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Abstract	
Background:	Genome	wide	association	studies	(GWAS)	of	specific	diseases	are	central	to	
scientific	discovery.	Bias	from	inevitably	recruiting	only	survivors	of	genetic	make-up	and	
disease	specific	competing	risk	has	not	been	comprehensively	considered.		
Methods:	We	identified	sources	of	bias	using	directed	acyclic	graphs,	and	tested	for	them	in	the	
UK	Biobank	GWAS	by	making	comparisons	across	the	survival	distribution,	proxied	by	age	at	
recruitment.	
Results:	Associations	of	genetic	variants	with	some	diseases	depended	on	their	effect	on	
survival.	Variants	associated	with	common	harmful	diseases	had	weaker	or	reversed	
associations	with	subsequent	diseases	that	shared	causes.			
Conclusion:	Genetic	studies	of	diseases	that	involve	surviving	other	common	diseases	are	open	
to	selection	bias	that	can	generate	systematic	type	2	error.	GWAS	ignoring	such	selection	bias	
are	most	suitable	for	monogenetic	diseases.	Genetic	effects	on	age	at	recruitment	may	indicate	
potential	bias	in	disease-specific	GWAS	and	relevance	to	population	health.	
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Introduction	

Genome	wide	association	studies	(GWAS)	are	a	popular	and	effective	way	of	learning	about	the	

causes	of	diseases.	GWAS	are	particularly	valuable	because	they	can	give	unconfounded	

estimates	of	genetic	associations,	after	accounting	for	population	stratification	whose	

importance	is	emphasized	[1].	GWAS	are	also	open	to	selection	bias,	the	other	major	source	of	

bias	in	observation	studies	[2].	Selection	bias,	particularly	arising	due	to	those	missing	from	a	

study,	is	not	always	intuitively	obvious.	Over	75	years	ago	the	mathematician	Abraham	Wald	

pointed	out	that	findings	from	a	sample	of	survivors	might	appear	to	indicate	targets	of	

intervention	opposite	to	the	true	targets	[3].	Specifically,	returning	fighter	planes	usually	have	

intact	engines,	which	does	not	imply	the	engine	is	adequately	protected,	but	that	only	planes	

with	undamaged	engines	survive,	so	to	improve	fighter	plane	survival	the	undamaged	parts,	

i.e.,	engines,	require	more	protection	[3].	GWAS	are	often	conducted	in	samples	of	survivors,	

i.e.,	middle-aged	and	older	people.	Genetic	randomization	on	genotype	at	conception	means	

many	years’	worth	of	selective	survival	could	occur	before	recruitment	[4].	The	possibility	of	

bias	in	GWAS	arising	from	survival	on	genotype,	has	been	considered	and	is	thought,	from	

simulation,	to	have	little	effect	on	estimates	of	associations	[5]	before	the	age	of	75	years	[6].	

However,	many	GWAS	are	of	specific	conditions.	What	has	not	been	explicitly	considered	is	the	

implication	for	GWAS	of	considering	a	particular	condition	or	disease	which	results	in	selecting	

on	surviving	other	causes	of	death	[1].	To	avoid	such	selection	bias	assessment	of	the	effects	of	

a	harmful	genotype	on	a	specific	condition	needs	to	take	into	account	all	other	common	causes	

of	survival	and	that	condition	[7],	i.e.,	competing	risk	[8].	Here,	we	explain	how	and	when	such	

selection	bias	can	arise	in	GWAS,	provide	empirical	evidence	together	with	examples	and	

suggest	ways	of	addressing	this	bias.		

	

How	selection	bias	occurs	in	GWAS	

At	its	simplest	the	factors	determining	selection	bias	in	a	GWAS	are	whether	the	genotype	

affects	survival	to	recruitment,	i.e.,	selective	survival	on	genotype,	and	whether	other	factors	

cause	both	the	condition	of	interest	and	also	affect	survival	to	recruitment,	i.e.,	competing	risk.	

For	completeness	and	clarity,	we	consider	all	four	possible	combinations	of	selective	survival	on	
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genotype	and	competing	risk,	provide	the	corresponding	directed	acyclic	graphs	and	give	

illustrative	examples.	Directed	acyclic	graphs	allow	unambiguous	and	intuitive	presentation	of	

biases	as	additional	open	pathways	linking	the	exposure	with	the	outcome.	Not	fully	adjusting	

for	confounders	or	conditioning	on	a	common	factor	creates	additional	biasing	pathways	[2].		

	

Figure	1a	shows	no	selective	survival	on	genotype	and	no	other	causes	of	the	condition	of	

interest,	hence	no	selection	bias	at	all.	An	example	might	be	a	genetic	variant	for	natural	hair	

colour	(before	going	grey),	because	genetic	determinants	of	natural	hair	colour	are	not	thought	

to	affect	survival	and	no	other	factors	influence	natural	hair	colour.		

	

Figure	1b	shows	selective	survival	on	genotype	only,	with	no	common	causes	of	survival	and	

the	specific	condition,	and	specific	effects	of	genotype	on	disease.	An	example	might	be	all	

genetic	determinants	of	Huntingdon’s	disease,	because	Huntingdon’s	disease	is	a	monogenetic	

disease	with	specific	genetic	determinants	and	no	other	causes.	Estimates	may	attenuate	with	

increasing	age	at	recruitment	because	with	age	the	living	population	available	for	recruitment	

and	genotyping	is	increasingly	heavily	selecting	on	being	alive	without	Huntingdon’s	disease.	

	

Figure	1c	shows	selective	survival	on	genotype	and	competing	risk	from	other	life-threatening	

causes	of	the	condition	of	interest.	This	situation	is	particularly	likely	to	occur	for	conditions	

that	share	risk	factors	with	other	conditions	that	cause	death	before	the	onset	of	the	condition	

in	question,	i.e.,	for	common	complex	chronic	diseases.	For	example,	ischemic	heart	disease	

(IHD)	and	ischemic	stroke	share	several	risk	factors,	such	as	blood	pressure	and	lipids.	However,	

death	from	IHD	typically	occurs	in	Western	populations	at	younger	ages	than	death	from	

ischemic	stroke	[9].	As	such,	genetic	associations	for	stroke	are	likely	at	greater	risk	of	selection	

bias	than	those	for	IHD,	because	regardless	of	the	effect	of	genotype	some	people	may	die	

from	IHD	rather	than	live	on	to	have	a	stroke,	while	fewer	die	from	stroke	rather	than	living	on	

to	have	IHD.	This	bias	may	be	exacerbated	for	pleiotropic	gene	variants	that	affect	common	

causes	of	survival	and	the	condition	of	interest,	such	as	ones	associated	with	obesity.	
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Figure	1d	shows	no	selective	survival	on	genotype,	and	hence	no	selection	bias	despite	

common	causes	of	survival	and	the	condition	of	interest.	An	example	might	be	genetic	variants	

determining	vitamin	D	on	stroke,	because	vitamin	D	appears	to	have	no	effect	on	

cardiovascular	disease	or	mortality	[10]	but	many	other	factors	affect	survival	and	stroke,	such	

as	high	blood	pressure.	

	

Selection	bias	arising	from	missing	people	who	had	the	exposure	(here	genotype)	and	other	

life-threatening	causes	of	the	outcome	condition	usually	biases	towards	the	null,	because	

missing	such	people	from	the	study	dilutes	the	association	in	those	available	for	recruitment	as	

they	are	more	likely	to	be	unexposed	to	a	harmful	genotype	and	alive	without	the	disease	of	

interest.	Selection	bias	can	also	reverse	the	direction	of	association.	These	issues	are	difficult	to	

spot	in	genetic	studies	of	complex	conditions	because	few	genetic	variants	have	well-

established	effects.	Nevertheless,	issues	have	occasionally	been	observed	in	genetic	studies	but	

not	explained.	For	example,	PCSK9	variants	associated	with	lower	low	density	lipoprotein	

cholesterol	are	associated	with	a	lower	risk	of	IHD	but	not	of	stroke,	although	PCSK9	inhibitors	

protect	against	stroke	[11].	Genetic	variants	associated	with	smoking	and	high	blood	pressure	

have	been	reported	as	protective	against	Alzheimer’s	disease	[12],	which	seems	unlikely.			

	

Effects	of	survival	on	GWAS	estimates	

To	illustrate	the	effect	of	survival	(on	genotype	or	other	causes	of	the	outcome)	we	chose	6	

conditions,	5	non-communicable	diseases	among	the	leading	causes	of	years	of	life	lost	(chronic	

airway	obstruction,	stroke,	IHD,	colorectal	cancer	and	breast	cancer)	[13]	and	diabetes	as	a	

contrast	because	it	tends	to	be	a	cause	not	a	consequence	of	life-threatening	illness.	Table	1	

shows	a	comparison	of	genetic	associations	in	the	UK	Biobank	for	these	6	conditions	according	

to	whether	the	genetic	variants	were	weakly	or	strongly	associated	with	survival	(proxied	by	

age	at	recruitment).	For	each	condition	estimates	were	on	average	larger	for	the	genetic	

variants	strongly	associated	with	survival	than	for	the	genetic	variants	weakly	associated	with	

survival	(Table	1).		
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These	differences	in	estimates	by	genetic	associations	with	survival	(Table	1)	could	be	solely	

due	to	the	genetic	variants	affecting	survival	(i.e.,	survival	on	genotype)	having	consistently	

stronger	associations	with	all	conditions	or	could	also	be	due	to	survival	from	other	conditions	

(competing	risk)	affecting	the	estimates.	To	investigate,	we	compared	genetic	associations	with	

disease	conditions	for	all	these	pairs	of	conditions	by	the	genetic	variants’	association	with	

survival.	If	the	conditions	are	completely	independent,	then	the	condition	specific	genetic	

associations	should	have	similar	differences	in	magnitude	regardless	of	their	association	with	

survival.	However,	if	survival	from	one	condition	biases	the	genetic	associations	for	the	other	

condition	then	the	magnitude	of	the	differences	between	the	two	condition	specific	genetic	

associations	should	be	more	variable	for	genetic	variants	associated	with	survival.	Figure	2	

shows	that	for	all	the	15	unique	pairs	of	the	6	conditions	considered,	the	difference	between	

the	estimates	was	consistently	greater	and	more	variable	for	the	genetic	variants	associated	

with	survival.	

	

Effects	of	competing	risk	on	GWAS	estimates	

To	identify	the	effects	of	selection	bias	on	genetic	associations	for	the	SNPs	associated	with	

survival,	we	compared	the	proportion	of	genetic	estimates,	strongly	significant	for	one	or	other	

condition,	whose	magnitude	was	larger	for	one	condition	than	another	by	their	association	with	

survival.	Given,	selection	bias	usually	biases	harmful	exposures	towards	the	null	or	even	

reverses	the	direction	of	effect,	fewer	larger	estimates	than	expected	for	genetic	associations	

with	one	condition	compared	with	another	for	the	same	genetic	variants	strongly	associated	

with	survival	suggests	selection	bias	for	the	first	condition.		

	

Considering	the	same	six	conditions	(CAO,	stroke,	IHD,	breast	cancer,	colorectal	cancer,	and	

diabetes)	we	found	most	evidence	that	CAO	and	stroke	were	missing	larger	estimates	for	

genetic	variants	strongly	associated	with	survival	compared	to	genetic	variants	weakly	

associated	with	survival	for	several	of	the	other	conditions,	including	IHD	and	colorectal	cancer.	

This	observation	is	consistent	with	competing	risk	of	IHD	and	colorectal	cancer	biasing	genetic	

associations	for	CAO	and	stroke	towards	the	null.	In	contrast,	diabetes	compared	with	the	other	
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5	conditions	did	not	appear	to	be	missing	any	larger	estimates	for	the	genetic	variants	strongly	

associated	with	survival	than	for	genetic	variants	weakly	associated	with	survival	(Table	2).	This	

observation	is	consistent	with	little	competing	risk	for	diabetes.	Table	2	also	suggests	some	bias	

for	CAO	because	of	competing	risk	from	diabetes	and	breast	cancer,	for	IHD	from	competing	

risk	by	colorectal	cancer	and	diabetes,	and	for	breast	cancer	because	of	competing	risk	from	

colorectal	cancer	and	diabetes.		

	

Selection	bias	can	most	simply	be	eliminated	from	GWAS	by	only	conducting	GWAS	on	

exposures	unrelated	to	survival,	for	example	vitamin	D	[10].	However,	exposures	that	do	not	

affect	survival	are	of	etiological	interest	but	perhaps	of	less	relevance	to	population	health.	For	

exposures	that	do	affect	survival	only	considering	conditions	not	open	to	competing	risk	

selected	from	a	population	where	few	deaths	from	related	conditions	have	occurred,	for	

example	a	GWAS	of	IHD	in	middle-aged	people	rather	than	stroke	in	old	people,	will	reduce	

bias.	In	fact,	selection	bias	in	associations	can	sometimes	be	detected	by	considering	how	the	

associations	change	with	age	[14].	An	association	that	is	most	evident	in	younger	people	but	

absent	or	reversed	in	older	people	can	be	an	indicator	of	selection	bias	[14].	As	such,	GWAS	

routinely	stratified	by	age	would	be	informative.	Adjusting	for	all	factors	causing	survival	and	

the	condition	of	interest	is	a	conceptually	simple	but	a	practically	infeasible	alternative.	

Conducting	a	GWAS	in	a	birth	cohort	without	loss	to	follow-up	would	avoid	bias	from	selective	

survival	on	genotype,	because	it	would	eliminate	the	gap	between	randomization	and	

recruitment.	However,	it	is	not	currently	very	practical	and	the	study	would	still	be	open	to	

competing	risk	for	condition	specific	GWAS.	Adjusting	genetic	associations	for	the	probability	of	

survival,	perhaps	obtained	from	genetic	associations	with	age	at	recruitment,	might	be	helpful	

but	would	require	additional	assumptions	to	address	competing	risk.	Alternatively,	competing	

risk	could	perhaps	be	addressed	by	a	reconceptualization	or	reclassification	of	chronic	diseases	

as	distinct	conditions	defined	by	discrete	causes,	akin	to	the	way	infectious	diseases	are	

categorized	according	to	specific	causative	agents,	despite	different	manifestations.		
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Effects	on	age	at	recruitment	as	a	proxy	of	effects	on	survival	

Given	complex	chronic	diseases	may	share	harmful	causes	making	it	difficult	to	estimate	the	

effect	of	harmful	genotypes	on	each	disease,	one	possible	way	forward	is	to	exploit	selection	

bias	to	obtain	effects	on	survival.	Harmful	genetic	variants	inevitably	become	less	common	in	

the	population	with	advancing	age,	i.e.,	in	surviving	older	people,	meaning	associations	for	

harmful	exposures	will	change	with	age	at	recruitment	into	a	study.	However,	genetic	variants	

do	not	directly	cause	age	at	recruitment,	so	any	such	association	is	an	indicator	of	a	harmful	

genetic	variant	that	precluded	recruitment,	as	shown	in	the	directed	acyclic	graph	in	Figure	3.	

This	is	akin	to	the	practice	in	studies	of	aging	of	comparing	the	frequency	of	genetic	variants	in	

older	and	younger	people	[15],	and	raises	the	question	as	to	whether	lack	of	Hardy-Weinberg	

equilibrium	should	be	taken	as	an	indication	of	selection	bias	rather	than	a	reason	for	exclusion.	

Here	we	are	proposing	to	make	full	use	of	the	study	to	estimate	differences	in	age	of	

recruitment,	which	can	be	interpreted	using	life	tables	as	years	of	life	lost.	Specifically,	a	genetic	

variant	that	results	in	being	a	year	younger	at	recruitment	means	that	it	gives	the	same	

probability	of	being	alive	as	someone	a	year	older,	so	its	effect	can	be	approximated	by	the	

difference	in	life	expectancy	for	people	a	year	apart	in	the	relevant	population.		

	

To	illustrate	the	principle,	Table	3	shows	associations	with	age	at	recruitment	to	the	UK	Biobank	

of	some	genetic	variants	with	known	physiological	effects,	along	with	their	associations	with	

IHD	and	stroke	also	from	the	UK	Biobank.	As	would	be	expected,	the	genetic	variants	proxying	

alcohol	use	and	APOE	were	associated	with	younger	age	at	recruitment	and	higher	risk	of	IHD	

[16,	17].	The	genetic	variant	proxying	interleukin-6	was,	as	expected,	associated	with	lower	risk	

of	IHD	[18],	but	had	little	effect	on	stroke	or	age	at	recruitment.	For	demonstration	several	

blood	pressure	genetic	variants	[19]	are	shown	with	consistent	associations	with	IHD	and	age	at	

recruitment	but	no	association	with	stroke.	
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Discussion	

We	have	shown	theoretically	and	empirically	that	GWAS	of	complex	conditions	which	share	

causes	with	common	life-threatening	conditions	that	occur	earlier	in	life	are	open	to	systematic	

selection	bias	(from	selection	on	genotype	and	surviving	competing	risk)	(Figures	1	and	2)	that	

may	reverse	the	direction	of	effect,	and	result	in	missing	genetic	associations,	i.e.,	systematic	

type	2	error	in	a	GWAS	(Table	2).	However,	bias	would	not	be	evident	for	monogenetic	diseases	

that	have	no	other	causes	and	are	diagnosed	before	any	deaths	have	occurred	(Figure	1a)	

where	traditional	GWAS	are	likely	to	be	very	helpful.	We	provide	a	powerful	new	method	for	

determining	whether	a	genetic	variant	is	likely	to	be	an	important	target	of	intervention,	even	

when	condition	specific	GWAS	are	likely	to	be	biased.		

	

Despite	these	important	findings	demonstrating	systematic	selection	bias	in	condition	specific	

GWAS	and	providing	a	method	for	estimation	of	effects	on	a	proxy	of	survival	from	population	

representative	cross-sectional	studies	without	the	need	for	follow-up,	this	study	is	limited	in	

several	ways.	First,	this	study	does	not	provide	a	fool	proof	method	for	conducting	unbiased	

GWAS	of	specific	common	complex	conditions.	Methods	have	recently	been	developed	to	

tackle	the	structurally	similar	problem	of	obtaining	unbiased	genetic	associations	with	disease	

prognosis	amongst	those	with	a	specific	disease	[20].	However,	the	method	depends	on	

different	factors	determining	incidence	and	prognosis,	when	the	same	factors	may	enable	

survival	from	a	range	of	chronic	conditions	[20].		Instead,	this	study	draws	attention	to	the	

importance	of	identifying	who	is	unavailable	for	recruitment	from	any	study	sample	to	avoid	

selection	bias,	from	selective	survival	on	genotype	or	competing	risk,	when	assessing	

potentially	causal	associations.	It	also	clarifies	that	condition	specific	GWAS	are	most	likely	to	

be	biased	if	they	are	of	conditions	that	share	causes	with	diseases	that	cause	a	death	at	earlier	

ages,	and	thereby	preclude	death	from	the	condition	of	interest.	Second,	this	study	did	not	

consider	competing	risk	after	recruitment,	because	it	is	more	obvious	and	better	understood	as	

it	concerns	those	included	in	a	study	not	those	never	available	for	recruitment.	Third,	this	

particular	study	did	not	consider	all	possible	conditions	open	to	selection	bias	because	the	UK	

Biobank	does	not	yet	have	enough	cases	of	all	diseases	in	older	people	likely	to	be	open	to	
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selection	bias	given	the	recruitment	age	was	only	intended	to	be	from	40	to	69	years	[21],	the	

relatively	short	follow-up	to	date	and	the	average	recruitment	age	of	about	57	years.	However,	

this	study	is	intended	to	be	illustrative	and	larger	similar	studies,	across	a	broader	age	range,	

could	be	constructed.	Fourth,	we	assumed	that	recruitment	into	the	UK	Biobank	did	not	vary	

with	age	for	reasons	other	than	survival.	However,	it	is	possible	that	ill-health	also	precluded	

recruitment,	which	would	mean	that	age	of	recruitment	represents	both	survival	and	good	

health,	which	does	not	really	affect	its	interpretation.	Fifth,	this	study	is	drawing	attention	to	

type	2	error,	rather	than	the	type	1	error,	when	is	extensively	addressed	by	current	methods.	

Arguably,	type	2	is	of	little	importance,	however	these	are	systematic	type	2	errors.	Whether	

the	“missing”	associations	identified	here	for	disease	specific	GWAS	might	be	relevant	to	the	

small	amount	of	variability	explained	by	such	GWAS	or	the	issue	of	missing	heritability	could	

perhaps	be	considered.	

	

Conclusion	

GWAS	of	effects	of	harmful	genetic	variants	on	complex	chronic	diseases	are	also	open	to	bias	

from	surviving	competing	risk,	which	may	even	reverse	the	direction	of	effect.	GWAS	ignoring	

this	selection	bias	are	most	suitable	for	monogenetic	diseases.	Techniques	to	assess	genetic	

effects	on	complex	chronic	diseases	need	to	be	developed	to	take	account	of	competing	risk	

before	recruitment.	Estimating	effects	of	a	genetic	variant	on	age	at	recruitment	provides	a	

novel	means	of	obtaining	an	initial	orientation	as	to	whether	a	genotype	and	any	corresponding	

exposures	are	likely	to	be	a	useful	target	for	improving	population	health.		 	
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Methods	
Data	sources	
We	used	UK	Biobank	GWAS	as	the	main	source	for	this	paper,	because	it	provides	GWAS	for	
many	conditions	on	a	common	set	of	participants.	The	UK	Biobank	was	designed	to	recruit	half	
a	million	people	aged	40	to	69	years	from	the	UK	who	were	recruited	from	2006	to	2010	[21].	
Self-reports	of	health	conditions	were	obtained	at	baseline	with	follow-up	to	all	health	service	
encounters	and	deaths	from	comprehensive	national	records.		
	
Survival	
To	proxy	survival,	we	used	a	GWAS	giving	associations	with	age	at	recruitment	to	the	UK	
Biobank,	because	prior	death	precludes	recruitment.	The	GWAS	of	13.7	million	variants	
including	up	to	361,194		people	of	white	British	ancestry	adjusted	for	sex	and	the	first	40	
principal	components	was	provided	by	Neale	Lab	(http://www.nealelab.is/uk-biobank/).	We	
identified	all	independent	SNPs,	i.e.,	not	in	linkage	disequilibrium	(r2<0.05),	by	using	the	
MRBase	“clump_data”	function.		
	
Health	Conditions	
We	choose	non-communicable	health	conditions	that	are	major	contributors	to	years	of	life	lost	
(YLL)	in	the	UK	[13]	and	currently	have	enough	cases	(>4000)	in	the	UK	Biobank	to	generate	
reliable	estimates.	Of	the	10	leading	causes	of	YLL,	we	included	chronic	obstructive	pulmonary	
disease	(as	CAO),	stroke,	IHD,	colorectal	cancer	and,	breast	cancer.	We	did	not	include	the	
other	5	leading	causes	of	YLL	because	they	had	too	few	cases	(trachea,	bronchus	and	lung	
cancer,	Alzheimer’s	disease	and	other	dementias	and	cirrhosis	and	other	chronic	liver	diseases)	
were	not	available	(self-harm)	or	concerned	infectious	diseases	(lower	respiratory	infections).	
We	included	diabetes	as	a	contrast	because	it	is	largely	a	cause	not	a	consequence	of	life-
threatening	illnesses,	so	it	should	be	less	open	to	survival	bias.		
	
To	obtain	genetic	variant	specific	estimates	with	these	major	health	conditions	we	again	used	
GWAS	from	the	UK	Biobank	here	provided	by	SAIGE	which	is	based	on	408,961	white	British	
participants	of	European	ancestry	[22].	These	genetic	associations	for	28	million	variants	were	
adjusted	for	sex,	birth	year	and	the	first	four	principal	components,	and	used	scalable	and	
accurate	implementation	of	generalized	mixed	models	to	obtain	accurate	p-values	even	when	
case-control	ratios	are	unbalanced	[22].		
	
Statistical	analysis	
Effects	of	survival	on	genotype	on	GWAS	estimates	
To	assess	whether	genetic	estimates	for	a	condition	might	be	biased	by	survival,	we	compared	
the	means	of	the	absolute	values	of	the	genetic	estimates	for	each	condition	across	and	at	the	
extremes	of	the	survival	distribution,	where	we	compared	the	absolute	values	of	genetic	
estimates	for	the	2000	independent	SNPs	least	and	most	strongly	associated	with	survival	using	
a	two-sample	t-test	(Welch's	unequal	variances	t-test)	(Table	1).	Estimates	unaffected	by	
survival	should	have	a	similar	magnitude	across	the	survival	distribution,	while	estimates	
affected	by	survival	may	be	different	for	the	variants	associated	with	survival.		
	

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 20, 2019. ; https://doi.org/10.1101/709063doi: bioRxiv preprint 

https://doi.org/10.1101/709063
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 12	

Effects	of	competing	risk	on	GWAS	estimates	
To	assess	how	genetic	estimates	might	be	affected	by	surviving	other	conditions,	we	assessed	
for	pairs	of	conditions	whether	there	were	differences	at	the	extremes	of	the	survival	
distribution.	First,	we	plotted	the	differences	against	the	strength	of	the	association	with	
survival.	Given,	we	had	no	expectations	about	the	shape	of	the	curve,	we	simply	used	an	
empirical	loess	plot	obtained	by	ordering	the	observations	by	p-value	for	age	of	recruitment	
and	then	plotting	the	average	difference	in	small	groups	(of	71)	against	the	average	p-value	for	
same	genetic	variants.	Second,	we	compared	the	absolute	difference	in	genetic	estimates	for	
the	2000	independent	SNPs	least	and	most	strongly	associated	with	survival	using	a	two-sample	
t-test	(Welch's	unequal	variances	t-test)	(Table	2).	Third,	we	compared	the	number	of	times	
genetic	estimates	potentially	significant	(p<0.0005)	for	at	least	one	of	the	conditions	exceeded	
the	genetic	estimate	for	the	other	condition	(Table	2)	for	SNPs	at	both	ends	of	the	survival	
distribution.	If	genetic	estimates	for	a	condition	are	biased	to	the	null	by	only	observing	the	
survivors	of	another	condition,	then	the	condition	affected	by	such	competing	risk	will	have	
fewer	estimates	larger	than	the	other	condition	for	the	genetic	variants	associated	with	
survival.	We	used	a	chi-squared	test	to	test	for	the	difference.	When	using	the	SAIGE	UK	
Biobank	GWAS	we	assumed	that	effect	alleles	were	used	consistently	across	all	conditions.		
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Table	1:	Genetic	associations	with	selected	conditions	according	to	whether	the	genetic	
variants	are	very	weakly	or	strongly	associated	with	survival	in	the	UK	Biobank	

Condition Number 
of cases 

Association of 
genetic variants 
with survival  

Mean absolute 
estimate (log 
odds) 

Standard 
deviation 

p-value for difference 
by survival 

 

Chronic Airway Obstruction 10502 Weak * 0.027 0.040   
(496)  Strong ** 0.030 0.052 0.06  
Stroke  8742 Weak * 0.026 0.037   
(433)  Strong ** 0.033 0.058 4.6 x10-6  
Ischemic heart disease 31355 Weak * 0.017 0.038   
(411)  Strong ** 0.020 0.032 0.018  
Colorectal cancer 4562 Weak * 0.037 0.048   
(153)  Strong ** 0.047 0.211 0.03  
Breast cancer 12898 Weak * 0.024 0.034   
(174)  Strong ** 0.028 0.077 0.03  
Diabetes 20203 Weak * 0.020 0.027   
(250)  Strong ** 0.024 0.056 0.001  
* 2000 variants with the weakest association with age at recruitment 
** 2000 variants with the strongest association with age at recruitment  
 
Table	2:	Genetic	associations	with	pairs	of	conditions	by	survival	in	the	UK	Biobank	

Condition 1 # 
cases 

Condition 2 # 
cases 

Association 
with 
survival 

Difference in absolute 
log odds between 
condition 1 and 2 

Of associations highly significant (p<0.0005) for 
either condition number where the absolute 
estimate for one condition is larger than for the 
other condition 

Mean p 1 > 2 2 > 1 % 2>1 p-value 
Chronic Airway 10502 Stroke 8742 Weak * 0.036  378 145 27.7  
Obstruction (496)  (433)  Strong ** 0.042 0.0002 262 148 36.1 0.008 
  Ischemic heart 31355 Weak * 0.030  452 882 66.1  
  disease (411)  Strong ** 0.034 0.03 312 855 73.3 0.019 
  Colorectal  4562 Weak * 0.045  373 157 29.6  
  cancer (153)  Strong ** 0.056 0.06 260 292 52.9 0.00000000000013 
  Breast cancer 12898 Weak * 0.036  377 515 57.8  
  (174)  Strong ** 0.042 0.03 262 476 64.5 0.006 
  Diabetes (250) 20203 Weak * 0.030  388 920 70.3  
    Strong ** 0.038 0.002 282 1062 79.0 0.000000341 
           
Stroke 8742 Ischemic heart 31355 Weak * 0.029  228 867 79.2  
(433)  disease (411)  Strong ** 0.036 0.0017 166 870 84.0 0.005 
  Colorectal  4562 Weak * 0.045  145 154 51.5  
  cancer (153)  Strong ** 0.057 0.046 147 291 66.4 0.000006 
  Breast cancer 12898 Weak * 0.036  145 515 78.0  
  (174)  Strong ** 0.044 0.007 148 476 76.3 0.50 
  Diabetes (250) 20203 Weak * 0.031  156 931 85.6  
    Strong ** 0.039 0.00045 159 1068 87.0 0.36 
           
Ischemic heart 31355 Colorectal  4562 Weak * 0.042  899 224 19.9  
disease (411)  cancer (153)  Strong ** 0.051 0.05 829 367 30.7 0.000000004 
  Breast cancer 12898 Weak * 0.030  965 520 35.0  
  (174)  Strong ** 0.035 0.002 890 476 34.0 0.96 
  Diabetes (250) 20203 Weak * 0.023  1326 1356 50.6  
    Strong ** 0.028 0.007 1258 1478 54.0 0.01 
           
Colorectal  4562 Breast cancer 12898 Weak * 0.044  167 502 75.0  
cancer (153)  (174)  Strong ** 0.056 0.025 303 462 60.4 0.0000000053 
  Diabetes (250) 20203 Weak * 0.043  207 888 81.1  
    Strong ** 0.051 0.034 328 1052 76.2 0.004 
Breast cancer 12898 Diabetes (250) 20203 Weak * 0.031  515 936 64.5  
(174)    Strong ** 0.036 0.05 474 1088 69.7 0.003 
           

* 2000 variants with the weakest association with age at recruitment 
** 2000 variants with the strongest association with age at recruitment  
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Table	3:	Associations	of	genetic	variants	representing	specific	exposures	with	ischemic	heart	
disease,	stroke	and	survival	(proxied	by	age	at	recruitment)	in	the	UK	Biobank	

   Ischemic heart 
disease 

Ischemic stroke Age at recruitment 

Exposure Variant  Effect 
allele 

OR 95% CI OR 95% CI beta 95% CI 

APOE [23] rs4420638  G 1.09 1.07 to 1.12 1.09 1.05 to 1.14 -0.10 -0.14 to -0.05 
Alcohol [16] rs1229984 C 1.12 1.05 to 1.19 1.09 0.98 to 1.21 -0.16 -0.03 to -0.28 
IL6R [18] rs7529229  C 0.97 0.95 to 0.99 1.01 0.98 to 1.04 0.02 -0.02 to 0.06 
         
Blood rs3796592 C 0.94 0.92 to 0.96 1.00 0.96 to 1.04 0.06 0.02 to 0.11 
Pressure  rs4109837 T 1.02 1.001 to 1.04 1.00 0.97 to 1.03 -0.05 -0.01 to -0.09 
[19] rs2306363 T 0.97 0.95 to 0.99 0.98 0.95 to 1.02 0.05 0.005 to 0.09 
         

OR	odds	ratio	
CI	confidence	interval	
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Figure	1:	Directed	acyclic	graphs	showing	potential	sources	of	selection	bias	from	survival	and	competing	risk		

Bias	results	from	any	additional	open	pathway	from	genetic	variant	to	outcome	apart	from	the	association	of	
interest.	A	link	in	a	pathway	may	be	generated	by	selecting	on	a	factor,	such	as	survival	as	here,	or	by	having	
common	causes	of	survival	and	disease,	i.e.,	competing	risks,	that	are	not	fully	accounted	for	in	the	analysis.	If	the	
links	together	create	an	alternative	pathway	from	genetic	variant	to	outcome	the	study	will	be	biased,	which	can	
be	thought	of	intuitively	as	some	of	the	effect	coming	from	or	going	by	a	different	route	so	the	true	effect	of	
genetic	variant	on	outcome	cannot	be	obtained.				
	
	
Figure	2:	Differences	in	genetic	variant-specific	estimates	(log	odds)	for	all	pairs	of	the	6	conditions	considered	
according	to	the	effect	of	the	genetic	variants	on	survival,	proxied	by	age	at	recruitment	to	the	UK	Biobank	

	
CAO	chronic	airway	obstruction,	IHD	ischemic	heart	disease,	Col	Ca	colorectal	cancer,	Br	Ca	Breast	Cancer	
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Figure	3:	Directed	acyclic	graph	showing	the	relation	of	genetic	variants	to	age	at	recruitment	
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