 

average cell reads number. Due to the low coverage of the PMBCs data (Dataset 2) we skipped this 

step. In each simulation, we recorded the BAR values for the singlets and the simulated doublets. The 

procedure of creating simulated doublets was repeated 100 times. For each run, we record the average 

of the BAR values for all the singlets or all simulated doublets. 

The fibroblasts that composed Dataset 1 is of a female origin (Borel, et al., 2015). In these primary cells 

the Chromosome X inactivation phenomenon was fully maintained (Wainer-Katsir and Linial, 2019). 

Thus, we used the unique property of X-inactivation to obtain an expression pattern that matches the 

cell specific activation of one of the X-chromosomes (Garieri, et al., 2018). Specifically, we calculate 

AR per hSNP per cell. Then, we calculated AR* for assessing the biallelic ratio for chromosome X. 
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AR* balances between the hSNP expression from either the Ref or Alt alleles. We considered AR* to 

be 1-AR in cases that AR>0.5, thus 0<=AR*<=0.5. 

𝐴𝑅 ∗	= 	 ' 𝑖𝑓	𝐴𝑅 ≤ 0.5							𝐴𝑅
𝑖𝑓	𝐴𝑅 > 0.5				1 − 𝐴𝑅 

To avoid a noisy signal from a sporadic expression of hSNP, we considered only SNPs that were 

transcribed in >25% of the cells. We also removed hSNPs that were fully monoallelic to the Ref or the 

Alt allele (i.e., AR* <0.1). Out of these hSNPs, for each cell we calculate the average of AR*. Cells 

with an average AR* score of >0.05 show an unexpected biallelic X chromosome expression and were 

thus considered suspicious as doublets.  

 

2.4. Statistical measures for cell doublet identification 

For both datasets Mann-Whitney U test was used to determine differences between singlets and 

doublets according to the BAR values. For Dataset 1 that is based on Smart-seq2 we applied a Gaussian 

Mixture Model (GMM) that differentiates the groups of singlets from doublets. The GMM was set with 

two components one seeking the singlets and the other the doublets. The features that were given to the 

GMM include (i) the Biallelic Ratio (BAR) of each of the cells, and (ii) the number of expressed genes 

in heterozygous sites in each of the cells.  

Dataset 2 (based on 10X Genomics technology) is signified by poor coverage (Supplemental Fig. S4 

and Fig. S5), therefore, we included additional features per cell for recovering doublets. The four 

features that were used are: (i) The number of reads over all heterozygous positions; (ii) The number of 

expressed genes having heterozygous positions; (iii) The average BAR values; (iv) The fraction of 

genes defined as biallelic out of all genes expressed in that cell. Each of these features was standardized 

according to the specific run-individual pair (Kang, et al., 2018). Each of the standardized datasets was 

trained on its own values. The datasets were split to training and test sets (with the training set covers 

75% of the data). We applied Random Forest procedure with the 4 listed features for recording the 

statistical results. Operating the Random Forest classifier was done with the following parameters: 

n_estimators=100, random_state=42, min_samples_leaf=sqrt(sample size), 
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min_samples_split=2*sqrt(sample size). Additionally, singlets and doublets were equal weighted by 

demanding the class_weight to be balanced.  

Sensitivity, specificity and accuracy in doublets identification were measured according to the success 

and failure in detecting simulated and candidate doublets. ROC curve and AUC were calculated for 

each run-individual pair, for each of the different runs (run_a, run_b and run_c) and for the combined 

set of all three runs. 

 

2.5. Cell separation by gene expression matrix 

In this part, we followed the protocol in (Lun, et al., 2016). Count matrix of genes over cells was created 

for each of the samples using HTSeq (Anders, et al., 2015). The genes to cells matrix was analyzed 

using SingleCellExperiment Package (Risso, et al., 2018), scater package (McCarthy, et al., 2017) and 

scran (Lun, et al., 2016). Rtsne package was used to create the t-distributed stochastic neighbor 

embedding (t-SNE) (Pezzotti, et al., 2017) representation of the 26 first principal components of the 

PCA of the gene expression profile of each of the run-individual pairs.  

 

3 RESULTS  

3.1 Overview of the BIRD pipeline 

In single cells transcriptomics, monoallelic expression of alleles across each of the heterozygous 

positions is a common phenomenon (Fig.1A). The majority of the hSNPs are monoallelic due to the 

stochastic nature of expression (Borel, et al., 2015; Reinius and Sandberg, 2015). In doublets if one cell 

expresses one of the alleles and the other cells the different allele, the result is a shift towards the 

biallelic expression profile (i.e., 0.1<=AR<0.9). Therefore, a signal with AR centered around 0.5 

represents a product of expressing hSNPs derived from both alleles. The key concept underlying BIRD 

is that doublets can be identified by a signal derived from the shift toward higher biallelic expression 

ratio (BAR, see Materials and methods, Supplemental Fig. S1). The transformation of each gene and 

each cell from AR to its average BAR value is illustrated (Fig. 1B, left). The distribution of BAR values 

from all cells is indicative for the presence of cells that display a substantial biallelic expression and 

thus are most likely cell doublets (Fig. 1B, right). Testing the performance of BIRD to identify doublets, 
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is based on artificially creating doublets by combining expression profiles from random single cells and 

testing the potency of statistical methods to correctly identify such in silico simulated doublets (Fig. 1C 

and Fig. 1D).  

3.2 BAR values for the fibroblast scRNA-seq data 

The human primary fibroblast cells (total of 163 single cells) are comprised of two datasets according 

to the PCR protocol used for creating the sequencing library. The first collection consists of 104 cells 

that underwent 22 PCR cycles, and the second set consists of 59 cells that underwent 12 PCR cycles. 

Due to the different PCR protocols, the sequencing depth is different between the two cell collections 

(Supplementary Fig. S2) and they are thus treated for the BIRD protocol as independent sets. Fig. 2 

shows the results of doublet simulations for each of these datasets. The distributions of the means of 

singlets vs doublets for 100 simulation runs (each with 5% of artificially created doublets) are shown 

in Fig. 2A and Fig. 2C. Both datasets resulted in a perfect separation with (Mann-Whitney U test 

statistic=0, and p-value <e-34). The cell values for a single simulation run are also very significant (Fig. 

1B and Fig. 1D). The results from the 104 cells (22 PCR cycles) and the 59 cells (12 PCR cycles) show 

Mann-Whitney U test with a p-value of 4.25e-30 and 1.43e-17, respectively. The results of identifying 

doublets are data-specific but highly significant for the two cell collections despite the different 

sequencing depth associated with each. 

3.3. Doublets verification based on Chromosome X inactivation expression pattern 

The primary fibroblast cells are of a female origin. Thus, in each cell, only one of the two X 

chromosomes is active (i.e. Xa) while the other is inactivated. The expression patterns for the subset of 

hSNPs on Chromosome X having substantial evidence are shown (Fig 3A). Most cells (columns) are 

signified by a single expression pattern that is indicated by Haplotype 1 and Haplotype 2. Only a few 

cells lean toward biallelic expression pattern over many X chromosome genes. Based on hierarchical 

clustering of the cells, the cells that are suspicions as doublets are clustered in the leftmost subtree and 

on the leftmost leaf of the other two subtrees. The distribution of the AR* values for all 163 cells is 

shown in Fig 3B. AR*=0 means monoallelic X chromosome expression, and the higher the AR*, the 

higher the biallelic expression is. Applying a natural threshold that separates cells with monoallelic and 

biallelic patterns (the striped line at AR*=0.05) allows focusing on cells that cross the threshold (8 

.CC-BY-NC 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 22, 2019. ; https://doi.org/10.1101/709451doi: bioRxiv preprint 

https://doi.org/10.1101/709451
http://creativecommons.org/licenses/by-nc/4.0/


11 
 

cells). These cells are marked as cell doublet candidates. Notably, these suspicious 8 cells are also 

signified by a higher BAR values for the 104 (Mann-Whitney U test p-value=2.94e-4) and 59 (Mann-

Whitney U test p-value=0.023) cells as shown in Supplemental Fig. S3.  

3.4. Unsupervised identification of doublets for the fibroblast scRNA-seq data 

Gaussian Mixture Model (GMM) was used to separate singles from doublets. For the means of the 100 

simulations, the separation between the singles and the doublets means reached 100% accuracy. For an 

illustrative of a single simulation run the mean BAR (x axis) of each cell is plotted with the number of 

genes that are expressed in biallelic positions (y-axis, Fig. 3C, and Fig. 3D). The scatter-plots symbols 

represent cells that are singlets, candidate cell doublets according to Chromosome X biallelic 

expression, and artificial doublets that are created by in silico simulations for the two fibroblast cell 

collections (104 and 59 cells based on PCR protocol for 22 and 12 cycles, respectively). Cells that were 

predicted as doublets by the GMM (whether true or false) are shown (dark orange). It is evident that 

most doublets and the Chromosome X candidate doublets have relatively high BAR values and are 

classified as doublets. For the 104 single cells dataset, all simulated doublets (total 5) were identified 

(100%), and 3/6 (50%) of the candidates by X biallelic expression were identified. For the 59 cells, all 

3 simulated doublets were identified (100%) and 50% of the cell candidate doublets (one out of two) 

according to the Chromosome X biallelic expression were correctly identified.  

3.5 BAR values for the peripheral blood mononuclear cells (PBMCs) dscRNA-seq data  

The 13,364 peripheral blood mononuclear cells (PBMCs) originate from 16 datasets that account for a 

pair of a run and an individual. When compared to the fibroblast cell collections (Dataset 1, see 

Materials and methods), the dscRNA-seq is characterized by a much lower coverage (Supplemental 

Fig. S4 and S5). Specifically, the number of informative genes is >2000 for the fibroblasts and only 

about 25 on average for the PBMCs (Supplemental Fig. S2, Fig. S4, and Fig. S5).  

We simulated as in the fibroblasts, for each of the datasets, 10% of the singles to be paired into in silico 

doublets (overall 5% of each dataset would be doublets). BIRD was run on each of the 16 run-individual 

pairs and their in silico simulated doublets. The results from activating the BIRD process for an 

individual representative (run_b, individual 1493, denoted b_1493, 766 cells) are shown in Fig. 4. (and 

Supplemental Fig S4). 
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Fig 4A shows the violin plots of the mean of the BAR values for 100 simulations for singlets when 

compared to cell doublets.  For the means of the singles and the doublets, the separation is maximal 

with Mann-Whitney U test yields a statistic=0, and a p-value <e-34. For a single run of the simulation 

(Fig 4B), the trend of the doublets being more biallelic is kept with a separation of the Mann-Whitney 

U test yielding a p-value of 1.22e-03. Note that using BAR values alone is insufficient to distinguish 

between singles and doublets due to the high intrinsic noise in the data originated by the 10x Genomics 

protocol.  

3.6 supervised identification of doublets in the PMBC dataset 

Including additional features and applying a supervised Random Forest machine learning protocol (see 

Materials and methods), we reached a perfect separation with 100% accuracy when mean values of 

singlets and mean values of simulated doublets are compared for 100 simulation runs. For a single 

simulation run, we show the results of the Receiver operating characteristics (ROC) curve for the 

unseen, disjoint test. The Area Under the Curve (AUC) of the ROC curve equals 0.9 (Fig 4C). As each 

run starts with a randomized set of simulated doublets, we report the average AUC for 10 independent 

such runs (mean 0.88, s.d. 0.04). We exploit the expression profile for the cell collection of b_1493 

sample to create a t-SNE representation (Fig 4D). The cells are color coded according to the prediction 

results. Note that most identified doublets are positioned at the border of the expression clusters, but 

eventually other predicted doublets are fully embedded within an expression cluster. Recall that the 

expression profile information was not used by BIRD protocol for the separation of the prediction. 

Similar to the analysis performed for a single dataset (b_1493) we repeated the analysis for all 16 

combinations of runs and individuals. The AUC values for the different datasets of the run-individual 

pairs (see Supplementary Table S1) are shown in Fig 5A. We tested whether the performance (as 

indicated by the AUC) is a mere reflection of the number of cells. However, it is evident that the success 

in identifying doublets and the number of cells that are associated with each dataset are not correlated 

(Supplemental Fig. S6A). The sensitivity (i.e. TP/(TP+FN)) for each of the 16 datasets is shown in Fig 

5B and Supplementary Table S1. Note that the values in Supplementary Table S1 for dataset b_1493 

are slightly different from results in Fig. 4 due to the component of randomness in the algorithm. The 

doublets rate in the sample (including the simulated cells) is shown in Supplemental Fig. S6B. We 
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created a unified ROC curve per each of the three runs and determined the AUC associated with each 

run and the whole dataset (Fig 5C).  

The t-SNE cell expression representations are colored according to the BIRD prediction and the 

Random Forest protocol, for each of the 16 datasets are shown in Supplemental Fig S7 for run_a and 

run_b (4 t-SNE representations per each run) and Supplemental Fig S8 for run_c (all individuals, 8 t-

SNE representations). In all instances, the t-SNE representation shows that accurate predictions (TP) 

tend to cluster together with cells that are marked as false positives (FP). The estimate for the fraction 

of doublets from the mixture of two individuals is ~5% (Kang, et al., 2018). Therefore, we expect many 

of the cells that are marked as FP to be doublets that are naturally present in the original data.  

 

4 DISCUSSION 

Collecting data of single-cell transcriptomes had exposed a new dimension of cell variability. This 

technology had a direct impact on a wide range of biological questions across all domains of life (Stegle, 

et al., 2015). Some of these questions are sensitive to the faulty annotation of singlets as doublets or 

vice versa. While the presence of unrecognized cell doublets from the same cell type will not influence 

the misinterpretation for new cell types (Usoskin, et al., 2015; Villani, et al., 2017; Zeisel, et al., 2015), 

it might jeopardize interpretation concerning transcription regulation including transcriptional bursting 

kinetics (Larsson, et al., 2019), Chromosome X-inactivation phenomenon (Garieri, et al., 2018; 

Tukiainen, et al., 2017), escaping from it (Wainer-Katsir and Linial, 2019) and more.  

We describe BIRD as a computational/statistical method that enables the identification of cell doublets 

from scRNA-seq data. The method complements other methods that rely on detailed cell mixing and 

cell-type expression profiles. BIRD method takes advantage of the BAM files generated for each 

scRNA-seq. The allelic specific expression that is extracted from the BAM files is often unused. This 

is since, routinely, the post-sequencing analysis starts with a cell to gene matrix representation thus 

discards the allelic information. BIRD takes advantage of this transparent feature for identifying 

doublets.  

Recent biochemical-based methodologies for dscRNA-seq present their potency toward the task of 

doublet identification. These methods are based on adding a pre-sequencing biochemical modification 
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step for barcoding cells. Such tagging procedures exploit antibodies to common cell surface antigens 

(cell hashing) (Stoeckius, et al., 2018). The antibody-based method applies to cells that carry the 

relevant antigens. A new method (MULTI-seq) (McGinnis, et al., 2019) successfully uses lipid 

modification step for cell indexing. It was shown to be eligible for solid tissues and frozen cells 

(McGinnis, et al., 2019). While there are many advantages for tagging cells before cell lysis and 

sequencing, an additional step in the experimental design can lead to batch effect and other technical 

and experimental biases. In contrast, the computational method is generic, yet data sensitive. BIRD 

shows no preference to the identity of the expressed genes, to the specific cell type or any of the cell 

extraction protocol.  

We illustrate the high performance of BIRD mostly on in silico simulated doublets. Other studies 

estimated the rates of doublets by artificial mixing of cells of multiple types of cells from different 

organisms, cell types or individuals (Kang, et al., 2018; McGinnis, et al., 2019; Zheng, et al., 2017). 

However, when a solid tissue is treated to produce a collection of single cells, the protocol must 

overcome the adhesion forces between cells, extracellular matrix cohesion and more. Additionally, 

some cells tend to aggregate and clump following their isolation. All these technical issues may lead to 

an increasing number of doublets from neighboring cells with identical genetic background and 

expression profile. Therefore, current estimates for doublet contamination based on peripheral blood 

samples may be misleading. We anticipate that the number of reported doublets of cell mixtures from 

solid tissue is underestimated and can now be estimated using BIRD.  

There are several limitations of BIRD protocol that need to be addressed: (i) The method is dependent 

on pre-knowledge of the individual genomics for assigning hSNPs from the sequenced scRNA-seq. 

With the fast accumulation of whole-genome and exome sequencing in humans and other model 

animals, we anticipate it will not be a limiting factor in the near future. (ii) The assessment of doublets 

using the notion of Chromosome X inactivation is only valid for cells of female origin. Furthermore, 

for 50% of the cases, cells can be mixed without providing a biallelic signature (i.e. a mixture of the 

same Xa haplotype). (iii) While BIRD protocol ignores the gene expression profile, a scenario in which 

the expression profiles of cell mixtures do not overlap with each other can occur. This will result in cell 

doublets that do not contribute different alleles of the same genes and thus will not increase the BAR 
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values. In such cases, BIRD protocol lacks the power to identify doublets. In this case, the use of other 

doublet cell identification is advisable (e.g. (McGinnis, et al., 2019; Wolock, et al., 2019)). (iv) The 

method relies on the dominant properties of stochasticity in the allelic expression of cells. Datasets that 

are far less stochastic might display a higher biallelic signal. Under such conditions, the ability to detect 

doublets is masked. The monoallelic fraction in single cells is a variable property of the experiment 

(Kim, et al., 2015) with mouse cells showing a lower degree of allelic specific expression relative to 

humans (Deng, et al., 2014; Tang, et al., 2011). Indeed, testing the scRNA-seq from F1 mice strains 

(Larsson, et al., 2019), confirms that the BAR value distribution is consistent with an intrinsic biallelic 

signature (not shown). In such cases, there is a need to employ BIRD only on genes that exhibit a more 

stochastic property and are signified by a monoallelic expression. 

Overall, we described two types of datasets that use the BAR feature for discriminating singlets from 

doublets. The overall coverage of hSNPs and sequence depth are drastically different (Supplementary 

Fig. S2 Fig. S4 and Fig. S5) among the two analyzed datasets. The unsupervised GMM tool was 

sufficient in separating singles from doublets in a dataset of high hSNP coverage (based on Smart-seq2 

technology, with a full transcript sequencing). The other dataset (dataset 2, 10X Genomics) yields 

shallow coverage which is restricted to the 3’ tail of the transcripts and was therefore trained using 

Random Forest. Despite the described coverage and difference in the sequencing protocols (3’ based 

versus a full-length transcript), the mean values of the simulated doublets were 100% identifiable for 

both datasets indicating a higher BAR values for doublets compared to singlets. Even in the cases of a 

single run, a trend of higher BAR values for doublets was observed and therefore used to successfully 

separate the simulated doublets from the singlets in both datasets.  

In summary, BIRD protocol is a generic method that is indifferent to the composition of the cells in the 

samples of to the nature of the genes that are expressed. It is on the other hand strongly dependent on 

the stochasticity of the system for identifying doublets according to the deviation from the default signal 

of monoallelic expression that dominate single cells. We applied BIRD on datasets of different 

coverage, scale, and accuracy. BIRD uses a data-driven protocol and is applicable in all instances where 

in addition to the scRNA-seq / dscRNA-seq data genomic heterologous sites are available. 
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FIGURE LEGENDS 
 

 

 

Fig. 1.  

Illustration of the BIRDs scheme for scRNA-seq and dscRNA-seq data. (A) Illustrative schemes for the 

distribution of Allelic Ratio (AR) calculated per each cell. AR values range between 0 to 1, for the 

reference (Ref, yellow) and Alt (green) alleles, respectively. The blue in the middle corresponds to 

biallelic expression. (i) For single cells, AR is close to 0 or 1, reflecting an apparent monoallelic 

expression; (ii) Cell collection with doublets is signified by a shift in AR values to around 0.5 (blue), 

reflecting biallelic expression pattern. (B) On the left, for every gene, in every cell, the AR is estimated. 

Biallelic Ratio (BAR) for every gene is calculated to create overall BAR distribution for the subjected 
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dataset (see Materials and methods). On the right, the BAR values for scRNA-seq that includes doublets 

are shown. The BAR is bounded between 0 to 0.5 from monoallelic expression (white) to biallelic (dark 

blue). (C) Simulation of couples of randomly selected single cells is performed to create a dataset 

composed from both the original cells and simulated cell doublets. (D) Machine learning (ML) 

statistical technique differentiating singlets from doublets. The success of doublet identification is 

assessed by visualization and standard measures (e.g., AUC).  

 

Fig. 2. 

Biallelic ratio (BAR) values for human single cells primary fibroblasts population. Simulations of 

doublets were done for two datasets of human primary fibroblasts which differ by the number of PCR 

cycles used prior to sequencing. (A, B) 104 cells, 22 PCR cycles and (C, D), 59 cells, 12 PCR cycles. 

Violin plots of the BAR mean values for all single cells means versus simulated doublets means based 

on 100 simulations (A, C) and cell means of a single simulation (B, D). The applied Mann-Whitney U 

test results are (A) statistic=0, p-value=1.281e-34; (B) p-value=4.25e-30; (C) statistic=0, p-

value=1.281e-34; (D) p-value=1.43e-17  
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Fig. 3.  

Validation of cell doublets according to X chromosome allelic specific pattern. Dataset is a combined 

collection of human fibroblasts (163 cells). (A) A matrix of AR values of cells (columns) and hSNPs 

(rows) is shown. Only high support hSNPs are included (see Materials and methods). Gene names are 

listed according to their chromosomal order (right). The hSNPs are colored from blue (AR=0, Ref 

allele) to orange (AR=1, Alt allele), with darker colors marking biallelic expression. Hierarchical 

clustering of the cells indicates two main haplotypic origins (Haplotypes 1 and 2). The arrows and the 

circles above the branches of the clustering tree indicate cells with strong biallelic expression across the 

X chromosome. (B) Histogram of cells by their AR* values. AR*=0 indicates monoallelic X-

chromosome expression, and larger value marks a higher biallelic expression level. The dashed line is 

a natural threshold separating X-inactivated monoallelic from biallelically expressed hSNPs. C, D 

Scatter plots show the success of detecting singlets from doublets following a single simulated set for 

the 104 cells (C) and 59 cells (D). Symbols correspond to singlets as circles and doublets as squares. A 

cell is marked by x if it was validated as a doublet on the background of the X-inactivated status (as in 

A, B). Dark orange marks cells that were identified by the GMM classifier (see Materials and methods) 

as doublets.  
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Fig. 4.  

Data used is dscRNA-seq from a run-individual pair marked as b_1493 based on Dataset 2 (See 

Materials and methods). Violin plots of the mean of BAR values for single cells and the in silico formed 

doublets. The mean BAR values shown were tested by Mann-Whitney U test for (A) 100 simulations 

(statistic=0, p-value <e-34), and (B) a single simulation set (p-value=1.22e-03). (C) A receiver 

operating characteristic (ROC) curve is shown based on a Random Forest (RF) model fitting on a 

simulated dataset of singlets and doublets. (D) t-distributed stochastic neighbor embedding (t-SNE) 

classification on PCA reduced data of cell expression (see Materials and methods). Each dot represents 

a single cell or a simulated doublet. Singlets (gray) corresponds to cells that are singles and were 

predicted by the model as singles. True positives (TP, red) correspond to cells that are simulated as 

doublets and correctly predicted as such. False Negatives (FN, blue) are simulated doublets that were 
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missed by the model. False Positives (FP, purple) are misclassified by the model as doublets. Note that 

most of the identified doublets cluster in a cloud of cells that are likely to represent mixtures of cell 

types.  

 

 

Fig. 5.  

Success in identifying cell doublets from multiplex 10X Genomics experiment covering 13,364 single 

cells. (A) The Area under the curve (AUC) for the test sets of each of run-individual pairs. Runs refer 

to run_a, run_b that consist of 4 different individuals each, and run_c that combines all 8 individuals. 

(B) The sensitivity achieved for the test set for each of the tested individuals. (C) ROC curve is shown 
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based on a Random Forest (RF) model fitting on a simulated dataset of singles and doublets for all the 

cells (marked all) and for each of the separated runs (a, b and c).  

 

SUPPLEMENTAL FIGURE LEGENDS 

Supplemental Table S1. BIRD performance of 16 run-individual pairs covers 13,364 cells by Random 

Forest prediction 

Fig S1. The numeric transition from reads per hSNP to BAR of cells.  

Fig S2. Coverage of fibroblast dataset.  

Fig S3. BAR median values of fibroblast dataset.  

Fig S4.  Coverage of a representative PMBC sample of b_1493 (766 cells).  

Fig S5. Coverage of all PMBC run-individual pairs.  

Fig S6. Statistic measures of the Random Forest model results for the single and simulated doublets of 

the PMBC data.  

Fig S7. Representation of t-SNE classification on PCA reduced data of cell expression for each of the 

run-individual paired samples in run_a and run_b (4 individuals per each run).  

Fig S8.  Representation of t-SNE classification on PCA reduced data of cell expression for each of the 

run-individual paired samples in run_c (8 individuals).  
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BIRD: Identifying Cell Doublets via Biallelic Expression from Single cells 

 

Kerem Wainer-Katsir and Michal Linial* 

Department of Biological Chemistry, The Institute of Life Sciences, The Hebrew University of 

Jerusalem, ISRAEL 

 

SUPPLEMENTAL TABLE AND FIGURE LEGENDS 

 

Table S1. 

 

BIRD performance of 16 run-individual pairs covers 13,364 cells by Random Forest prediction. 

 
aDouble rate applies to cells identified as doublets (including simulated doublets) out of the total cells 

per sample.  

 

 

   
sample_ 

name 

#Cells per 

sample 
Accuracy Sensitivity Specificity Precision 

Doublet 

ratea 
AUC 

a_1079 886 0.79 0.92 0.78 0.20 0.26 0.90 

a_1154 999 0.83 0.89 0.82 0.15 0.20 0.92 

a_1249 810 0.84 1.00 0.83 0.24 0.22 0.91 

a_1598 800 0.86 0.69 0.87 0.26 0.16 0.83 

b_1043 1057 0.76 0.80 0.76 0.11 0.26 0.86 

b_1085 1038 0.81 0.78 0.82 0.23 0.22 0.83 

b_1493 766 0.88 1.00 0.87 0.26 0.17 0.92 

b_1511 1227 0.88 0.78 0.88 0.29 0.15 0.90 

c_1079 730 0.86 0.75 0.87 0.27 0.17 0.87 

c_1154 757 0.76 0.63 0.76 0.10 0.25 0.82 

c_1249 648 0.87 0.67 0.88 0.24 0.15 0.79 

c_1598 648 0.84 0.86 0.83 0.18 0.19 0.86 

c_1043 771 0.85 0.67 0.86 0.13 0.16 0.88 

c_1085 765 0.84 0.90 0.83 0.22 0.20 0.91 

c_1493 619 0.82 0.58 0.84 0.23 0.19 0.83 

c_1511 843 0.87 0.75 0.88 0.10 0.14 0.93 

Total_cells 13364 
      

Average 835.3 0.83 0.79 0.84 0.20 0.19 0.87 

s.d. 167.9 0.038 0.128 0.041 0.064 0.040 0.043 
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SUPPLEMENTAL FIGURES & LEGENDS 

 

Fig. S1.  

The numeric transition from reads per hSNP to BAR of cells. (A) In each cell for each gene for each 

expressed SNP, the BAR is determined. First, the number of Alternative (Alt), Reference (Ref) and 

total reads are counted for each position. The algorithm takes the BAR of an hSNP to be the ratio 

between the reads of the minimal expressing allele divided by the total reads of that position. Then for 

each gene, the hSNP with the maximal value of BAR is chosen as a representative hSNP BAR (as 

indicated by the bottom row). Additionally, each hSNP is recorded as biallelic or not. And one 

representation of a biallelic hSNP determines the gene as biallelic (rightmost column). (B) For each 

gene, in each cell, the BAR is recorded. For a specific cell, it’s BAR distribution will be according to 

the BAR of its genes. The average of the genes BAR will define the cells BAR.   
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Fig S2. 

Coverage of fibroblast dataset. (A, B) 22 PCR cycles dataset with 104 cells. (A) Histogram of the 

number of reads per cell in heterozygous positions. (B) Histogram of the number of genes per cell in 

heterozygous positions. (C, D) 12 PCR cycles dataset with 59 cells. (C) Histogram of the number of 

reads per cell in heterozygous positions. (D) Histogram of the number of genes per cell in heterozygous 

positions. 
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Fig S3. 

BAR median values of fibroblast dataset. (A, B) Cells are sorted according to their Biallelic Ratio 

Median. Blue indicates a single according to the X inactivation verification step. Brown cells are 

doublets according to the X inactivation verification step. (A) Cells from 22 PCR cycles 104 dataset. 

(B) Cells from 12 PCR cycles 59 cells dataset. 
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Fig S4.  

Coverage of a representative PMBC sample of b_1493 (766 cells). (A) Histogram of the number of 

reads per cell in heterozygous positions. (B) Histogram of the number of genes per cell in heterozygous 

positions. (C) Histogram of the BAR of the cells. 
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Fig S5.  

The coverage of all PMBC run-individual pairs. The boxplots show the distribution as in Fig. S4 for 

each of the run-individual pairs. (A) The number of reads per cell in heterozygous positions. (B) 

Number of genes per cell in heterozygous positions. (C) The BAR of the cells. 
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Fig S6. 

Statistic measures of the Random Forest model results for the single and simulated doublets of the 

PMBC data. (A) The AUC for the different run-individual pairs (x-axis) by the number of cells per this 

sample (y-axis). (B) The doublets rate of the test set (including simulated doublets). 
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Fig S7. 

Representation of t-distributed stochastic neighbor embedding (t-SNE) classification on PCA reduced 

data of cell expression for each of the run-individual paired samples in run_a and run_b (4 individuals 

per each run). Each dot represents a single cell or a simulated doublet. Singlets (gray) corresponds to 

cells that are singles and were predicted by the model as singles. True positives (TP, red) correspond to 

cells that are simulated as doublets and correctly predicted as such. False Negatives (FN, blue) are 

simulated doublets that were missed by the model. False Positives (FP, purple) are misclassified by the 

model as doublets. For the individual-run pairs of (A) a_1079, (B) a_1154, (C) a_1249, (D) a_1598, 

(E) b_1043, (F) b_1085, (G) b_1493, and (H) b_1511. 
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Fig S8.  

Representation of t-distributed stochastic neighbor embedding (t-SNE) classification on PCA reduced 

data of cell expression for each of the 8 run-individual paired samples in run_c (8 individuals). Each 

dot represents a single cell or a simulated doublet. Singlets (gray) corresponds to cells that are singles 

and were predicted by the model as singles. True positives (TP, red) correspond to cells that are 

simulated as doublets and correctly predicted as such. False Negatives (FN, blue) are simulated doublets 

that were missed by the model. False Positives (FP, purple) are misclassified by the model as doublets. 

For the individual-run pairs of (A) a_1079, (B) a_1154, (C) a_1249, (D) a_1598, (E) b_1043, (F) 

b_1085, (G) b_1493, and (H) b_1511. 
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