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Abstract— Neurodegenerative diseases such as Alzheimer’s
and Parkinson’s impact millions of people worldwide. Early
diagnosis has proven to greatly increase the chances of slowing
down the diseases’ progression. Correct diagnosis often relies
on the analysis of large amounts of patient data, and thus lends
itself well to support from machine learning algorithms, which
are able to learn from past diagnosis and see clearly through the
complex interactions of a patient’s symptoms. Unfortunately,
many contemporary machine learning techniques fail to reveal
details about how they reach their conclusions, a property
considered fundamental when providing a diagnosis. This is one
reason why we introduce our Personalisable Clinical Decision
Support System PECLIDES that provides a clear insight into
the decision making process on top of the diagnosis. Our algo-
rithm enriches the fundamental work of Masheyekhi and Gras
in data integration, personal medicine, usability, visualisation
and interactivity.

Our decision support system is an operation of translational
medicine. It is based on random forests, is personalisable and
allows a clear insight into the decision making process. A well-
structured rule set is created and every rule of the decision
making process can be observed by the user (physician).
Furthermore, the user has an impact on the creation of the final
rule set and the algorithm allows the comparison of different
diseases as well as regional differences in the same disease1.

I. INTRODUCTION

The average life expectancy of Europeans increased by 2.9
years in the last decade. People reached an average age of
80.6 in 2013 [1] and there is more than a 50% probability
that by 2030, national female life expectancy will break the
90 year barrier [2]. But a longer life does not implicate a
healthy one. With higher age comes an increased likelihood
of chronic diseases. This trend affects the well-being of
elderly people and bears huge challenges for society and
economics [1]. Computer algorithms and technology can
support disease detections for example and it is hoped that
systems like the one presented in this work will become
increasingly prevalent as we continue to improve the state-
of-the art in predictive medicine.

A. Neurological Diseases

Alzheimer’s and Parkinson’s Disease are two of the most
common neurodegenerative diseases [3][4]. In the US there

1The source code of Peclides Neuro can be found on GitHub:
https://github.com/tamaramueller/Peclides-Neuro

are currently about 5.5 million patients of Alzheimer’s Dis-
ease (AD) and predictions project this number to grow to
about 13.8 million by mid-century. In 2014 official death
certificates recorded AD to be the sixth leading cause of
death in the US. The average per-person medical payments
for services to Alzheimer’s patients (or patients with other
dementia) older than 65, are three times greater than pay-
ments for beneficiaries without these conditions [5]. The
structure of Alzheimer patients’ brains changes with the
disease. A larger amount of so called plaques and tangles are
built by certain proteins, which lead to a loss of connections
between nerve cells. This results in the death of nerve
cells and a reduced amount of brain tissue. Furthermore,
message transmission is less effective, as certain chemicals
are missing in the patients’ brains [3][6]. Studies have shown
that age is the most significant risk factor for AD [7]. But
there are also genetic factors that can play a role. The
Apolipoprotein E (ApoE) gene, or more specifically one
of its three major isoforms, for example is known to be
associated with the development of AD [8][9][10]. Different
alleles of the gene can indicate higher or lower risk for
developing the disease [11].

It is estimated that about 1-2% of the world population
suffer from Parkinson’s Disease (PD). Almost half of the pa-
tients develop PD during age 50 and 60 [12]. A characteristic
of PD is the progressive loss of substantia nigra dopamine
neurons and striatal projections [10]. Consequently, patients
have a lack of dopamine in their brain. The exact reason for
this is mostly unknown. A consequence of dopamine short-
age is that movements become slower and more difficult.
Tremor, muscle stiffness, and slowness of movement are the
three main symptoms of PD. Other symptoms are tiredness,
pain, depression and constipation. Estimated numbers of peo-
ple diagnosed with Parkinson’s in 2018 in the UK are around
145.000. Currently there is no cure for Parkinson’s disease,
but treatments can control the symptoms to a certain amount.
Drugs, deep brain stimulations, and physical therapies are the
most common treatments [4].

B. Decision Making

Making the right decision is one of the key factors
of successfully achieving goals in all areas of work and
there are numerous ways of finding the right decision.
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Nevertheless, the basic idea is mostly the same. It is usually
a combination of experiences, research results and personal
judgement. As the first two components are constantly and
rapidly growing, one can imagine that decision making in
general has a great potential to improve over time. But this
growth also results in unmanageable amounts of data, which
is why we need support systems to help processing them
[13]. The goal of our support system PECLIDES Neuro is
to integrate all three mentioned components: experience,
research results and personal judgement. Especially the last
aspect is rarely represented in machine learning techniques
but plays an important role in every decision-making process
and should therefore also be considered within a decision
support system.

The following sections introduce a decision support sys-
tem and cover related work, the design of the algorithm as
well as the evaluation on selected data sets. Figure 1 shows
an overview of our support system. After pre-processing of
the data, a random forest is trained. Subsequently, a rule set
is extracted from the latter and then reduced in several steps
to get a smaller rule set.

Fig. 1: A visual overview of our clinical decision support
system; data pre-processing includes feature extraction; Af-
terwards, a random forest is trained and converted into a rule
set. This rule set is then reduced with the goal of keeping the
performance and considering personal preferences in form of
favourite features and enables to make a diagnosis.

II. RELATED WORK

Supporting medical decisions with current technology is
highly discussed in literature. A frequently used technique
is the ensemble learning method of random forests. Random
forests are a combination of decision tree predictors
and a regression and classification method. Each tree
individually votes for the most popular class and their
creation depends on the values of a random vector which
is sampled independently but with the same distribution for
all trees in the forest. In general, random forests are robust

against over-fitting, run efficiently on large data and handle
heterogeneous data well [14][15]. As random forests are
based on decision trees, they can be used to explicitly and
understandably describe a decision-making process.

A. Rule Extraction from Random Forest

One disadvantage of random forests is that they can grow
very big and become unclear. But by extracting rules from
a built forest, one can gain an insight into how decision-
making process. Mashayekhi and Gras [16] introduced two
methods called RF+HC and RF+HC CMPR which allow to
extract a rule set from random forests. The main idea is to
reduce the number of rules radically and therefore increase
the comprehensibility of the underlying model. The rule
extraction can be seen as an optimisation problem and finding
the best rule set is an NP-hard problem [16].

Their proposed algorithm consists of four steps. The first
one is to generate the random forest and extract all rules into
a rule set. Secondly, a score for all rules is defined. For the
RF+HC method they used equation 1. Hereby, cc stands for
correct classification and is the number of covered training
samples that are classified correctly. The variable ic refers
to the incorrect classification, so the number of incorrectly
classified training samples, and k is a predefined positive
constant value. Mashayekhi and Gras proposed to set k = 4:

ruleScore1 =
cc− ic
cc+ ic

+
cc

ic+ k
(1)

Their score leads to the elimination of noisy rules and the
maintenance of rules with higher accuracy. In the third step
of the algorithm a final rule set is generated. The probability
of selecting a rule is hereby proportional to its score. The
last step is to apply the extracted rule set on the test data set
to evaluate its performance. The average rule set size after
applying the RF+HC algorithm is 0.6% of the original rule
set, while the accuracy generally only decreases by a couple
of percent [16].

Their second method, called RF+HC CMPR, is an ex-
tension of the firstly proposed method RF+HC, where they
additionally considered the length of the rules. It adds
another addend to ruleScore1. Equation 2 shows the new
score:

ruleScore2 =
cc− ic
cc+ ic

+
cc

ic+ k
+

cc
rl

= ruleScore1 +
cc
rl

(2)

Hereby rl refers to the length of the rule. This way a
shorter rule adds a higher number to the original score than
a long rule, which leads to a higher score. The purpose
is to favour shorter rules, as they are more transparent
and understandable than longer rules. Mashayekhi and Gras
applied their two algorithms to several different data sets and
compared them to CRF and the ”normal” Random Forest
methods. CRF is a method that was introduced by Liu et al.
It is a joint rule extraction and feature selection method [17]
[18]. On average, both the RF+HC and the RF+HC CMPR
method resulted in almost the same accuracy as the CRF
method. Furthermore, on average over all data sets, the
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three methods obtained 96% of the random forest accuracy.
Moreover RF+HC and RF+HC CMPR resulted in a clearly
smaller number of rules. On average, the size of the extracted
rule set is 0.6% of the original random forest. In comparison,
the total number of rules in CRF is 11.66% of the size of
the original rule set [16].

B. Shrinking Random Forests

Even though decision trees represent a fairly transparent
way to make decisions, random forests can get very big and
quite incomprehensible. Therefore it is useful to consider
different ways of shrinking a random forest while main-
taining its prediction accuracy. To minimise the size of a
random forest, one has to decide when and which trees can
be eliminated. Zhang and Wang [19] presented three different
measures to determine the importance of a tree. (1) A tree
is not necessary, if its removal from the forest has the least
impact on the overall prediction accuracy. Furthermore, a
tree can be removed, if it is highly similar to other trees
in the forest. This similarity can be either measured as (2)
an average similarity to all other trees or (3) a pairwise
similarity.

To get the tree with the least impact on the forest (1),
firstly the prediction pF of the whole forest is calculated.
Secondly, for each tree T in the forest F the prediction F−T
of the forest without the tree T is determined. Lastly, the tree
that leads to the smallest difference in prediction accuracy

δ−T = pF − pF−T (3)

can be removed.
The similarity between two trees can be defined by the

correlation between their predicted outcomes. The average
similarity (2) can be calculated as following:

ρT =
1

NF −1 ∑
t∈F,t 6=T

cort,T (4)

where NF is the number of trees in the forest and cort,T is
the correlation between two trees t and T . The tree T with
the highest ρT has the highest similarity to the rest of the
forest and can therefore be eliminated.

The highest pairwise similarity (3) is measured by the
correlation of the accuracy of two trees. Firstly, a weight
wT is introduced for every tree T and set to 1. Subsequently,
one is searching for the two trees Ts1 and Ts2, which are
most similar. Afterwards, the average of similarity ρs1 and
ρs2 for those two trees is calculated. The tree T rs with higher
ρ can then be removed. Finally, the following weights are
calculated:

w′t = wt +
cor(T rs, t))

ρT rs
∗ (NF −1), t ∈ F−T rs . (5)

As a last step, it is important to select the optimal size
for the sub-forest. Zhang and Wang proposed to define a
performance trajectory h(i), i = 1, ...,N f − 1 of a sub-forest
of i trees, where NF is the size of the original random forest.
The optimal size can then be selected by maximising h(i)
over i = 1, ...,NF −1 [19].

Fig. 2: A sample decision tree that would lead to eight
rules; the yellow and blue path show two exemplary rules
that would be extracted from the decision tree.

Zhang and Wang showed on real data sets, that a shrunken
random forest can sometimes even outperform the original
one and oftentimes achieves a very similar accuracy to the
original random forest [19].

III. PECLIDES NEURO

Our implemented clinical decision support system is based
on the machine learning technique of random forests. The
first step of the algorithm is to generate such a random forest
from a given data set and subsequently extract rules from it.
The usage of the RandomForestClassifier Class in Python
allows the variation of several parameters. In this project,
we focused on the calibration of the number of trees in the
forest, the function to measure the quality of a split, the
maximum number of features to consider when looking for
the best split, and the maximum depth of a tree.

To start the training process of the random forest, the data
set was separated into a training and a test set. One approach
we used is to generate a train-test split which takes a certain
percent of the whole data set (for example 30%) aside for the
test set and trains the model on the remaining samples (70%).
Using 10-fold cross validation, the performance on the data
set can be measured while reducing the risk of over-fitting.

A. Building Rule Set from Random Forest

The next step after the creation of the random forest, is
to extract rules from the latter. These rules will then build
the core of the decision support system. This can be done
by iterating through each tree in the forest and extracting
each branch. Figure 2 shows an exemplary decision tree.
One branch represents one rule, as it determines the decision
process from the tree’s root to one leaf. Thus, the displayed
tree would lead to eight rules, since it has eight leaves. In
each node of the tree, a question is asked like ”If f eatureX is
smaller than Y, then left, else right”. Therefore, for each node
the following three values are important: (1) the f eatureX
that is considered, (2) the value Y that it is checked against
and (3) whether the feature has to be smaller or greater than
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that value. So each node can be represented as a list of
three elements [feature, l/g, value], whereby l/g determines
whether the feature has to be lower or greater than the value.
Finally, the outcome of a branch has to be stored too. This
can be done by adding another element to the rule list. This
outcome can be the decision whether a person has a certain
disease or not. In my case the trees’ leaves determine whether
a person is predicted to have Alzheimer’s or Parkinson’s
Disease or whether the person is predicted to be healthy.
All rules of all branches of all trees can then be stored in a
set that represents the whole rule set.

Each branch can be represented by a disjunctive normal
form (DNF) where all queries of all nodes are connected with
’and’. So the exemplary rule from above can be represented
by the following DNF:

( f eature18 <=−6.421 ∧ f eature10 <= 0.008 ∧
f eature6 <= 0.002)⇒ Parkinson′s Disease

(6)

B. Minimising the Rule Set

As the number of trees and their depths determine the
number and the length of the rules, the exact size of the rule
set varies from application to application. But in general,
the goal is to keep the rule set small. Figure 2 shows an
exemplary decision tree. One can see that feature 18 is
checked twice in the blue ’False/True’-branch that leads to
leaf five. The matching DNF is shown in equation 7. In the
tree’s root it is checked whether feature 18 is greater than
-6.421 and two layers below it is checked whether feature
18 is greater than -6.246:

( f eature18 >−6.421 ∧ f eature14 <= 0.004 ∧
f eature18 >−6.246)⇒ Parkinson′s Disease

(7)

So the first logical step to minimise the rules is to eliminate
redundant queries within a rule, like in our example branch
from above. Deleting the first query (whether feature 18 is
greater than -6.421) does not change the outcome of the
rule. The condition that feature 18 has to be greater than
-6.246 already implies that condition f eature18 >−6.421 is
fulfilled. So the mentioned branch (see equation 7) can be
reduced to the following logical statement:

( f eature14 <= 0.004 ∧ f eature18 >−6.246)
⇒ Parkinson′s Disease

(8)

C. Personalisable Rule Score

As suggested by Mashayekhi and Gras [16], we also as-
signed a score to each rule, depending on its performance on
the training set. The score chosen in this work is an extension
of ruleScore2 introduced in their paper (see equation 2). It
considers correct and incorrect classifications as well as the
length of a rule and a personalisable attribute. This score is
then calculated for every rule separately. The consideration
of a personal preference for features enables the rule score
to be personalisable and therefore to adjust and influence
the support system after the user’s preferences, experience,

and expertise. The physician can nominate a desired number
of features that shall be preferred during the minimisation
steps and kept in the rule set. These features could be seen
as extremely relevant for predicting whether a patient is
diseased or not. The personalisation can lead to a more
suitable support system for physicians and therefore increase
the trust in the system and maybe also the willingness to use
it in the first place.

Therefore ruleScore2, which was proposed by Mashayekhi
and Gras [16], was extended by another component. This ad-
ditional element is the consideration of one or more preferred
features. If a rule does not contain a nominated favourite
feature, the score will be the same as rule ruleScore2 (see
equation 2). But if the rule contains a favourite feature, an-
other value is added to increase the score. This way rules that
should be preferred because they contain a favourite feature,
get a higher score than others, even if the performance is the
same. And as rules with a low score are eliminated first, this
leads to the fact that rules which contain favourite features
are less likely to be deleted from the rule set.

Equation 9 shows the new rule score. If several features
are defined as preferred ones, than there will be a ranking
among them. The features are a parameter list where the
first list entry is the most preferred feature and the last
list element the least preferred one. If a rule contains the
most important feature, the rule gets a higher score than if
it contains the second most important feature and so forth.
The score will be the highest, if a rule contains all preferred
features (considering the same performance). We decided to
use a linear function to calculate the additional score points.
The equation to calculate the new rule score is as following:

ruleScorepersonal =
cc− ic
cc+ ic

+
cc

ic+ k
+

cc
rl

+
x

(i+2)
(9)

where i refers to the feature’s index in the list and x is a
constant positive value that can be customised. So the first
feature (index 0) increases the score by x

0+2 = x
2 , whereas the

second feature (index 1) increases the rule by x
3 and so on.

This way the favourite features are ranked and depending on
how many and which of those features are considered in one
rule, the rule gets a higher or lower score. The parameters
ic, cc, and k are the same as suggested by Mashayekhi
and Gras [16]. cc and ic stand for correct and incorrect
classification, respectively and k is a positive constant value.
The usage of k = 4 was suggested by Mashayekhi and Gras.
The constant x can be adjusted depending on how much
impact one wants the preferences to have on the whole score.

Now the rule set can be minimised to the best performing
rules with the most occurrences of the preferred features.
For that, one can either define a certain percentage of the
rule set, that shall be deleted or kept, or a threshold to what
minimum performance the rule set should be reduced. The
latter holds the challenge that the performance of a rule set
is not proportional to its size. It is more straightforward to
reduce the rule set to a certain percentage, like 10% of the
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Fig. 3: Three slices of a 3D MR image; with sagittal, coronal
and axial plane

original rule set’s size and then analyse the performance of
the smaller and more accessible rule set. Additionally to
getting a prediction, by inspecting this small rule set, one
can see which features are monitored and which thresholds
are important. This can lead to information about the disease,
its characteristics, and possible factors for diagnoses.

D. Evaluation on Different Data Sets

We used a variety of data sets like Alzheimer’s Disease
Neuroimaging Initiative (ADNI) [20], PROPAG-AGEING
[1], a data set of spiral drawings [21] and biomedical voice
measurements [22]. The data is partly a complex collection
of different data types and from different institutions in
Europe like PROPAG-AGEING.

The ADNI data set contains different types of data, includ-
ing PET images, MR images and clinical data. Firstly, the
clinical data with information about age, ethical background,
gender, numerous numeric test results and more was used.
All values are numerical or can be transformed into numeric
values easily, which makes the implementation of a random
forest straightforward. The data set consists of 3445 samples
from Alzheimer’s patients and healthy subjects. The random
forest achieved an accuracy of 97%, a sensitivity of 96%
and a specificity of 97.4%. The rule set extracted from the
random forest contains 1447 rules and the performance is
strongly depending on the way the rule set is evaluated.
The exhausting approach that predicts one outcome for each
rule for each data sample, achieves only an accuracy of
70%. Whereas the tree-like approach, which only predicts
an outcome, if the rule is applicable to the data sample,
achieves an accuracy of 96.92%, which is almost as high
as the performance of the random forest. The sensitivity of
the tree-like approach is 96.2% and the specificity 97.24%.

After deleting the 500 weakest rules of the rule set without
preferring any features, the accuracy is still very high with
97%, the sensitivity is 96.5% and the specificity 97.2%.
Going down to half the rule size with 724 rules, results in an
accuracy of 94.7%, a sensitivity of 86.76% and a specificity
of 98.11%. Which shows again, that shrinking the rule set
the right way does not have a big impact on the performance.

ADNI also provides three-dimensional T1-weighted mag-
netic resonance imaging (MRI) for developing and testing
analysis techniques for extracting structural endpoints. To
ease the utilisation of the MR Images, standardised analysis

Fig. 4: Smoothed MR image with Gaussian filter

sets of data comprising scans that met minimum quality con-
trol requirements were created within ADNI. In this work,
samples from 1-year completers were used, that includes
images from subjects who had 6- and 12-month scans [23].
The images typically consist of 256×256×170 voxels with
a voxel size of 1mm× 1mm× 1.2mm [24]. 27 images from
Alzheimer’s patients and 25 images from healthy subjects
were used.

In order to train the random forest, features have to
be extracted from the MR images. Using Python and the
libraries nipy [25] and nilearn [26] MR images can be
processed more easily. They can be converted into arrays
containing the image’s colour values. Figure 3 shows the
three middle slices of an exemplary MR image (sagittal,
coronal and axial plane).

The features extracted in this work, include first order and
second order descriptors [27]. Firstly, as a pre-processing
step, a Gaussian filter was applied to the images (see figure
4). The filter is applied along the three first dimensions
of the image [28]. The result is an array of arrays of
arrays with one value for each voxel. Afterwards, the MR
images are converted into arrays containing numerical values
representing the colour of each voxel. Figure 4 shows three
slices of a smoothed image after the application of the
Gaussian filter. From these pre-processed arrays features
were extracted. The first order descriptors include the sum,
the mean and the maximum of all voxel values, as well as
mean, sum and maximum values of the middle slices of all
three dimensions. Exemplary slices are shown in figure 3. A
colour level histogram was used to extract the most frequent
voxel value in the MR image. The value 0 was excluded
form the histogram, as the background is represented by 0
and should not be considered.

To extract second order features, the probability of the
different brain tissues were determined. The three types of
tissue are cerebrospinal fluid (CSF), grey and white matter.
Figure 5 shows the probabilities for the different tissue types
in an exemplary slice of an MR image. The segmentation
was performed using the python library dipy [29], its class
TissueClassifierHMRF and the Markov Random Fields mod-
eling approach. The latter is frequently used in literature.
An example would be Held et al. who described a fully
automated 3D segmentation technique for MR images [30].
The maximum a-posteriori Markov Random Field approach
uses iterative conditional models and expectation maximisa-
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Fig. 5: Probabilities of the different brain tissues CSF, grey
matter and white matter

tion to estimate the parameters [31]. After the segmentation,
more features can be extracted depending on the tissue type.
The sum of all voxel values separated by tissue type, as
well as the maximum of the sum of the inner arrays were
calculated. All features were based on the smoothed images.
Using the images without this pre-processing step leads to
poorer results.

These features were then used to implement a random
forest. 10-fold cross validation lead to an average accuracy
of 99.38%, a sensitivity of 99%, and a specificity of 100%.
Extracting a rule set from a parameter pruned random forest,
leads to a rule set of 213 rules with an accuracy, a sensitivity
and a specificity of 100% each. The first reduction step that
eliminates queries within singular rules (see section III-B)
does not change the outcome. Table I shows some results
of different rule sets with and without preferred features.
Interestingly, even one rule alone can predict the correct
outcome for each data sample. This feature is the maximum
of the sum of the sum of the smoothed data. This feature
defines a clear threshold between AD patients and the healthy
control group. This might be due to the small data set and has
to be tested on larger data sets again. But it most certainly
is a very strong indicator to make a diagnosis about AD
from MR images. Table I also shows that preferring certain
features can have a greater impact on which rules are deleted
than the actual performance of the rules. By reducing the rule
set to 1% of its original size with three preferred features,
the performance is clearly poorer than without setting a
preference for features.

Figure 5 shows the percentage of occurrences of features
in rules in the 10% rule set. For sub figure (a) no features
were preferred whereas the rule set in figure (b) preferred
features 2,12 and 13, the three most often represented
features in the original rule set. One can see, that due to the
preference of these three features, they appear more often
in the shrunken rule set.

E. Handling missing values

The rule based algorithm depends on the previous imple-
mentation of a random forest. The random forest itself does
not handle missing values, but Python’s sklearn [32] tool
provides a class called Imputer [33] that can handle missing
values and replace them with either the mean value, the
median, or the most frequent value in the respective column.

(a) Percentage of occurrences
of features in rules in 10% of
original length without pre-
ferred features

(b) Percentage of occurrences
of features in rules in 10% of
original length with preferred
features 2,12,13

Fig. 6: Distribution of occurrences of features in rules of
MRI data set

This way the support system can deal with missing values
and incomplete data samples do not have to be deleted. This
was for example applied in the PROPAG-AGEING data set,
as some values were missing in a few data samples. One
could take this into account during the reduction step of
the rule set, by not choosing those less reliable features as
preferred ones. This shows another advantage of the fact that
the support system is personalisable.

F. Graphical User Interface

To make the interaction with the decision support sys-
tem approachable and straightforward, a user interface was
implemented. Figure 7 shows the provided GUI. The first
rule set that was extracted from the whole random forest,
was already created beforehand. The name of the data set
and the number of rules of this original rule set are stated
on top of the window. Beneath, the first reduction step can
be performed by clicking on the button First Reduction.
This does not change the number of rules but eliminates
redundant queries within one rule. The new size of the rule
set is then stated under the button. In the next step, optionally
favourite features can be named (1,2 and 3 in the example)
and the percentage to which the rule set shall be reduced
(here: 30%). The new size as well as accuracy, sensitivity
and specificity will then be calculated and displayed after the
button Reduce Rule Set is clicked. To make a new prediction,
a value has to be filled in for each feature and with the
button Predict a prediction is calculated and displayed (here:
healthy). The two buttons more info open a message box
with more information about what to fill in the entry boxes.
The button Print Rules shows all rules within the current
reduced rule set in form of if statements (see figure 8). The
two buttons on the bottom of the GUI show bar charts with
the number of rules containing each feature in the original
rule set and the current reduced one (see figure 9). These
two properties allow a clear insight into the decision-making
process as well as the influence of different features.

IV. CONCLUSIONS

The algorithm introduced in this work can be used as a
clinical decision support system. It helps analysing clinical
data and integrating different data types and predicts the
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Rule Set Accuracy Sensitivity Specificity Preferred
Features

#Rules

Original 100% 100% 100% none 213
Reduced 100% 100% 100% none 213

70% of original 100% 100% 100% none 149
50% of original 100% 100% 100% none 106
50% of original 100% 100% 100% 0,4,7 106
10% of original 72.22% 54.55% 100% none 21
10% of original 100% 100% 100% 2,12,13 21
5% of original 100% 100% 100% 2,12,13 11
1% of original 100% 100% 100% none 2
1% of original 77.78% 100% 42.86% 2,12,13 2

0.5% of original 100% 100% 100% none 1

TABLE I: Results of different rule sets with tree-like application on MR images in ADNI data set

Fig. 7: Graphical interface for the clinical decision support
system

Fig. 8: Displaying all rules that remained in the reduced
rule set

health of a subject. The focus of this work is thereby
on neurological diseases like Alzheimer’s and Parkinson’s
Disease. The goal is to make machine learning algorithms
more transparent and accessible while ensuring a high perfor-
mance. This is especially useful in clinical contexts, where a
comprehensible decision-making process increases the trust
in the diagnosis and can reveal information about diseases.
Therefore the algorithm includes the option of personalising
and adjusting the treatment of parameters within the algo-
rithm. This leads to more insight into features used by the
algorithm, their importance and informative value.

The algorithm can be divided into three major steps. (1)
Firstly, a random forest is created that builds the foundation
of the algorithm. (2) Secondly, a set of rules is extracted
from the random forest. (3) And thirdly, this rule set is
reduced using different algorithms. The third step includes
the personalisable aspects, where as important considered
features can be preferred within the rule set. Figure 1 shows

Fig. 9: Displaying the number of rules containing the
respective feature in the original rule set and the current
reduced rule set

a graphical overview of the algorithm.

The rule based algorithm allows to draw conclusions about
the impact of certain features on the decision-making pro-
cess. Physicians in different regions can adjust the algorithms
to their patients’ needs, their experience and expertise. This
might lead to different algorithms in big international cities
compared to rural regions or different continents. Informa-
tion about regional differences can then be used to get a
better understanding of a disease in different demographic
groups. Another interesting analysis could be the similarity
between different diseases. Therefore knowledge about the
importance of specific factors in two or more diseases are
very valuable. By examining the impact of various genes
for example, one could reason about the similarity between
different diseases or draw conclusions about disease ontolo-
gies. Another extension of the personalisation process could
be that doctors are allowed to add own rules, and adjust
them to match the local aspects like ethnic groups, regional
lifestyle, environment factors, or common social interactions.
This would lead to a further personalisation through the
interaction with individual patients.

V. FUTURE WORK

There are several possibilities of combining random forests
and neural networks, e.g. [34] [35] [36]. Those two machine
learning techniques have almost complementary advantages
and disadvantages. For example the knowledge representa-
tion of decision trees are mostly comprehensible whereas the
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decision process of neural networks is hard to understand.
On the other hand, decision trees have trouble dealing with
noise, which is not a big problem for neural networks. So
the idea came up to combine these two approaches to benefit
from both their advantages [13]. Zorman et al. introduced an
idea of how to combine decision trees and neural networks.
Firstly, they generated a decision tree which is then used
to initialise the neural network. Subsequently, the neural
network is again converted into a decision tree, which has
a better performance than the original one. The resulting
decision tree may not have the same performance as the
neural network, but it is easier to interpret and comprehend
which can be a huge benefit [37] [35] [13]. This approach
could also be used for the clinical decision support system
introduced in this work and is a promising approach to
make decision support systems more accessible. v Random
forests can also be used to initialise deep feedforward neural
networks where the network’s structure is determined by the
structure of the trees. These so called ”deep jointly informed
neural networks” (DJINN) show a warm-start to the neural
network training process and result in lower cost and a lower
number of user-specified hyper-parameters needed to create
the neural network [36]. This shows another possibility to
combine random forests with neural networks and combine
both methods’ advantages. Our on random forests based
decision support system could also be used as a foundation
for further developments of DJINNs and bears numerous
similar possibilities for extensions and on top built systems.
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