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ABSTRACT 16 

Plant phenology, which describes the timing of plant development, is a major aspect of 17 

plant response to environment and for crops, a major determinant of yield. Since climate 18 

change is projected to alter crop phenology worldwide, there is a large effort to predict 19 

phenology as a function of environment. Many studies have focused on comparing model 20 

equations for describing how phenology responds to weather but the effect of crop model 21 

calibration, also expected to be important, has received much less attention. The objective 22 

here was to obtain a rigorous evaluation of prediction capability of wheat crop phenology 23 

models, and to analyze the role of calibration. The 27 participants in this multi-model study 24 

were provided experimental data for calibration and asked to submit predictions for sites and 25 

years not represented in those data. Participants were instructed to use and document their 26 

“usual” calibration approach. Overall, the models provided quite good predictions of 27 

phenology (median of mean absolute error of 6.1 days) and did much better than simply using 28 

the average of observed values as predictor.  Calibration was found to compensate to some 29 

extent for differences between models, specifically for differences in simulated time to 30 

emergence and differences in the choice of input variables. Conversely, different calibration 31 

approaches led to major differences in prediction error between models with the same 32 

structure. Given the large diversity of calibration approaches and the importance of 33 

calibration, there is a clear need for guidelines and tools to aid with calibration. Arguably the 34 

most important and difficult choice for calibration is the choice of parameters to estimate. 35 

Several recommendations for calibration practices are proposed. Model applications, 36 

including model studies of climate change impact, should focus more on the data used for 37 

calibration and on the calibration methods employed.  38 

Introduction 39 

Global change is placing unprecedented pressure on food security (Campbell et al., 40 

2018; Godfray et al., 2010; Wheeler & von Braun, 2013). The search for ways to increase the 41 

volume and efficiency of food production needs to account for the effects of climate change 42 

on agricultural production systems (Porter, Howden, & Smith, 2017). Modeling is an 43 

important tool in projecting and understanding the trajectory of food production under future 44 

climates   (Asseng et al., 2019; Bindi, Palosuo, Trnka, & Semenov, 2015; Carberry et al., 45 

2013; Hochman, Gobbett, & Horan, 2017; Parry, Rosenzweig, Iglesias, Livermore, & Fischer, 46 

2004). One of the likely effects of climate change will be an increase in air temperature 47 

(IPCC, 2014). Temperature directly affects plant growth through a number of pathways, one 48 

of which is phenology (Went, 2003). Phenology describes the cycles of biological events in 49 

plants. These events include seedling emergence, leaf appearance, and flowering. Matching 50 

the phenology of crop varieties to the climate in which they grow is a critical crop production 51 

strategy (Hunt et al., 2019; Rezaei, Siebert, & Ewert, 2015; Rezaei, Siebert, Hüging, & Ewert, 52 

2018). Thus, understanding and improving our ability to simulate phenology with crop 53 

models is an important activity in preparing for and adapting to global change. Process-based 54 

models similar to those for crops can be used for natural vegetation, so crop models can serve 55 

as examples for studies of phenology in ecosystems (Piao et al., 2019). 56 

Crop model evaluation is an essential aspect of modeling, assessing whether model 57 

performance is acceptable for the intended use of the model. For studies of phenology two 58 

major questions are a) how accurate are current models for the prediction of crop 59 

development stages? and  b) what determines model accuracy and what does that imply about 60 

how accuracy can be improved?  We use here prediction in the sense of determining outputs 61 
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(dates of development stages) from known inputs (weather, soil, management). The problem 62 

of predicting future events, with unknown weather, is not considered.  63 

There have been numerous evaluation studies of crop model simulations, including but 64 

not restricted to phenology, both of individual models and of multi-model ensembles. The 65 

typical procedure is to first calibrate the model using a part of the available field data and then 66 

to evaluate it using the remaining data. Most crop model evaluation studies focusing on crop 67 

phenology have had relatively little data for calibration or evaluation. (Andarzian, 68 

Hoogenboom, Bannayan, Shirali, & Andarzian, 2015) for example, used data from one 69 

location covering five growing seasons and two or three sowing dates per year. Out of these 70 

data, one year was used for calibration and the other two years of data to evaluate the model. 71 

(Yuan, Peng, & Li, 2017) used one year of data for calibration and the second year of data 72 

from the same location for evaluation of the rice crop model ORYZA. Hussain, Khaliq, 73 

Ahmad, & Akhtar (2018) tested four models using data from two locations with two years of 74 

data, 11 crop planting dates, and three varieties. Paucity of data means that model parameters 75 

are estimated with relatively large uncertainty and model evaluation is quite uncertain.  76 

Another common feature of crop model evaluation is that the data are often such that 77 

model error for the evaluation data cannot be assumed to be independent of model error for 78 

the calibration data. That holds for the examples listed above since the evaluation and 79 

calibration data come from the same sites. In such cases, the evaluation does not give an 80 

unbiased estimate of how well the model will predict for other sites not included in the 81 

calibration data. Since usually the model is meant for use over a range of sites, this clearly 82 

reduces the usefulness of the evaluation information.  83 

A third feature often found in crop model evaluation is that the range of situations 84 

from which the calibration data are drawn (the “training population”) is often different than 85 

the range of conditions from which the evaluation data are drawn (the “evaluation 86 

population”). For example, Hussain et al. (2018) used data from an experiment that included a 87 

range of crop stresses to calibrate their model. They used data from the least stressed 88 

treatment in the calibration process and evaluated the resultant model on the remaining 89 

planting dates at the same location. The evaluation data thus represented a different range of 90 

conditions than the calibration data. In a multi-model ensemble study of the effect of high 91 

temperatures on wheat growth (S. Asseng et al., 2015) detailed crop measurements were 92 

provided for one planting date and the models were evaluated using other planting dates, 93 

some with additional artificial heating. Again, the evaluation data represented a much larger 94 

range of temperatures than represented in the calibration data. While the capacity of crop 95 

models to extrapolate to conditions quite different than those of the calibration data is 96 

obviously of interest, it is a rather different type of evaluation than the case where the training 97 

and evaluation populations are similar. 98 

Thus, evaluation of crop phenology models to date has mainly concerned situations 99 

that would tend to make prediction difficult, because of small amounts of data for calibration 100 

and differences between the training and target populations. Furthermore, the quality of the 101 

evaluation is often questionable, because of the relatively small amounts of data and the non-102 

independence of the errors for the calibration and evaluation situations. There is thus a need 103 

for more rigorous assessments of simulation capability of crop phenology models in the well-104 

defined situation where the calibration and evaluation data can be assumed to come from the 105 

same underlying population.  The first objective of this paper is, therefore, to evaluate how 106 

well crop models predict wheat phenology in such a case. To ensure the rigor of the 107 
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evaluation, we create a situation where the model errors for the calibration and simulation 108 

data can be assumed independent. 109 

The emphasis in model evaluation studies is often on the role of model structure, i.e. 110 

model equations (Maiorano et al., 2017; Svystun, Bhalerao, & Jönsson, 2019; Wang et al., 111 

2017), and not on model calibration. Clearly however the simulated values depend on the 112 

parameter values estimated by calibration and therefore on the calibration approach. 113 

(Confalonieri et al., 2016) found that the model user, responsible for calibration, had a very 114 

large effect on predictive quality. In a wide-ranging survey, (Seidel, Palosuo, Thorburn, & 115 

Wallach, 2018) found that there  is a wide diversity of calibration strategies used for crop 116 

models.  The second objective of this study was therefore to obtain detailed information about 117 

the calibration strategies in use for phenology models and to better understand the effect of 118 

calibration methodology in determining predictive capability for phenology. This is of 119 

practical interest not only for stand-alone phenology models, but also for crop models more 120 

generally, since crop models are often calibrated first just for phenology, and then separately 121 

for biomass increase and partitioning and soil processes.  122 

Materials and Methods 123 

Experimental data 124 
The data were provided by ARVALIS – Institut du vegetal, a French agricultural 125 

technical institute. They run multi-year multi-purpose trials at multiple locations across 126 

France, which include variety trials. The data here are from the two check varieties, Apache 127 

which is a common variety grown throughout France and Central Europe and Bermude, 128 

mainly grown in Northern and Central France. The trials have three repetitions and follow 129 

standard agricultural practices, with N fertilization calculated to be non-limiting. Thus, both 130 

the calibration and evaluation data are drawn from sites in France where winter wheat is 131 

grown, subject to standard management. 132 

The observed data used in model calibration and evaluation are the dates of two 133 

development stages, namely beginning of stem elongation (growth stage 30 on the BBCH and 134 

Zadoks scales (Zadoks, Chzang, & Konzak, 1974) and middle of heading (growth stage 55 on 135 

the BBCH and Zadoks scales). These stages are of practical importance because they can 136 

easily be determined visually and are closely related to the recommended dates for the second 137 

and third nitrogen fertilizer applications.  138 

The data were divided into three categories (table 1). One part, the calibration data (14 139 

environments i.e. site-year combinations), was provided to participants for calibration. A 140 

second part, the evaluation data (eight environments), was not given to participants. The 141 

division of the data was such that the calibration and evaluation data had no sites or years in 142 

common. The only way to achieve this was have a third category, “other” (from 13 143 

environments), with data that were not revealed to participants but were used neither for 144 

calibration nor evaluation. These environments had either the site or the year in common with 145 

the calibration data. Errors for these environments cannot be assumed to be independent of 146 

errors for the calibration data, and so they were not used for evaluation. All conclusions about 147 

predictive capability are based on the evaluation data. The individual observed values for the 148 

evaluation and other hidden data are not presented here because they will be used again in a 149 

subsequent study where all groups will be asked to use the same calibration approach.   150 

 151 

 152 
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Table 1. 153 

Environments (site-year combinations) that provided the data. C= calibration data. E = 154 

evaluation data. O = other hidden data.  155 

Site 

(longitude,latitude) 

Harvest year 

2010 2011 2012 2013 2014 2015 2016 

FORESTE 

(3.20,49.82) 

    E E OO
*
 O   

MERY 

4.02,48.33) 

C C   O C C   

ROUVRES 

5.09,47.28) 

    E E O O   

CESSEVILLE
1
 

(0.90,49.15) 

  C           

IVILLE
1
 

(0.90,49.15) 

    E         

VILLETTES
1
 

(0.90,49.15) 

      E       

EPREVILLE
1
 

(0.90,49.15) 

        C     

CRESTOT
1
 

(0.90,49.15) 

          C   

OUZOUER 

(1.52,47.90) 

  O E E O O   

BIGNAN 

(-2.73,47.88) 

C C O O C C   

BOIGNEVILLE 

(2.38,48.33) 

    O O C C C 

 156 

 *
There were two sowing dates at FORESTE in 2014. 

1 
These are separate sites that are 157 

geographically close to one another and share a single weather station.  158 

 159 

The background and input information provided to the modelers for all environments 160 

included information about the sites (location, soil texture, field capacity, wilting point), 161 

management (sowing dates, sowing density, irrigation and fertilization dates and amounts), 162 

and daily weather data (precipitation, minimum and maximum air temperature, global 163 

radiation and potential evapotranspiration). Initial soil water and N content were not measured 164 
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in these experiments, but best guesses were provided by the experimental scientist. If any 165 

models required other input data, modeling groups were asked to derive those values in 166 

whatever way that seemed appropriate.  167 

The range of observed days from sowing to development stages BBCH30 and 168 

BBCH55 for the two varieties for each category of data (calibration, evaluation, other hidden 169 

data) is shown in figure 1. The spread from minimum to maximum in the evaluation data is 170 

between 24 and 27 days depending on stage and variety. The spread is larger for the 171 

calibration data, and in fact, the calibration data cover the range of the evaluation data and the 172 

range of other hidden data. Thus, the models are not being used to extrapolate outside the 173 

observed values of the calibration data.  174 

 175 

 176 

   Figure 1 177 

Boxplots of calibration, evaluation and other data for development stages 178 

BBCH30 and BBCH50 and varieties Apache and Bermude. The y-axis shows days from 179 

sowing to the indicated development stage. Boxes indicate the lower and upper quartiles. 180 
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The solid line within the box is the median. Whiskers indicate the most extreme data 181 

point, which is no more than 1.5 times the interquartile range from the box, and the 182 

outlier dots are those observations that go beyond that range.  183 

 184 

 185 

Crop models 186 
Twenty-seven modeling groups participated in this study, noted M1-M27. The four 187 

groups M2, M3, M4, and M5 all used the same model structure (i.e. models with the same 188 

name), denoted as model structure S1. The four models M7, M12, M13, and M25 also shared 189 

a common model structure, denoted as S2. As will be seen, different groups using the same 190 

model structure had different results. The model versions for the same model structure 191 

differed in some cases, but the differences are not in the basic phenology equations 192 

implemented, and therefore, should have no or only a negligible effect on the simulated 193 

development stages. Some differences in results may have resulted from different values for 194 

the parameters that were not fit to the calibration data, although this was not recorded. The 195 

differences in calibration approach were recorded, and this certainly led to differences in 196 

simulated values. Since even groups using the same model structure obtained different results, 197 

we refer to the 27 contributions as different models, In the presentation of the results the 198 

models are anonymized and are identified simply as M1 to M27.  It would be misleading to 199 

use the names of the model structures, since the results depend on both model structure and on 200 

the approach to calibration. Information about the model structures is given in Supplementary 201 

table S1.  202 

Two of the models (M9, M18) only simulated days to development stage BBCH55 203 

and not to stage BBCH30. Results for these two models are systematically included with the 204 

results for the other models, but averages over development stages for these two models only 205 

refer to BBCH55. This is not repeated explicitly every time an average over development 206 

stages is discussed.  207 

In addition to the individual model results, we show the results for the model ensemble 208 

mean (“e-mean”) and the model ensemble median (“e-median”). We also define a very simple 209 

predictor, denoted “naive”, which was calculated as the average of the observations in the 210 

calibration data for prediction. The naive model thus predicts that all days from sowing to 211 

stage BBCH30 (BBCH55) will correspond to the average of days from sowing to BBCH30 212 

(BBCH55) in the calibration data, separately for each variety. The naive model predictions for 213 

days from sowing to BBCH30 and BBCH55 are respectively 155.9 days and 206.9 days for 214 

variety Apache, and 156.1 days and 213.1 days for variety Bermude. 215 

Calibration and simulation experiment 216 

The participants were provided with observed phenology data (dates of BBCH30 and 217 

BBCH55) only for the calibration environments. The participants were asked to calibrate their 218 

model using those data, and then to use the calibrated model to simulate phenology for all 219 

environments (i.e. calibration, evaluation and hidden data environments). No guidelines for 220 

calibration were provided. Participants were instructed to calibrate their model in their “usual 221 

way” and fill out a questionnaire explaining what they did (Supplementary table S2).  222 

Evaluation 223 

A common metric of error is mean squared error (MSE). We calculated MSE for each 224 

model, each development stage (BBCH30 and BBCH55) and for each variety, as well as 225 

averaged over stages and varieties. This was done separately for the calibration and evaluation 226 
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data. For example, MSE for model m, for predicting BBCH30, variety Apache, based on the 227 

evaluation data, is:  228 

  
2

30, 30, 30,

, ,
ˆ(1/ 8)BBCH Apache BBCH Apache BBCH Apache

eval m i i m

i eval

MSE y y


              (1) 229 

 230 

where the sum is over the eight environments used for evaluation and 
30,BBCH Apache

iy  and 231 

30,

,
ˆ BBCH Apache

i my  are respectively the observed value and value simulated by model m for 232 

evaluation environment i, development stage BBCH30 and variety Apache. For ,

all

eval mMSE , the 233 

average is over the eight evaluation environments, both stages and both varieties, so overall 234 

32 predictions. 235 

Mean squared error can be shown to be the sum of three positive terms, namely 236 

squared bias, the difference in variance between the observed and simulated values and a term 237 

related to the correlation between observed and simulated values (Kobayashi & Salam, 2000). 238 

We specifically examined the bias, defined as the average over observed values minus the 239 

average over simulated values.  240 

The mean absolute error (MAE) is of interest as a more direct measure of error, that 241 

does not give extra weight to large errors as MSE does. For example, MAE for model m for 242 

predicting BBCH30, variety Apache, based on the evaluation data, is:  243 

 
30, 30, 30,

, ,
ˆ(1/ 8)BBCH Apache BBCH Apache BBCH Apache

eval m i i m

i eval

MAE y y


   244 

                  245 

We also look at modeling efficiency (EF) defined for model m as  246 

 1 /m m naiveEF MSE MSE    247 

where mMSE   is MSE for model m and naiveMSE  is MSE for the naive model defined above. 248 

EF is a skill measure, which compares the predictive capability of a model to that of the naive 249 

model. Since the naive model makes the same prediction for all environments, it does not 250 

account for any of the variability between environments. A model with  EF≤0 is a model that 251 

does no better than the naive model, and so would be considered to be a very poor predictor. 252 

A perfect model, with no error, has modeling efficiency of 1.  253 

 254 

Results 255 

Goodness-of-fit and prediction error 256 
Summary statistics for MSE averaged over both varieties and over both development 257 

stages, for the calibration and evaluation data, are shown in table 2. Summary MSE values for 258 

the calibration data for each development stage and variety separately are shown in 259 

Supplementary table S7, and results for each individual model are given in Supplementary 260 

figure S1.  261 

Table 2 262 
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Summary statistics of MSE (days²) averaged over both varieties and over both 263 

development stages.   264 

MSE 

(days²) Minimum 1st quartile Median Mean 

3rd 

quartile Maximum 

Calibration 

data  15 28 47 77 63 426 

Evaluation 

data 20 35 62 79 111 235 

 265 

In most cases, the bias for the calibration data is quite small. Considering absolute bias 266 

for both development stages and both varieties, the median value was 2 days (Supplementary 267 

table S8). In cases where the bias is relatively large, it is often of  opposite sign for BBCH30 268 

and BBCH55, as in the examples of figure 2.  269 

 270 

 271 
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 272 

Figure 2 273 

Observed vs. simulated days after sowing (DAS) for calibration data for models 274 

M10 and M24. The legend shows MSE (days²) for each stage and for calibration and 275 

evaluation data. (The individual evaluation results are not displayed). In the subtitles, 276 

bias values (days) for each stage are shown. The first number in parentheses is for the 277 

calibration data, the second number is for the evaluation data.  278 

 279 

Figure 3 and Supplementary tables S4-S6 show results for each development stage and 280 

variety and averaged over development stages and varieties for the evaluation data. Results 281 

for each model are given in Supplementary table S3. The median of MAE for the evaluation 282 

data is 6.1 days. The median of overall efficiency is 0.62, signifying that half of the models 283 

have MSE values for the evaluation data that are at most 38% as large as that of the naive 284 

predictor.   Only two models have negative values of EF, indicating that one would do better 285 

to predict using the average of the calibration data. For the four individual predictions (two 286 
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development stages, two varieties), the median of MAE ranges from 5.1 to 6.4 and the median 287 

of EF ranges from 0.6 to 0.8. The ensemble models e-median and e-mean, though not the best 288 

predictors, are among the best, with e-median being rated second best and e-mean fourth best.  289 

The range of results among individual models is appreciable. The mean absolute errors for the 290 

evaluation data averaged over all predictions (
all

evalMAE ) go from 3.5 to 13 days. The 
all

evalMSE291 

values vary by over a factor of 10, from a minimum of 20 days² to a maximum of 235 days².  292 

 293 

 294 

 295 

 296 

 297 

Figure 3 298 
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Box and whisker diagrams of absolute errors for evaluation data for each 299 

prediction and on average (top panel) and modeling efficiency for each prediction and 300 

on average (bottom panel). BBCH30A and BBCH30B refer respectively to prediction of 301 

days to BBCH30 for variety Apache and variety Bermude. BBCH55A and BBCH55B 302 

refer respectively to prediction of days to BBCH55 for variety Apache and variety 303 

Bermude. The variability comes from differences between models.  304 

 305 

 306 

The relationship between overall MSE for the evaluation data and overall MSE for the 307 

calibration data is quite close (adjusted R²=0.70, figure 3). That is, much of the variability 308 

between models in MSE for the evaluation data can be explained by the variability in the 309 

calibration data, which further emphasizes the importance of calibration. 310 

The four models that have model structure S1 and the four models that have model 311 

structure S2 are identified in figure 4. Models with the same structure have different MSE 312 

values; the differences are particularly large for S1. The models with structure S1 are ranked 313 

3rd, 9th, 14th and 27th best for overall evaluation MSE among the 27 individual models. The 314 

models with structure S2 are ranked 4th, 8th, 17th and 18
th

 est.  315 

 316 
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 317 

Figure 4 318 

Mean squared error (MSE) for the calibration data, averaged over environments, 319 

development stages and varieties  (
all

calibMSE  days²), as related to MSE for the evaluation 320 

data (
all

evalMSE , days²). The regression line 
all

calibMSE = -27.6 + 1.32 
all

evalMSE is shown 321 

(R²=0.70). ● indicates models with structure S1. ⁎ indicates models with structure S2. ○ 322 

indicates other models.  323 

 324 

Twenty-one models simulated and reported time from sowing to emergence. For these 325 

models, we can separate simulated time from sowing to BBCH30 (sow_30) into two 326 

contributions, the simulated time from sowing to emergence (sow_em) plus the simulated 327 

time from emergence to BBCH30 (em_30), so that sow_30=sow_em+em_30. Figure 5 shows 328 

results from two environments, typical of essentially all environments and both varieties, for 329 

the relation between em_30 or sow_30 and sow_em. The average slope of the regression 330 

em_30=a+b*sow_em over all environments (including calibration, evaluation and other 331 
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environments) and both varieties is b=-1.04, so that each day increase in simulated days to 332 

emergence is on average associated with a 1.04 day decrease in simulated time from 333 

emergence to BBCH30. The negative correlation between sow_em and em_30 leads to a 334 

between-model variance for sow_30 (average variance 92 days²) that is smaller than the sum 335 

of the variances of  sow_em (average variance 20 days²) and em_30 (average variance 101 336 

days²). The right panels of figure 5 show that different models could simulate almost exactly 337 

the observed value of sow_30 with quite different values of sow_em.  338 

 339 

Figure 5 340 

Relation between simulated days from emergence to BBCH30 and simulated days 341 

from sowing to emergence as reported by 21 crop models for two environments (left 342 

panels). Relation between simulated days from sowing to BBCH30 and simulated days 343 

from sowing to emergence for the same environments (right panels). The slope of the 344 

linear regression line and the p-value for testing slope=0 are shown for the left panels. 345 

The observed days from sowing to BBCH30 is shown as a horizontal line in the right 346 

panels.    347 
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Calibration approaches 348 

Each participant was asked to calibrate the model in the “usual” way, using the 349 

calibration data provided. The questionnaire about calibration focused on three aspects of 350 

calibration; the choice of parameters to estimate, the criterion of error to be minimized and the 351 

software used. The choices of the participants are summarized in table 3 and choices for each 352 

model are shown in Supplementary table S9.  353 

Table 3 354 

Summary of calibration approaches. Numbers are number of models with 355 

indicated choice. The specific models associated with each choice are shown in 356 

Supplementary tables S3 and S9. More information about the software is presented in 357 

Supplementary table S10.  358 

 359 

  

Number of 

parameters
1 

Minimum 1st Quartile   Median    Mean     3rd Quartile    Maximum  

   1.00               2.00          3.00         3.63          4.50                9.00 

Which 

parameters 

Thermal time to a single development stage 16 

Thermal time to two or more development stages 6 

Related to vernalization 11 

Related to photoperiod 11 

Related to effect of temperature (e.g. base temperature) 6 

Related to phyllochron 6 

Related to tiller appearance 2 

Related to time to emergence 3 

Parameters unrelated to calibration data
2 

 6 

Objective 

function 

Sum of squared errors or of root mean squared errors 21 

Sum of absolute errors 2 

Concentrated likelihood 1 

No single explicit objective function 3 

 

Software
3 

Trial and error 10 

DIRECT-L  (Gablonsky & Kelley, 2001; Johnson, n.d.) 2 

Ucode (E. P. Poeter, Hill, Banta, Mehl, & Christensen, 2005; Eileen P. Poeter & 

Hill, 1999) 3 

DE Optim (Mullen, Ardia, Gil, Windover, & Cline, 2011) 3 

PEST (Doherty, Hunt, & Tonkin, 2010) 2 

SCE (Duan, Gupta, & Sorooshian, 1993; Houska, Kraft, Chamorro-Chavez, & 

Breuer, 2015) 2 

GLUE  (Beven & Binley, 2014; J. He, Jones, Graham, & Dukes, 2010) 1 

DREAM (J. A. Vrugt et al., 2009; Jasper A. Vrugt, 2016) 2 

Wrote code 
4
 4 

1 
Summary of number of estimated parameters for models M1-M27. 

2 
these are 360 

parameters that do not affect simulated days to BBCH30 or BBCH55. 
3
 Some modeling 361 

groups used more than one software package. 
4
. Modeling groups that wrote their own 362 

software.  363 

 364 
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The choice of parameters to estimate was based on expert judgement in most cases. 365 

The participants declared that they chose parameters known to affect phenology in the model, 366 

or more specifically parameters expected to have a major effect on time to BBCH30 and 367 

BBCH55 and expected to differ between varieties. Five participants did a sensitivity analysis 368 

to aid in the choice of parameters to estimate. The number of estimated parameters ranged 369 

from 1 to 9. In almost all cases, the number of parameters to estimate was decided a priori. In 370 

three cases, the number was the result of testing the fit with different numbers of parameters. 371 

In one of those cases  the Akaike Information Criteria (AIC, Akaike, 1973) and adjusted R² 372 

were used to test whether additional parameters should be estimated.  373 

Almost all modeling groups estimated one or more parameters that represent thermal 374 

time between development stages (table 6). Some adjustments were necessary for models that 375 

did not explicitly calculate time of BBCH30 or BBCH55. In model M2, for example, a new 376 

parameter was added to the model, and estimated, representing the fraction of thermal time 377 

from double ridge to heading at which BBCH30 occurs. Thirteen groups estimated a 378 

parameter related to the effect of photoperiod. Ten groups estimated a parameter related to 379 

vernalization. Six groups modified one or more parameters related to the temperature 380 

response (for example model M6 estimated Tbase, the temperature below which there is no 381 

development). Only three models modified parameters related to the time from sowing to 382 

emergence, and only one model modified a parameter related to the effect of water stress. Six 383 

models included among the parameters to estimate, parameters that have no effect on the 384 

variables furnished as calibration data. Such parameters included thermal times for 385 

development stages after BBCH55, potential kernel growth rate, kernel number per stem 386 

weight and the temperature below which there is 50% death due to cold (Supplementary table 387 

S9). 388 

Most modeling groups defined the sum of squared errors or the sum of root mean 389 

squared  errors  as the objective function to be minimized, where the sum is over the two 390 

stages. (In all cases, the calibration was done separately for the two varieties). Two groups 391 

minimized the sum of absolute errors. Calibration for model M21 was based on maximizing 392 

the concentrated likelihood (Seber & Wild, 1989) assuming a normal distribution of errors 393 

with possibly different error variances for the two development stages. In this case, the 394 

objective function involves a product of errors for the two outputs, rather than a sum. Four of 395 

the participants (M15, M16, M17, M18) did not define an explicit objective function to be 396 

minimized. In these cases, the parameter values were chosen to obtain a “good fit” to the data 397 

by visual inspection. Finally, two of the models (M7, M8) divided the calibration into two 398 

steps. In these cases  three of the parameters were used to fit the BBCH30 data, and then in 399 

another step another parameter was used to fit the BBCH55 data.  400 

Minimizing the sum of squared errors is a standard statistical approach to model 401 

calibration, which has highly desirable properties if certain assumptions about model error are 402 

satisfied, including equal variance of model error for all data points and non-correlation of 403 

model errors. Only one model took into account the possibility that the error variances are 404 

different for BBCH30 and BBCH55, and none of the modeling groups took into account 405 

possible correlations between errors for BBCH30 and BBCH55 in the same field. Based on 406 

the errors for all the data and all the models, it was found that there is a highly significant 407 

difference in variance between errors for BBCH30 (variance of error 100.7 days²) and 408 

BBCH55 (variance of error 67.3 days²). Also, the correlation between the error for BBCH30 409 

and the error for BBCH55 in the same field is 0.53 and highly significant. However, if only 410 

results for a single model are considered, then for most models the differences in variance and 411 

the correlation are not significant.   412 
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Two models defined a posterior probability of the parameters equal to the likelihood 413 

times the prior probability, as usually assumed in a Bayesian approach. The parameters used 414 

for prediction were those that maximized the posterior probability (i.e., the estimated mode of 415 

the posterior distribution). In both cases, the likelihood was assumed Gaussian with 416 

independent errors, and the prior distribution was assumed uniform between some minimum 417 

and maximum value. This approach is equivalent to minimizing the mean squared error, with 418 

constraints on the parameter values.  419 

Seven participants simply used trial and error to search for the optimal parameters. 420 

The other participants used software specifically adapted to minimizing the objective 421 

function, either written specifically for their model or, in most cases, available from other 422 

sources (Supplementary table S10). 423 

  424 

Discussion 425 

The challenge in this study was to predict the time from sowing to beginning of stem 426 

elongation and to heading in winter wheat field trials performed across France. This is a 427 

problem of practical importance, since these two development stages are important for wheat 428 

management (e.g. fertilization). The evaluation  concerned years and sites not included in the 429 

calibration data, making this one of the most rigorous evaluations to date of how well crop 430 

models simulate  phenology. 431 

Twenty-seven modeling groups participated in the exercise. Most models predicted 432 

times to stem elongation and heading quite well (median MAE of 6 days). Half the models 433 

had MSE values of prediction that were 36% or less than MSE of a naive predictor. It must be 434 

kept in mind that this study is a rather favorable situation for prediction, with a substantial 435 

amount of calibration data and predictions for environments similar to those of the calibration 436 

data.  437 

The results for each individual model depend on the model equations, the values of the 438 

fixed parameters and the calibration approach which determines the values of the estimated 439 

parameters, and on the interactions among those elements. A full, detailed analysis of each 440 

model is beyond the objectives of this study. We focused on the calibration approaches used 441 

and its relation to errors for the calibration and evaluation data.  442 

The results show that calibration can, in some cases, compensate for differences in 443 

model equations and/or values of fixed parameters. Compensation is usually discussed in the 444 

context of single models. For example, equifinality, which is a well-known phenomenon of 445 

complex models, means that different combinations of parameter values, and thus different 446 

quantitative descriptions of processes, can lead to the same results for outputs because there is 447 

compensation between the processes (Beven, 2006; D. He et al., 2017). However, this 448 

phenomenon has not been described in the context of multi-model studies. Here, we have an 449 

example of compensation for differences between models in the way they partition days from 450 

sowing to BBCH30 into days from sowing to emergence plus days from emergence to 451 

BBCH30. Models with longer simulated times from sowing to emergence tend to have a 452 

shorter simulated time from emergence to development stage BBCH30 and vice versa. In fact, 453 

each extra day from sowing to emergence is associated on average with almost exactly one 454 

less day from emergence to BBCH30.  The result is that models with quite different simulated 455 

days from sowing to emergence can have nearly identical times from sowing to BBCH30. 456 

This can be expressed in terms of model uncertainty, as quantified by between-model 457 

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 19, 2019. ; https://doi.org/10.1101/708578doi: bioRxiv preprint 

https://doi.org/10.1101/708578


17 

 

variance. The variance of days from sowing to BBCH30 is less than the sum of variances of 458 

days from sowing to emergence and days from emergence to BBCH30. That is, calibration 459 

reduces, but does not eliminate, model uncertainty for the variable provided for calibration.  460 

We don’t have observed time to emergence, but in any case the models with different 461 

simulated days to emergence can’t all be right. This is an  example of how models can get the 462 

right answer (correct days to BBCH30) for the wrong reasons (wrong days to emergence), 463 

illustrating the problem pointed out for example by  (Challinor, Martre, Asseng, Thornton, & 464 

Ewert, 2014). The same compensation of errors between sowing to emergence and emergence 465 

to BBCH30 will not be appropriate for all environments. This is one of the main reasons that 466 

extrapolation to populations different than the training population is dangerous.  467 

Another indication of compensation induced by calibration is the fact that after 468 

calibration, models with quite different choices for the variables that affect development can 469 

have very similar levels of prediction error. The most important inputs that determine spring 470 

wheat phenology are daily temperature and photoperiod (Aslam et al., 2017) and for winter 471 

wheat it is also necessary to include the process of vernalization, i.e. the effect of low winter 472 

temperatures on development (Li et al., 2013). Five of the best eight predicting models here, 473 

with 
all

evalMSE  < 40 days², do use all three of those variables (daily temperature, photoperiod, 474 

vernalizing temperatures) as inputs. Two of the best eight models however do not use 475 

vernalizating temperatures, and one of those best eight does not use photoperiod. The choice 476 

of input variables is a fundamental aspect of model structure. In fact, MSE can be expressed 477 

as a sum of two terms, the first of which depends only on the choice of the model input 478 

variables and not on any other aspects of structure, while the second measures the distance 479 

between the model used and the optimal model for those inputs (Wallach, Makowski, Jones, 480 

& Brun, 2019). It seems that calibration can lead to similar values of MSE for prediction even 481 

for quite different choices of input variables.  482 

While models with different structures can give similar results thanks to calibration, 483 

our results also show that models with the same structure can provide different results, if 484 

different calibration approaches are used. This is illustrated here by the results for two groups 485 

of models sharing the same structure. There are major differences in prediction error between 486 

models with the same structure depending on how calibration was done. Much previous work 487 

on improving the predictive capability of crop models has focused on the model equations, for 488 

instance the way temperature is taken into account in various processes (Maiorano et al., 489 

2016; Wang et al., 2017). Here we show that models with quite different structures can have 490 

very similar prediction accuracy, thanks to calibration using the same data, while models with 491 

the same model structure can have very different levels of prediction error, if the calibration 492 

methods differ. This means that model comparison studies may often be comparing 493 

calibration approaches as much or more as they are comparing model equations. This is in 494 

line with the conclusions of Confalonieri et al. (2016), who argued that one should not speak 495 

of evaluation of a model but rather of a model-user combination; a major role of  the user is in 496 

determining the method of calibration.  497 

The choice of objective function for calibration can have an effect on quality of 498 

prediction.  While most participants defined an explicit objective function (e.g. minimizing 499 

sum of squared errors, or some closely related criterion) three models (see Supplementary 500 

table S9) did not have an explicit quantitative objective function. Those models all had 501 

relatively large values of  overall MSE for the evaluation data (
all

evalMSE ) , having 15th, 16th, 502 

and 18
th

 largest 
all

evalMSE  values out of the 25 models that predicted both BBCH30 and 503 
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BBCH55. These results suggest that the lack of a quantitative objective function can be a 504 

drawback since then one does not have a clear criterion for judging the results of calibration.  505 

There was a large diversity of choices of parameters to estimate by calibration, and 506 

this had in certain cases an important effect on prediction error. One rather unexpected 507 

observation was that several participants included parameters that have no effect on the 508 

variables furnished as calibration data among the parameters to estimate. The data cannot in 509 

those cases give any information about the parameter value. At best, including such 510 

parameters among the parameters to estimate is useless, and those parameters will simply 511 

have final values exactly equal to their initial values. However, there may also be serious 512 

disadvantages to including such parameters. It gives the erroneous impression that one is 513 

estimating parameters that cannot in fact be estimated, it increases computation time and it 514 

can cause problems for the parameter estimation algorithm. The very poor fit of model M5 to 515 

the calibration data seems to be directly related to the fact that for this model, several 516 

parameters unrelated to the calibration data were chosen to be fitted. The software used here 517 

was PEST (Doherty et al., 2010), with the singular value decomposition option, which allows 518 

one to deal with non-estimable parameters, but at the cost of introducing bias in the estimated 519 

parameter values.  Obviously, one should not include non-estimable parameters among the 520 

parameters to estimate.  521 

The choice of parameters to estimate may be the principal cause of bias in fitting the 522 

calibration data for some models. If a model includes an additive constant term, and squared 523 

error is minimized, bias will be 0 for the calibration data. Even for more complex models, 524 

calibration can bring bias close to 0, as illustrated here by the fact that many of the models 525 

had very small biases for the calibration data. Eliminating bias is important, since squared 526 

bias is one component of MSE, and therefore the bias necessarily adds on to MSE (Kobayashi 527 

& Salam, 2000). If one does not have a parameter with a nearly additive effect for each of the 528 

development stages BBCH30 and BBCH55, the elimination of bias for both outputs is not 529 

assured. Model M24 estimated only a single parameter. In such a case, at best one can 530 

estimate a parameter value that gives the best compromise between errors in BBCH30 and 531 

BBCH55. This may lead to a negative bias for one of those outputs and more or less 532 

corresponding positive bias for the other. This is exactly the behavior illustrated in figure 2. 533 

Model M10 also had fairly large biases. Here three parameters were estimated, but one is 534 

unrelated to the observed data and a second concerns time to emergence, which was only 535 

allowed to vary in a limited range. Apparently in this case also there was not enough 536 

flexibility to eliminate bias for both development stages.  Models with large bias for the 537 

calibration data tended to have large MSE values for the evaluation data (Supplementary 538 

figure S2). This suggests that the parameters to estimate should include one parameter that is 539 

nearly additive (i.e. that adds an amount that is nearly the same for all environments) for each 540 

observed output, and that is not too limited in the allowed range of values.  541 

The calibration choices here suggest other recommendations for calibration. One 542 

concerns the specific choice for the objective function. Among the models that defined a 543 

likelihood or a sum of squares criterion, all but one assumed that all model errors had equal 544 

variance and were independent. One should probably take into account unequal variances and 545 

correlation of simulation errors for BBCH30 and BBCH55 in the same field. A second 546 

recommendation concerns the software. There does not seem to be any clear connection 547 

between the software used for calibration and the predictive quality of the resulting calibrated 548 

model. Various different software solutions were used by the best predicting models, but 549 

largely the same software solutions were also found among the models with the largest 550 

prediction errors. A problem that may arise concerns the test for convergence to the parameter 551 
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values that minimize the chosen objective function. Having such a test allows the user to have 552 

confidence that the best parameter values have been found. With trial and error, there is no 553 

such test, which is a major drawback of this approach. Algorithms to estimate a Bayesian 554 

posterior distribution normally test convergence to the posterior distribution, which may not 555 

be relevant if one is using just the mode of the distribution. It would be good practice to adopt 556 

a software option that includes an appropriate test of convergence.  557 

Overall, we have shown in a rigorous evaluation of prediction for new environments 558 

that most of the 27 crop models tested, given calibration data, provide good predictions of 559 

phenology in winter wheat and explain much of the variability between environments. 560 

Calibration has a major effect on predictive quality. Calibration reduces variability between 561 

models for outputs used for calibration, but may lead to models getting the right answer for 562 

the wrong reason. Calibration can compensate to some extent for different choices of input 563 

variables. Poor practices of calibration can seriously degrade predictive capability. Arguably 564 

the most difficult aspect of calibration, and yet the least studied, is the choice of parameters to 565 

estimate. Unlike the choice of objective function and of software, there is little guidance here 566 

from other fields. Furthermore, the problem is specific to each model, since each model has a 567 

different set of parameters. Given the large diversity of calibration approaches and the 568 

importance of calibration, there is a clear need for guidelines and tools to aid model users with 569 

respect to calibration. Model applications, including model studies of climate change impact, 570 

should focus more on the data used for calibration and on the calibration methods employed.  571 
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