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Abstract

Summary: PyIOmica is an open-source Python package focusing on integrating longitudinal multiple omics

datasets, characterizing, and classifying temporal trends. The package includes multiple bioinformatics

tools including data normalization, annotation, classification, visualization, and enrichment analysis for

gene ontology terms and pathways. Additionally, the package includes an implementation of visibility

graphs to visualize time series as networks.

Availability and implementation: PyIOmica is implemented as a Python package (pyiomica), available for

download and installation through the Python Package Index (PyPI) (https://pypi.python.org/pypi/pyiomica),

and can be deployed using the Python import function following installation. PyIOmica has been tested on

Mac OS X, Unix/Linux and Microsoft Windows. The application is distributed under an MIT license. Source

code for each release is also available for download on Zenodo (https://doi.org/10.5281/zenodo.3342612).

Contact: gmias@msu.edu

1 Introduction

As sequencing costs continue to drop, systems biology based on large

omics datasets is rapidly expanding its scope. In particular, time

series obtained from multi-omics datasets are becoming more and more

affordable. The analysis of time series can have broad implications

for precision medicine applications, since longitudinal data capture

the dynamically-changing collective microscopic behavior of molecular

components in the body, reflecting the physiological state of a patient.

There are many bioinformatics tools aiming at multimodal omics data

integration (Pinu et al., 2019). Specifically, Bioconductor (Gentleman

et al., 2004), Galaxy(Afgan et al., 2018), GenePattern(Reich et al.,

2006), Biopython (Cock et al., 2009), Pathomx (Fitzpatrick et al., 2014),

SECIMTools (Kirpich et al., 2018), and more. While multiple coding

paradigms are used in bioinformatics, R and Python are essentially the

lingua francas for data science analysis, where the open-source appeal and

growing online community support are particularly helpful in developing

a dedicated user base.

Here we introduce PyIOmica, an open source Python package, for

analyzing longitudinal omics datasets, which includes multiple tools

for processing of multi-modal mapped data, characterizing time series

in terms of periodograms and autocorrelations, classifying temporal

behavior, visualizing visibility graphs, and testing data for gene ontology

and pathway enrichment. PyIOmica includes optimized new algorithms

adapted from MathIOmica (Mias et al., 2016) (which runs on the

proprietary Mathematica platform), now made available as Python

open source code for all users, and additionally expands extensively

graphical utilities for visualization of classified temporal data, and network

representation of time series. To our knowledge, there are no tools with

the functionality of PyIOmica currently available in Python.

2 Materials and methods

2.1 Overview and Codebase

PyIOmica provides a complete workflow for time series processing,

illustrated in the Supplementary Figure S1. The modular nature of

PyIOmica allows for smooth integration with any future and existing

Python tools. In addition, major data structures can be imported from

MathIOmica to PyIOmica using PyIOmica functions. With PyIOmica,

any results can be visualized, exported and analyzed for gene enrichment

by means of a user-friendly Python interface.

PyIOmica’s codebase is a single Python module containing multiple

groups of functions designed for annotations and enumerations, pre-

and post-processing, clustering-related purposes, visualizations (heatmaps

and classifications), normal and horizontal visibility graphs generation,

and other core and utility components. Installation is simply performed

using pip install pyiomica, and package dependencies are

automatically addressed directly from PyPI (Python package index).

Function documentation is embedded in the module, and is easily

accessible at runtime (see Supplementary Material).
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2.2 Data structure and analyses

We utilize the fast, robust, and versatile functionality of Python Pandas’

DataFrame, a two-dimensional size-mutable data structure that allows

for multi-level hierarchical indexing (MultiIndex) along both axes (rows

and columns). Pyiomica uses this multi-level hierarchical indexing to

store metadata. For example, gene-specific information in a transcriptome

dataset can be encoded by adding new row MultiIndex levels, and sample-

specific information can be added using column MultiIndex levels. For

storage and exchange, data are written using the Hierarchical Data Format

(HDF5), which is essential when large amounts of data are supplied. The

HDF5 files are easily accessed using Pandas HDFStore, which utilizes

PyTables, or using h5py to read/write NumPy arrays.

An extensive set of PyIOmica pre-processing functions enables

filtering low-quality signals, tagging missing or low values, normalization,

standardization, merging and comparison of the datasets. The post-

processing functions, such as temporal trends classification of power

spectrum and spikes, are built on using the SciPy and scikit-learn Python

toolkits. Additional functionality includes Gene Ontology (GO) and

KEGG (Kyoto Encyclopedia of Genes and Genomes) pathway enrichment

analyses for both non-temporal data, as well as for clusters identified

through the automated time-series classification.

Temporal trends are automatically discovered using a power spectrum

calculation based on a Lomb-Scargle transformation based algorithm(Mias

et al., 2016), which properly accounts for missing points and/or unevenly-

sampled data. Autocorrelations and periodograms are calculated and

signals showing statistically significant trends are retained for downstream

analysis.

2.3 Visibility graphs and classification visualization

PyIOmica introduces a Python implementation of the standard normal and

horizontal visibility graphs(Lacasa et al., 2008), whose adjacency matrices

are calculated using two methods: a Numba JIT-accelerated approach

scalable to multiple CPUs, and a NumPy-accelerated approach, which is

preferred for large datasets but not readily scalable beyond a few CPUs. The

adjacency matrix is then converted to a NetworkX graphs for visualization

and analysis.

We used Python Matplotlib plotting functions to visualize histograms,

dendrograms, heatmaps and visibility graphs on different layouts.

Figure 1(a) shows example RNA-sequencing gene expression data from a

24 hour time-series, clustered into two groups based on autocorrelations

of the gene expression. Subgroups are then determined from the gene

expression in each autocorrelation group. The data from group 1, subgroup

2 containing 191 genes is visualised in Figure 1(b) and (c) as a visibility

graph on a circular and linear layout, respectively. Temporal events are

detected and indicated with solid blue lines encompassing groups of points,

or communities. Additional examples are provided as a Jupyter notebook

(Supplementary Material, using data that is provided with the PyIOmica

software release).

3 Conclusion

The open source PyIOmica Python package characterizes time-series

from multiple omics and classify temporal trends with a streamlined

automated pipeline based on spectral analysis. PyIOmica also offers

broad bioinformatics functionality, including clustering, visualization,

and enrichment, and extends previous developments (Mias et al., 2016)

to an open-source, community-accessible platform for data science. We

anticipate future versions of PyIOmica to utilize its codebase flexibility

to expand its bioinformatics tools for genomic as well as differential gene

expresion analyses, and graph construction and characterization.

Fig. 1. Example of PyIOImica data visualization. a Dendrogram with heatmap of

automatically classified longitudinal gene expression data. Autocorrelations are used to

identify temporal trends in the data. Sub-groups are determined based on similar collective

behavior over time. b Visibility graph of the median signal intensity extracted from group

G1S2, panel a, on a circular layout. c Same graph visualization as in b on linear layout.
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