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Abstract 

Introduction: The chemical composition of feces plays an important role in human metabolism.  

Metabolomics and lipidomics are valuable tools for screening the metabolite composition in feces. Here we 

set out to describe fecal metabolite composition in healthy participants in frozen stools. 

Methods: Frozen stool samples were collected from 10 healthy volunteers and cryogenically drilled in four 

areas along the specimen. Polar metabolites were analyzed using derivatization followed by two-dimensional 

gas chromatography and time of flight mass spectrometry. Lipids were detected using ultra high-

performance liquid chromatography coupled with quadruple time-of-flight mass spectrometry. The technical 

variation threshold was set to 30% in pooled quality control samples and metabolite variation was then 

assessed in four areas per specimen. A data-generated network using metabolites found in all areas was 

computed for healthy participants.  

Results: 2326 metabolic features were detected. Out of a total of 298 metabolites that were annotated we 

report here 185 that showed a technical variation of x< 30%. These metabolites included amino acids, fatty 

acid derivatives, carboxylic acids and phenolic compounds. Lipids predominantly belonged to the groups of 

diacylglycerols, triacylglycerols and ceramides. Metabolites varied between sampling areas (14%-80%). A 

network using metabolites present in all areas showed two main clusters, DAG lipids and phenyllactic acid.  

Conclusions: In feces from healthy participants, the main groups detected were phenolic compounds, 

ceramides, diacylglycerols and triacylglycerols. Metabolite levels differed considerably depending on the 

sampling area. 
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1. Introduction 

The molecular composition of the intestinal contents is of particular importance in relation to gastrointestinal 

disorders.1 The intestinal microbiota has been associated to metabolic syndrome and its complications (fatty 

liver disease, obesity and type 2 diabetes)2,3 and linked to arthritis, gout, celiac disease and myalgic 

encephalomyelitis.4 The intestinal microbiota affects the metabolism via secondary microbial metabolites 

and food nutrients5. The characterization of the microbiota is traditionally performed via metagenomic 

profiling.6 An emerging approach to determine the influence of microbiota on the host organism is to 

combine metagenomic profiling with molecular phenotyping. Methods to assess the molecular composition 

of feces can be targeted and quantitative in concentration or untargeted for explorative purposes.7 In 

contrast to other biofluids (e.g. plasma or urine), stool is highly heterogeneous because it is composed of 

living bacteria, food remains, nutrients such as lipids, fibers and non-digestible elements.8,9   There is little 

agreement on sample collection techniques and the extent to which a technique can accurately reflect fecal 

composition.10-12 To avoid fermentation, fecal samples can be frozen immediately after collection and stored 

at -80°C until sample preparation.13    

 Stool is frequently analyzed by targeted analysis focusing on abundant and well characterized metabolites 

like short chain fatty acids (SCFA) and bile acids. Using gas chromatography (GC), the detection of both vola-

tile and non-volatile metabolites can be achieved.13 In order to cover a broader range of metabolites, two-

dimensional gas chromatography (GC×GC) can be employed.14 These techniques use sample pre-

derivatization and can detect many polar compounds, e.g. amino acids, small organic acids, phenols, phenolic 

acids, certain sugars and medium chain fatty acids. The characterization of lipids is an emerging field that is 

often studied for metabolic disorders as lipids can make up 15% of the feces composition.15,16,17  

Several research groups have developed state-of-the-art fecal fingerprinting methods, including chemical 

labeling with isotopic reagents and high-performance liquid chromatography coupled with high resolution 

mass spectrometry (HPLC-HRESMS)18,19 20 , nuclear magnetic resonance (NMR) for compounds like SCFAs and 

BCAAs21-23 and the use of LC-MS24,25 and GC-MS26,27. In this study, we aim to measure molecules in feces with 

in-house analytical pipelines using cryogenically drilled samples28,29,30, focusing on quality control, sampling 

procedure and biochemical pathways that can describe feces from healthy volunteers.  
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2. Materials and methods 

2.1 Samples  

The samples analyzed were from healthy participants, recruited from the general population after a 

community call for volunteers from Odense University Hospital, under ethical approval from the regional 

ethics committee of Region of Southern Denmark (S-20160006G).  Our inclusion criterium was age 40-75 

years. We excluded volunteers in case of: (1) being on any medication, prescription or otherwise, at the time 

of inclusion, (2) having a chronic disease, whether medicated or not, (3) any use of antibiotics within the six 

months leading up to inclusion, (4) reported alcohol intake above the low-risk limit of 7 units of alcohol/week 

for females and 14 units/week for males, or binge drinking (≥5 units at one event). Additionally, volunteers 

went through a sigmoidoscopy, abdominal ultrasonography and liver elastography to screen for existing 

gastrointestinal disease. We also performed routine blood tests to rule out diabetes, thyroid disease, 

dyslipidemia and liver disease. Finally, we checked whether any medical events had occurred during the six 

months following inclusion. In case of a positive finding, we excluded participants.  

From February 2016 to December 2016 we included nine men and one female with a mean age of 51 years 

(range 42-72 years) and a mean BMI of 28 kg/m2 (range 25-33). None of the volunteers smoked. One 

participant had a pacemaker due to arrhythmia, one participant consumed antihistamine for seasonal 

rhinitis, two consumed a daily vitamin supplement and two ingested fish oil. Volunteers sampled stool in 

their own home, within 24 hours of a scheduled visit to the research clinic. The volunteer stored the sample 

in his/her own freezer at -20 °C immediately after sampling. We instructed them to keep the sample on ice, 

in a cooling bag, during transportation. Upon arrival at the research clinic, we then transferred the stool to a 

-80 °C storage facility.  

For the sampling analyses, each original fecal sample was cryogenically drilled four times at different 

positions along the specimen. Once the cryogenic drilling was finalized, each drill, 200 mg sample, was mixed 

with an equal amount of water (50:50, w/w), homogenized and distributed into 20 mg aliquots for further 

extraction procedures. 

The chemicals, sample preparation and instrumental analyses for GC-GC-MS and Lipidomics used in this 

study are available as Supplementary information 

2.2 Data pre-processing GC×GC-MS 

The detected and potentially identified peaks were aligned using the Gineu software.32 The peak count filter 

was set to 5 in order to filter out features, which did not occur in all samples. Additionally, retention indexes 

were assigned using the NIST14 and GMD libraries.33 The Golm grouping tool was also used for assessment 

of groups based on characteristic ions. All features that scored less than 850 of similarity score or had more 

than 35 units of retention index difference were annotated as unknowns.  The resulting peak table was 

exported. Thereafter the data were post-processed and analyzed in R as described later.  
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2.3 Lipidomics Data Pre-processing  

Data processing was performed using MZmine 2.2838 using internal mass spectral library and the LIPID MAPS® 

database26. The following steps were applied in the processing: 1) Crop filtering with a m/z range of 200 – 

1700 m/z and a RT range of 2.4 to 13.6 min, 2) Mass detection with a noise level of 2500, 3) Chromatogram 

builder with a min time span of 0.04 min, a min height of 7500 and a m/z tolerance of 0.006 m/z or 10.0 ppm, 

4) Chromatogram deconvolution using the local minimum search algorithm with a 70% chromatographic 

threshold, 0.05 min minimum RT range, 5% minimum relative height, 7500 minimum absolute height, a 

minimum ratio of peak top/edge of 1 and a peak duration range of 0.04 - 1.0, 5), Isotopic peak grouper with 

a m/z tolerance of 5.0 ppm, RT tolerance of 0.05 min, maximum charge of 2 and with the most intense isotope 

set as the representative isotope, 6) Peak filter with minimum 8 data points, a FWHM between 0.0 and 2.0, 

tailing factor between 0.36 and 2.78 and asymmetry factor between 0.33 and 3.00, 7) Peak list row filter 

keeping only peak with a minimum of 1 peak in a row, 8) Join aligner with a m/z tolerance of 0.006 or 10.0 

ppm and a weight for of 2, a RT tolerance of 0.2 min and a weight of 1 and with no requirement of charge 

state or ID and no comparison of isotope pattern, 9) Peak list row filter with a minimum of 2 peak in a row, 

10) Gap filling using the same RT and m/z range gap filler algorithm with an m/z tolerance of 0.006 m/z or 

10.0 ppm, 11) Peak filter with minimum 8 data points, a FWHM between 0.0 and 0.2, tailing factor between 

0.36 and 2.78 and asymmetry factor between 0.33 and 3.00 12) Peak list row filter with a minimum of 2 peaks 

in a row, 13) Identification of lipids using a custom database search with an m/z tolerance of 0.006 m/z or 

10.0 ppm and a RT tolerance of 0.2 min, 14) Duplicate peak filter with a m/z tolerance of 0.006 m/z or 10.0 

ppm and a RT tolerance of 0.1 min. 

2.4 Data post-processing 

A schematic figure of the post-processing steps can be seen in Figure S1. The data from each of the platforms 

were post-processed in the same way in R: Exported peak lists were imported to R and each feature was 

normalized against the most-correlated internal standard in R. Annotated metabolites were assigned with a 

level 3.40 The annotation included features which had equivalent standards injected during the sequence 

(Level 1) and structure information acquired previously with MS2 fragmentation (Level 2). Annotations were 

made using our in-house database, the human metabolome database41 and LIPIDMAPS®39.  

Features at level 4 (unknowns) and with over 30 % coefficient of variation (CV; or, relative standard deviation) 

in pooled samples were discarded. Further, features with a missing value in more than 20 % of samples were 

discarded, and remaining missing values were imputed with the k-nearest neighbor algorithm using the 

impute package.42 

2.5 Statistical Analysis 

Statistical analysis was done in R with the package limma.43 Each feature’s variation was compared with a 

feature-wise F-test, where the feature is the dependent variable and the categorical variable representing 

the individual is the independent variable. The F-statistic, the associated p-value, and the multiple-testing 

corrected p-values (Benjamini-Hochberg) were reported.  
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Coefficients of variation (CV) were computed for each feature as follows, between pooled samples for 

technical variation, between sampling area for specimen heterogeneity and between participants. These 

feature-wise value pairs were visualized in two bubble plots for the lipidomics and metabolomics data using 

the ggplot2 package.44 The metabolite/lipid category of each feature was shown by color of the data point to 

give an overview of the overall variation in the categories. In the integration step, the data were auto-scaled 

and averaged over replicates of the same individual as well as over features in each compound category. The 

two resulting individuals-by-compound categories data sets were then combined into a single data matrix, 

which was visualized as a rows-scaled heatmap using the ggplot2 package to show the relative abundances 

of each compound category between the individuals. 

Data driven partial correlation network of lipids and polar metabolites was computed and visualized with R-

package qgraph using the graphical LASSO algorithm and RIC (Rotation Information Criterion). Data were 

imputed and auto-scaled prior to model-fitting. In the visualization, lipids were shown as circular and polar 

metabolites as rectangular nodes. Positive and inverse associations between nodes were shown as brown 

and blue lines, respectively. Strength of the association was shown as width of the line. 3-Phenyl lactic acid 

was selected as metabolite with most connections and highlighted with purple color. Other nodes were 

colored by the respective Spearman correlation to 3-Phenyl lactic acid. 

3. Results and discussion 

The metabolome is composed of molecules belonging to a myriad of chemical groups. Untargeted analytical 

methods are usually tailored to detect a broad chemical group, like lipids or polar metabolites, based on 

abundance, purity, polarity, volatility and on the availability of bioactive groups for derivatization.45 In this 

study, the preprocessing of the data resulted in the detection of 2326 features in the polar metabolome and 

lipidome. Among these features, 182 polar and 116 lipid species were putatively identified. Metabolites with 

relative standard deviations (%RSDs) higher than 30% in the pooled samples were excluded from further 

statistical evaluation, thus resulting in 185 metabolites fulfilling this requirement (Figure 1 and 2). Annotated 

features with pool RSD < 30% are presented in Supplementary Tables S1 and S2 for polar metabolites and 

lipids respectively 

To study the feasibility of cryogenically collected samples, we applied additional parameters and calculated 

metabolite variation in four sampling areas per specimen. As an example of the data collected in this study, 

the first metabolite in the Supplementary Tables S1 is 3-Hydroxyphenylacetic acid. The variation between 

participants for this metabolite exceeded 107% and the variation found in the four sampling area was also 

high at 64% meaning it is not found homogenously in the stool specimens. Since the technical variation of 

the measurement is negligible at 4% we can be confident of these results. We then propose that this benzene 

derivative is found in a wide range of concentrations in the feces of the healthy population. A limitation of 

this study is that we did not control for the diet of the participants, so the origin of this wide-range normal 

levels is unknown at this stage. The other benzene derivatives that were detected followed the same trend, 

apart from 3-Phenyllactic acid, 3-Phenylpropionic acid and 4-Hydroxyphenyllactic acid which were in similar 

concentrations in the four areas. 
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Figure 1. Variation between heathy individuals and sampling area in feces. Each dot represents 

a metabolite colored by their class. Most metabolites vary more than 30% between collection area and 

between volunteers making the fecal metabolome highly heterogenous.  
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Figure 2. Variation between heathy individuals and sampling area in feces. Each dot represents 

a lipid colored by their class. Cer: ceramides, DG: diacylglyceride, LPC: lysophosphocholine, PC: 

phosphatidylcholine, PG: phosphoglycine, PI: phosphoinositol, SM: sphingomyelin, TG triacylglyceride.  

 

The Fecal metabolome and lipidome 

This study allowed for the reporting of 185 molecules, adding to previous research.47 These metabolites 

included amino acids, fatty acid derivates, carboxylic acids, benzene compounds and indole compounds 

(Figure 1). Fatty acids were mainly present as medium chain fatty acids (e.g. hydroxylated and dicarboxylic 

species). The group of small carboxylic acids included metabolites from the citric acid cycle as well as hydroxy 

butyric and propionic acids.  Among the amino acids, both regular amino acids as well as branched chain 

amino acids were present in the feces. In addition to these, some amines, purine derivates and pyrimidine 

derivates were also annotated.  Additionally, the results show that the compounds with the highest variation 

between participants were benzene derivates (e.g. hydroxyphenyllactic acid, 3-phenyllactic acid and 3-

phenylpropionic acid), polyamines and fatty acid derivates (e.g. methylsuccinic acid and 2-hydroxyisocaproic 

acid), and some of the small carboxylic acids (e.g. tricarballylic acid).   

Many of the polar metabolites found in healthy individuals can be associated with bacterial metabolism. A 

detailed review on microbiota metabolism is out of the scope of this report, but some examples are 
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hydroxyphenyllactic acid which has been found in most anaerobic bacteria and is associated with tyrosine 

metabolism in humans.48  In another study, 3-phenyllactic acid is thought to display antimicrobial properties 

and to be associated with phenylalanine metabolism.49 In addition, the occurrence of 3-phenylpropionic acid 

is associated with microbially transformed plant polyphenols such as flavanols, flavanones and tannins.50 

Putrescin is a polyamine produced by the breakdown of amino acids and mainly produced by the 

microbiota.51 Feces are also rich in BCAAs and these can be precursors of hydroxyisocaproic acid, a bacterial 

end product of leucine degradation.52  

Clinical studies using the lipidome in fecal samples are sparse in the literature.  A study showed its clinical 

potential in five prematurely born infants.16 Van Meulebroek et al. also reported the analysis of the fecal 

lipidomic profile in a small cohort of healthy volunteers and type 2 diabetic patients.15 Using adult lyophilized 

feces, the team identified 127 lipids, out of which 54 were frequently present in feces. 

In this study we observed that the fecal samples mainly consisted of ceramides, diglycerides and triglycerides 

(Figure 2). Lipids, which are commonly detected in plasma (e.g. lysophosphocholines, 

glycerophosphocholines and sphingomyelins), were also detected in the fecal samples but with remarkably 

lower coverage.35 In fact, only seven phosphatidylcholines could be annotated in the fecal samples while as 

many as 78 different phosphatidylcholines were identified35. Similarly, we detected two sphingomyelins 

while 30 different sphingomyelins were detected in plasma.35  

Lipids perform many functions, from storing energy to forming cell and organelle walls or as inflammation 

markers. Lipids are also a source of nutrition for the bacteria living in the gut, and a fatty diet can be a 

modifying factor of intestinal microbiota.53 Interestingly, the lipid families that have been linked to metabolic 

syndrome were abundant in the feces of healthy volunteers. Ceramides which are metabolized from 

sphingomyelins in eukaryotic organisms were abundant in these participants’ feces.54 Ceramides are found 

in large quantities in cell membranes and contribute to cellular signaling mechanisms, particularly cell death, 

partially reproducing the effect of palmitic acid on insulin signaling.55 Triacylglycerols and diacylglycerols are 

usually thought of as energy metabolites, although they can also be signaling molecules and have long been 

implicated in the occurrence of metabolic syndrome.56  

Correlation between fecal lipids and polar metabolites 

Two main clusters were assigned using the partial correlation network inferred with the graphical LASSO 

algorithm (Figure 3). One was composed mostly of diacylglycerides, the other is composed mainly of amino 

acids and phenyl lactic acid. 3-phenyl lactic acid was the metabolite with most connections to others. Both 

clusters showed correlations to metabolites from different platforms. Phenyl lactic acid cluster corelated with 

certain ceramide species and diacylglyceride cluster correlates with a 3-hydroxy butyric acid and 3-phenyl 

propionic acid.  

In the current screening it is not possible to estimate the source of the metabolites. They can derive from 

food, the microbiota converting food constituents, or they can be primary bacterial or host metabolites. 

According to the literature, Phenyl lactic acids are mostly associated with lactic acid bacteria and they have 

antifungal and antimicrobial properties49.  Additionally, with a focus on integration with metagenomic 

analysis, the high variability seen in these ten healthy subjects is probably due to variations in both food 

intake and in microbiota composition57. On the other hand, ceramides are known to play a role in metabolic 
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dysfunction58.  The same is true for diacylglycerides, although their accumulation is thought to be less 

detrimental than that of triglycerides59.  

 

Figure 3. Partial correlation network of fecal polar metabolites and lipids, inferred with the graphical LASSO 

algorithm. In the figure, lipids were shown as circular and polar metabolites as rectangular nodes. Positive 

and inverse associations between nodes were shown as brown and purple lines respectively. Strength of the 

association was shown as width of the line. 3-Phenyl lactic is the main hub of the network with the most 

associations and is highlighted in green color. Other nodes were colored by the respective Spearman 

correlation to the hub, 3-Phenyl lactic acid: dark brown is positive correlation and purple is negative 

correlation. As an example, 4-Hydroxyphenyl lactic acid has a positive partial correlation to 3-Phenyl lactic 

acid (brown line) as well as a positive Spearman correlation to 3-Phenyl lactic acid (brown node color). The 

two compounds thus are proportional in abundance in the healthy participants. DGs with the same total 

number of carbons and double bonds have the same name in the network (ie. 39:7) are different lipids. Cer: 

ceramides, DG: diacylglyceride, LPC: lysophosphocholine, PC: phosphatidylcholine, PG: phosphoglycine, PI: 

phosphoinositol, SM: sphingomyelin, TG triacylglyceride.  
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To conclude, the fecal metabolome composition was studied by applying two analytical platforms. The 

variation of metabolites was assessed for quality control, per area of collection and between healthy 

participants. Annotated metabolites included a myriad of metabolic pathways, molecules synthesized by the 

microbiome (phenol derivatives) and three main classes of lipids: ceramides, triacylglycerides and 

diacylglycerides in the feces of healthy individuals.  
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