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Abstract
Kernel Current Source Density (kCSD), which we introduced in 2012, is a kernel-based
method to estimate current source density (CSD) from extracellular potentials recorded
with arbitrarily placed electrodes. Estimating reconstruction errors in CSD has been an
outstanding challenge. To address it, here we revisit kCSD and explore its mathematical
underpinnings. First, we quantify the information that can be recovered from extracellular
recordings for a given setup, by introducing eigensources — a set of basic CSD profiles,
which form the basis of estimation space. Next, we investigate the effect of relative place-
ment of basis sources and electrodes on the reconstruction fidelity. We show that the
correct distribution of sources is crucial for the reconstruction, in particular, CSD recon-
struction is possible even for badly misplaced electrodes. We also introduce L-curve, a
new method for choosing reconstruction parameters, in addition to the previously used
cross-validation. Finally, we propose two types of diagnostics of reconstruction veracity,
error propagation map and reliability map. For any given setup, the error propagation
map indicates how the electrode noise propagates to the reconstructed CSD and the reli-
ability map illustrates the point-wise reliability of kCSD estimation. The kCSD method
and the additional techniques introduced here are implemented in kCSD-python, a new
Python package provided under an open license. kCSD-python’s features and usage are
highlighted with a jupyter notebook tutorial. This new tool can perform CSD estimations
for 1D, 2D, and 3D electrode setups, assuming distributions of sources in a tissue, a slice,
or in a single cell.
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Introduction 1

Multisite recording of extracellular potential is a popular technique in neuroscience. The 2

obtained potential reflects activity of underlying neural network and is directly related to 3

the distribution of current sources along the active cells (current source density, CSD). The 4

relation between the CSD and recorded potential, while occasionally contested [Bédard 5

and Destexhe, 2011], overall is well established and trusted in experimental and analytical 6

practice [Buzsáki et al., 2012, Einevoll et al., 2013, Gratiy et al., 2017]. Due to the 7

long range of electric potential [Łęski et al., 2007, Hunt et al., 2011, Lindén et al., 2011, 8

Łęski et al., 2013] it is useful to estimate the current sources. Several methods have been 9

introduced to estimate current sources since 1950s [Pitts, 1952, Nicholson and Freeman, 10

1975, Pettersen et al., 2006, Łęski et al., 2007, 2011]. In 2012 we proposed a non-parametric 11

method of CSD estimation which we called kernel CSD method (kCSD, [Potworowski 12

et al., 2012]). Here we revisit this method with three aims in mind. First, to present a 13

new Python based toolbox, which allows kCSD reconstruction of current sources for data 14

from 1D setups (laminar probes and equivalent electrode distributions), 2D (planar MEA, 15

multishaft silicon probes, Neuropixel or SiNAPS probes, etc), and 3D electrode setups 16

(Utah arrays, multiple electrodes placed independently in space with controlled positions), 17

where the sources are assumed to come from tissue (kCSD) or from single cells with 18

known morphology (skCSD). Fig. 1 shows the different experimental scenarios for which 19

this software is applicable. Second, using the new software, we investigate the properties 20

of some mathematical structures arising in the context of practical experimental studies. 21

Third, we introduce several new conceptual tools which will facilitate CSD estimation and 22

knowledge extraction from the data. 23

Our plan is as follows. We first review the basic relations between the relevant physical 24

quantities we study and we set up the computational framework. Then we study the 25

central quantities involved in estimation of the sources from the measurements. We follow 26

this with introduction of L-curve estimation of optimal reconstruction parameters and 27

reliability maps for the study of reconstruction accuracy. Finally, we provide an overview 28

of the new software package which was used for the presented analysis and illustrate the 29

new concepts introduced here. 30

Current source density and local field potential 31

The extracellular potential that we measure is a consequence of ion motion in the tissue 32

which is driven by ionic currents through the ion channels embedded in neuronal and glial 33

membranes, as well as capacitive currents arising in response to potential gradients across 34

the membrane. From the perspective of extracellular medium it seems as if the current was 35

disappearing or appearing from inside a cell, which is why we talk about current sources 36

and sinks. The distribution of these current sources is called the current source density 37

(CSD) and its relation to the extracellular potential is given by the Poisson equation 38

C = −∇(σ∇V ), (1)

where C is the CSD, V is the extracellular potential, and σ — the conductivity tensor. 39

Thus, if we knew the potential in the whole extracellular space, we could easily compute 40

the CSD. On the other hand, knowing CSD in the whole space, we can compute the 41

extracellular potential. Assuming isotropic and homogeneous tissue the Poisson equation 42

reduces to 43

C = −σ∆V (2)
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Figure 1: Overview of experimental contexts where kCSD-python is applicable. 1D setups
such as A) laminar probes and equivalent; 2D setups, such as B) multishaft silicon probes,
Neuropixel or SiNAPS probes, or D) planar MEA; 3D electrode setups, such as multiple
multishaft silicon probes, Utah arrays, multiple electrodes placed independently in space
with controlled positions, where the sources are assumed to come C) from tissue (kCSD)
or E) from single cells with known morphology (skCSD). For description of parameters
see Methods.

which can be easily solved: 44

V (x) =
1

4πσ

∫
dx′

C(x′)

|x− x′|
. (3)

In more complex situations when σ depends on position and direction, and we have 45

non-trivial boundary conditions, one must resort to numerical integration. This can be 46

done Ness et al. [2015], Næss et al. [2017] but in the following we will assume constant 47

scalar σ (homogeneous, isotropic medium). The reason is that more general models of 48

tissue conductivity do not affect the following discussion and results but they would make 49

presentation more cumbersome. In practice, they only affect the relation between the basis 50

functions in the space of CSD and potential, b̃j and bj in what follows. In the provided 51

package this is one Python function that needs to be replaced. 52

Careful discussion of the meaning of the CSD and derivation of the relations between 53

CSD and the potential can be found in Stevens [1966], Nicholson [1973], Gratiy et al. 54

[2017]. Discussion of physiological sources of the extracellular potential can be found in 55

the reviews by Buzsáki et al. [2012], Einevoll et al. [2013]. 56
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Kernel Current Source Density and prior estimation methods 57

Pitts [1952] observed that the Poisson equation relating the extracellular potential to 58

the CSD can be used to estimate CSD from measurements. He used this observation to 59

examine the distribution of currents and sinks in the spinal cord. His approach, which we 60

call traditional CSD method, was based on direct numerical approximation to the second 61

derivative in equation (2). Pitts’ approach with small modifications was used for more 62

than half a century and is still in use today. In 2006, Pettersen et al. [2006] proposed 63

a model-based approach to estimate CSD. The inverse CSD (iCSD) method which they 64

introduced for analysis of laminar recordings assumed a parametric model of CSD with 65

the recordings used to compute model parameters. Some advantages of this approach were 66

explicit inclusion of assumptions regarding physical properties of the tissue conductivity 67

and the properties of sources in the directions not probed. Inverse CSD facilitates testing 68

the influence of these uncontrolled factors on the estimated CSD. It was extended to 2D 69

and 3D recordings [Łęski et al., 2007, 2011], however, it still required recordings on regular 70

rectangular grids (although see Wójcik and Łęski [2010]) and did not compensate for the 71

measurement noise. Potworowski et al. [2012] proposed how to overcome these limitations 72

generalizing iCSD to the kernel CSD (kCSD) method. It was later studied from the general 73

perspective of discrete inverse problems by Kropf and Shmuel [2016]. 74

Kernel CSD estimation is conceptually a two-step procedure. First, we do a kernel 75

interpolation of the measured potential which gives V (x) in the whole space. This is 76

obtained with the help of a symmetric kernel function, K(x,x′), so that 77

V ∗(x) =
N∑
j=1

βjK(x,xj),

where xj, j = 1, . . . , N , are electrode positions. The regularized solution, which makes 78

correction for noise, is obtained by minimizing prediction error 79

err[V ] =
N∑
i=1

(V (xi)− Vi)2 + λ‖V (x)‖2F ,

which gives 80

β = (K + λI)−1V,

where V is the vector of measured potentials, λ is regularization parameter, the norm ‖.‖2F 81

is discussed in the Methods section, and 82

Ki,j ≡ K(xi,xj).

To simplify the notation and bring the discussion closer to our numerical implementa- 83

tion we shall consider estimation at an arbitrary discrete set of points yi, with i = 1, . . . ,W . 84

Further, in matrix representations of operators we shall assume the variables taking the 85

values of electrode positions, xj, j = 1, . . . , N , or the values of estimation points, yi, 86

i = 1, . . . ,W . In the latter case we shall underline the matrix. So a single underline 87

means rows are numbered by estimation points, and columns are numbered by electrode 88

positions. Double underline means that both rows and columns are numbered by estima- 89

tion points. The variable which takes value at estimation points can usually be also read 90

as a free variable. For example 91

K =

 K(y1,x1) . . . K(y1,xN)
... . . . ...

K(yW ,x1) . . . K(yW ,xN)

 ,
4
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or K = [K(y,x1), . . . , K(y,xN)]. Usually these two viewpoints should be interchangeable, 92

if not, specific use should be clear from the context. For example, when we discuss software 93

implementation, only the first (discrete) view is applicable. 94

With this notation, our estimation of the potential in the whole space is 95

V∗ = K(K + λI)−1V.

Once we estimate the potential we must shift the obtained solution to CSD space. This 96

is easiest to understand in 3D where we can simply plug this solution into the Poisson 97

equation (1), and compute CSD everywhere. In the general case this can be achieved with 98

a second function, which we call cross-kernel, K̃(x,x′). With these functions the resulting 99

CSD estimation is given by 100

C∗ = K̃(K + λI)−1V.

In practice, to identify relevant K and K̃, we introduce a large basis of CSD sources 101

spanning the space of interest, b̃j(x), and corresponding basis in the potential space, bj(x), 102

and construct our kernels from these basis functions [Potworowski et al., 2012]. We review 103

the details of kCSD method in the Methods section. 104

The challenges of the method are how to construct K and K̃, how to select the relevant 105

parameters, and reliability of the estimation. In the following we address all these issues 106

conceptually and computationally with the provided open package, kCSD-python. 107

Results 108

In this paper we introduce the kCSD-python package, a novel implementation of the kernel 109

Current Source Density method. It is distributed under an open license (3-Clause BSD 110

License) and is available on GitHub (https://github.com/Neuroinflab/kCSD-python). 111

The package contains a set of tools for kCSD analysis, for validation of the results of 112

analysis, and extensive tutorials implemented in jupyter notebook to familiarize the user 113

with its usage. It allows the user to analyze their own electrophysiological recordings or 114

to explore the method with data generated in silico. 115

In this section we introduce several tools to facilitate conceptual and practical under- 116

standing of the reliability of CSD analysis. First, we discuss spectral decomposition of the 117

kCSD and introduce the concept of eigensources. Then we study the effects of relative 118

placement of the basis, the electrodes and sources on reconstruction fidelity. We show that 119

when the basis is placed in the region containing the true sources, reconstruction can be 120

performed even if the signal is picked away from the source. Next we discuss parameter 121

selection focusing on the L-curve approach which we introduced in the package along the 122

previous cross-validation approach. Finally, we introduce reliability maps as a heuristic 123

tool to build intuition about the power of any given setup to resolve the CSD. 124

We close this section with an extensive tutorial overview of the kCSD-python package. 125

Its goal is to show how to use this package to perform CSD analysis, how to apply the 126

provided analysis tools, and to validate the results. We first consider a regular grid of 127

ideal (noise-free) electrodes, where we compute the potentials from a known test source 128

(the ground truth). We then use these potentials to reconstruct the sources which we 129

compare with ground truth (Basic features). Then, we explore the effects of noise on the 130

reconstruction and test the robustness of the method (Noisy electrodes). In the final part 131

of the tutorial we look at how the errors in the estimation depend on the sources and 132

the electrode configuration by testing the effects of broken electrodes on reconstruction 133

(Broken electrodes). 134
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Spectral decomposition for kCSD and regularization 135

Let us reconsider the construction of kCSD (see Methods). In kCSD we estimate CSD 136

in space F̃ span by a large, M -dimensional basis, b̃i. However, our experimental setup 137

imposes constraints which force our model to an N -dimensional subspace where the es- 138

timation really takes place, with N � M . To understand the structure of this smaller 139

space we can decompose the operator K, eq. (25), acting on the measurements. We can 140

take advantage of the symmetry and positivity of K matrix which guarantees existence of 141

eigendecomposition 142

K =
N∑
j=1

µjwjw
T
j . (4)

Then the kCSD reconstruction for a set of measurements V, eq. (27), is 143

C∗[V] = K̃
N∑
j=1

1

µj + λ
wjw

T
j V

=
N∑
j=1

1

µj + λ
(K̃wj)(w

T
j V).

Since wj are orthogonal we have 144

C∗[wj] =
1

µj + λ
K̃wj.

Thus wj are the natural ‘eigenmeasurements’ corresponding to individual CSD profiles, 145

K̃wj, accessible to the given setup when specific basis b̃i is assumed. Moreover, it is easy 146

to see that the CSD profiles 147

Cj = K̃wj (5)

actually form the basis of estimation space, we call them ‘eigensources’. Since kCSD 148

method is self-consistent, in the absence of noise, we see that the potential at the electrodes 149

generated by Cj is 150

V[Cj] = Kwj = µjwj.

It leads to reconstructed CSD 151

C∗[V[Cj]] =
µj

µj + λ
K̃wj ∝ Cj

which is equal to Cj for λ = 0. 152

A natural question appears as to what happens to the missingM−N dimensions. The 153

answer is that they are projected onto 0 (annihilated). It is possible to construct them 154

explicitly. Starting with the basis of N eigensources we can expand it within F̃ by Gram- 155

Schmidt orthogonalization. This construction breaks F̃ into two orthogonal subspaces, 156

one of which spans all the sources which can be recovered with a given setup, the other 157

contains all the sources which are annihilated. 158

Let us now investigate this decomposition in an example. Here we study spectral 159

properties of the simplest 1D case with regularly distributed electrodes. We consider 160

M = 2k, k = 0, 1, . . . , 9 basis sources distributed uniformly in [0, 1] and the number of 161

electrodes is N = 12. This means that K is 12 × 12 and there are 12 eigensources. 162
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Figure 2: Demonstration of spectral properties of kCSD method for simple 1D case with
12 regularly distributed electrodes on the interval [0, 1]. A) Eigenvalues obtained from the
decomposition of K for different number of basis sources (M=2, 8, 16, 512), B) Shows the
first eigenvalue in the function of growing number of basis, C–N) Shows 12 eigensources
(products of K̃ and all the eigenvectors), which produce the inverse solution in kCSD
method. Different curves represent eigensources estimated for different M.

Fig. 2.A) shows the eigenspectrum of K for growing basis size, M = 2, 8, 16, 512. As we 163

can see, the spectrum of K quickly stabilizes and already for M = 16 it is very close to 164

that forM = 512, so it is almost asymptotic. Approach to asymptotic values is illustrated 165

for the leading eigenvalue which is plotted as a function of M in Fig. 2.B). Fig. 2.C)–N) 166

show all the 12 eigensources, Cj = K̃wj, eq. 5, for the same basis. As we can see, in 167

the degenerate cases of M < N only M eigensources are non-trivial and we can see that 168

they are approximations to asymptotic sources. Eigensources forM = 16 are very close to 169

those for M = 512 so it seems to indicate that as long as the number of basis sources, M , 170

is larger than the number of electrodes, N , for regular distribution of electrodes and basis 171
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sources covering the same region, the number of basis functions is not a limiting factor of 172

the reconstruction. On the other hand, as we observed before, every reconstruction is a 173

linear combination of the eigensources, thus the only things which can be reconstructed 174

are linear combinations of the profiles shown in Fig. 2.C)–N). 175

Observe that for electrodes placed on a regular grid the set of eigensources forms a 176

Fourier-like basis. This is in line with other results in discrete inverse problems Hansen 177

[2010] although here we do not consider singular value decomposition of resolvent as is 178

usually done (see e.g. Kropf and Shmuel [2016]). This brings to mind the sampling the- 179

orem Oppenheim et al. [1996], except here we measure one quantity (the potential) and 180

reconstruct another (CSD). In the sampling theorem we reconstruct a continuous signal 181

from discrete samples. This in particular shows that there would be a range of spatial fre- 182

quencies within which reconstruction is efficient and beyond which it will increasingly fail. 183

While this is a linear oversimplification it captures the intuition well. For an alternative 184

view of this observation see Fig. 2 of Cserpan et al. [2017]. 185

Note that we can perform similar studies for arbitrary setups. Once they are no 186

longer regular, the basis of eigensources may deviate from Fourier arbitrarily. This can 187

be easily studied with the kCSD-python package introduced here for any given setup used 188

experimentally. 189

The effects of relative placement of basis, electrodes, and sources, 190

on reconstruction fidelity 191

In CSD analysis it is usually assumed that the electrodes probe the region of interest well 192

and that the sources to be reconstructed are within the space span by the electrodes. 193

It has usually been our tacit assumption so far, in this and previous papers. However, 194

this need not necessarily be so. First, in many experiments carried in the past and at 195

present, the number of electrodes is small, we often probe complex extended structures 196

with laminar probes, etc. Second, it is relatively common to record away from the source. 197

For example, imagine in vivo study where we target a specific structure where activity is 198

expected yet post-experimental histology shows the probe was misplaced. Can we learn 199

anything of value about the sources of interest in such a case? 200

To address this question here we consider a 1D Gaussian source centered at 0.25, which 201

is essentially nonzero on interval [0, 0.5], where the interval [0, 1] is a metaphor for the whole 202

brain. We then consider nine cases with three different distributions of 12 electrodes on 203

intervals [0, 1] (‘within the whole brain’), [0, 0.5] (covering only the region where the source 204

is non-zero), [0.5, 1] (badly misplaced probe), and three different distributions of basis 205

sources, spanning the intervals [0, 1], [0, 0.5], [0.5, 1] (Fig. 3). The different placements 206

of basis sources are a metaphor for the prior knowledge from expert insight of where 207

we anticipate the sources. Here, the width of the basis source, R, was selected through 208

cross-validation for the first case and used throughout, λ = 0 and no noise was assumed. 209

In Fig. 3, consider the first row, where the electrodes span ‘the whole brain’. In that 210

case, if we distribute the basis sources throughout the brain (left column, panel A) or 211

through the region where the true sources were placed (middle column, panel B), the 212

reconstruction is faithful. However, if we distribute the basis sources in the right half of 213

’the brain’, away from the true sources (Right column, panel C), kCSD fails miserably 214

trying to reconstruct the source from the measured potentials in the place where there is 215

nothing. This is to be expected. Interestingly, when the electrodes are placed on the right 216

half, completely outside the region containing the true sources, if we place the basis sources 217
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Figure 3: Demonstration of kCSD reconstruction for different relative placement of basis
sources and electrodes for simple 1D Gaussian source in the absence of noise. Width of
the basis source, R, was selected through cross-validation for the first case (A) and used
throughout. Columns represent results for three different distributions of basis sources:
left — centers of basis sources distributed uniformly on interval [0, 1], middle — interval
[0, 0.5], right — interval [0.5, 1]. Rows represent different distribution of electrodes: top
— electrodes span the interval [0, 1], middle — interval [0, 0.5], bottom — interval [0.5,
1]. Black dots represent electrode positions, continuous line — ground truth (TrueCSD),
dashed line — CSD estimated with kCSD method.

so that they cover the region where the true sources are located the reconstruction, while 218

misshapen, does indicate the location of sources (Panels G and H). Moreover, if we have 219

expert knowledge which tells us to expect the source in the left half, and we accordingly 220

place the basis sources only there, the reconstruction is actually remarkably faithful (Panel 221

H). These results indicate that it is worthwhile to attempt reconstruction even in cases 222

with misplaced electrodes, as long as we know relative distances between the electrodes 223

and we have reasons to speculate the source being reconstructed to be in a restricted 224

region. 225

Since noise-free data are not realistic it is interesting to investigate how noise affects 226

these results. In a real life scenario we would always tune the parameters R, λ from data 227

using cross-validation or L-curve method (next section). Fig. 4 shows reconstructions in 228
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the same nine cases as before for data which have been contaminated with additive noise. 229

We show results obtained when optimal parameters where selected with cross-validation or 230

with L-curve method in every case. As we can see, even though the results degrade when

Figure 4: Demonstration of kCSD reconstruction for different relative placement of basis
sources and electrodes for simple 1D Gaussian source. Here we assume measurement
noise, thus cross-validation and L-curve methods were used to select regularization solution
parameters R, λ. Columns and rows — see previous figure. Black dots represent electrode
positions, continuous line — ground truth (TrueCSD), dashed line — CSD estimated with
kCSD method, dotted line — L-curve estimation.

231

compared with the noise-free data, in all cases regularization improves the reconstruction, 232

often providing useful information. Interestingly, in the case where we record outside the 233

region of interest but where the basis spans ‘the whole brain’, L-curve gives a reasonable 234

estimate while cross-validation fails. Note that this is accidental. Our tests show that in 235

difficult cases one or the other approach to parameter selection may give better results. 236

Parameter selection 237

An important part of kCSD estimation is selection of parameters, in particular the regu- 238

larization parameter, λ, but also the width of the basis source, R. Previously we proposed 239
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to use cross-validation. Here we also apply L-curve approach [Hansen, 2010, Kropf and 240

Shmuel, 2016] for regularization. Both these methods are implemented in the provided 241

Python package. 242

Cross-validation To select parameters using cross-validation [Potworowski et al., 2012] 243

we consider a range of parameter values, λ ∈ [λ0, λ1]. For any test value λ we select an 244

electrode i = 1, . . . , N and ignore it. With eq. (24) we build a model from remaining 245

measurements, V ′iλ (x), and use it to predict the value at the ignored electrode, V ′iλ (xi). 246

Here 247

V ′iλ (x) =
∑
j 6=i

β′i,λj K(x,xj),

where the minimizing vector 248

β′i,λ = (K′i + λI′i)−1V′i,

and where ′i means i-th column and row are removed from the given matrix. 249

We repeat this for all the electrodes i = 1, . . . , N and compare predictions from the 250

remaining electrodes against actual measurements: 251

prediction error(λ) =

√√√√ N∑
i=1

(V ′iλ (xi)− Vi)2. (6)

For final analysis, λ giving minimum prediction error is selected. It is worth checking if 252

the global minimum is also a local minimum. If the λ selected is one of the limiting values 253

this may indicate that extending the range of λ might result is more optimal result or that 254

the problem is ill-conditioned, for example too noisy, etc, and we are either underfitting 255

or overfitting, as we discuss below for the L-curve. 256

L-curve Consider the error function, Eq. (23), which we minimize to get the regularized 257

solution, Vλ = Kβλ. It is a sum of two terms we are simultaneously minimizing, prediction 258

error 259

%λ =
N∑
i=1

(Vλ(xi)− Vi)2, (7)

and the norm of the model 260

ηλ = ‖Vλ(x)‖2F = |βTλKβλ|, (8)

weighted with λ. Taking λ = 0 is equivalent to assuming noise-free data. In this case we 261

are fitting the model to the data, in practice, overfitting. On the other hand, taking large 262

λ means assuming very noisy data, in practice ignoring measurements, which results in a 263

flat underfitted solution. Between these extremes there is usually a solution such that if 264

we decrease λ, the prediction error, %, slightly decreases, while the norm of the model, η, 265

increases fast, or the opposite, Fig. 5D. 266

This is apparent when the prediction error and the norm of the model are plotted in 267

the log-log scale. This curve follows the shape of the letter L, hence the name L-curve 268

[Hansen, 1992]. Several methods have been proposed to measure the curvature of the L- 269

curve and to identify optimal parameters [Hansen et al., 2007]. In kCSD-python, we have 270

implemented the triangle area method proposed by Castellanos et al. [2002]. 271
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To illustrate this method in the context of CSD reconstructions, we study an example 272

of 1D dipolar current source with a split negative pole (See Fig. 5C, True CSD, red dashed 273

line). We compute the potential at 32 electrodes (Fig. 5A, C, black dots) with additive 274

noise at every electrode. Notice that if we reliedwanted to interpret the recorded potential 275

directly (Fig. 5A, red dots) it is difficult to discern the split negative pole. Fig. 5D shows 276

the estimated curvature for our example as a function of λ. The optimal value of λ is 277

found by maximizing the curvature of the log-log plot of η versus %, Fig. 5B. The red dot 278

in Fig. 5B, D, indicates the ideal λ parameter for this setup obtained through the L-curve 279

method. 280

Several methods have been proposed to measure the curvature of the L-curve and 281

identify optimal parameters [Hansen et al., 2007]. We adopted the triangle area method 282

proposed by Castellanos et al. [2002]. To distinguish between convex and concave plot, 283

clockwise directed triangle area is measured as negative. Fig. 5D shows this estimated 284

curvature for our example as a function of λ. 285

Fig. 6 compares results of parameter tuning and reconstruction by cross-validation and 286

L-curve method. The top panel shows the estimation error between the reconstruction and 287

the ground truth (known model data) for the two approaches as a function of increasing 288

measurement noise simulated. The bottom panel shows which λ is being selected by both 289

methods as the noise is increasing. The mean and the errors were obtained for 10 different 290

realizations of noise. As we can see, the two methods give consistent results for low noise. 291

For increasing noise, in this case, the L-curve tends to indicate lower λ values which here 292

gives a slightly bigger error. However, it is computationally faster. 293

Reconstruction accuracy 294

With kCSD procedure one can easily estimate optimal CSD consistent with the obtained 295

data. However, so far we have not discussed estimation of errors on the reconstruction. 296

Since the errors may be due to a number of factors — the procedure itself, measurement 297

noise, incorrect assumptions — one should consider several approaches to this challenge. 298

First, to understand the effects of the selected basis sources and setup, one may consider 299

the estimation operator K̃(K + λ)−1 and the space of solutions it spans. As we discussed 300

above, this space is given by the eigensources, eq. (5). The orthogonal complement of this 301

space in the original estimation space, F̃ , is not accessible to the kCSD method. The 302

study of eigensources facilitates understanding which CSD features can be reconstructed 303

and which are inaccessible. 304

Second, to consider the impact of the measurement noise on the reconstruction, for any 305

specific recording consider the following model-based procedure. Reconstruct CSD from 306

data with optimal parameters. Compute potential from estimated CSD. Add random 307

noise to each computed potential. The noise could be estimated from data, either as a 308

measure of fluctuations on a given electrode for a running signal, or from variability of 309

evoked potentials. Then, for any realization of noise, compute estimation of CSD. The 310

pool of estimated CSD gives estimation of the error at any given point where estimation 311

is made. 312

This computation can be much simplified by taking advantage of the linearity of the 313

resolvent, E = K̃(K+λI)−1. Then, the i-th column (Ei) represents contribution of unitary 314

change of i-th measured potential (the i-th element of the vector V) to the estimated CSD 315

(C∗). As the contribution is proportional to the change, the column can be considered 316

an Error Propagation Map for i-th measurement (Fig. 7.A). Note that these vectors (the 317
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Figure 5: An example of the L-curve method for estimating kCSD parameters. A) The
red points represent the potential used for CSD reconstruction. The black points show
the electrode positions. The ground truth is shown in panel C with the red dashed curve.
The measurement was simulated by adding small random noise to all the electrodes (32
values taken from a uniform distribution). The blue line shows a kernel interpolation of
the potential which is the first step of kCSD method. B) L-curve plot for a single R param-
eter. The apex of the L-curve is numerically computed from the oriented area of directed
triangles connecting the point on the L-curve with its two ends. C) Comparison of the
true CSD and kCSD reconstruction for parameters obtained with L-curve regularization.
D) Etimation of L-curve curvature with triangle method (see the Methods).

columns of resolvent, Ei) also happen to form another basis of the solution space, an 318

alternative to the basis of eigensources. 319

If εi is an error of i-th measurement, then its contribution to C∗ is εiEi. Moreover, if 320

13

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 19, 2019. ; https://doi.org/10.1101/708511doi: bioRxiv preprint 

https://doi.org/10.1101/708511
http://creativecommons.org/licenses/by/4.0/


Figure 6: Comparison of parameter selection using cross-validation and L-curve method
with the addition of noise A)The estimation error value is calculated as root mean square
error between normalized true CSD and estimated CSD (normalized to maximum value)
obtained either by using L-curve (blue) or by using cross-validation (green) B) The cor-
responding ideal λ parameter selected. For both these of methods λ increases with the
added noise. Blue and green ribbons indicate standard deviation of the RMS around mean
λ computed from 10 different noise realizations.

the measurement errors follow multivariate normal 321

ε ∼ N (0,ΣV ),

then 322

V ∼ N (Vexact,ΣV ),

and the estimated CSD also follows multivariate normal 323

C∗ ∼ N (EVexact,EΣVE
T ).

The diagonal of EΣVE
T represents a map of CSD measurement uncertainty (uncertainty 324

attributed to the noise in the measurement, Fig. 7.B1. 325

Third, one can study reconstruction accuracy for a meaningful family of test functions. 326

This could be the Fourier modes for rectangular regions or a collection of Gaussian test 327

functions, centered in different places, of single or multiple radii. For each of these test 328

1In the special case when εi are mutually independent and of equal variance σ2, the map of CSD
measurement uncertainty can be calculated as a diagonal of Var[C∗] = EETσ2.
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Figure 7: A) Error propagation maps for 3×3 regular grid of electrodes. Every panel rep-
resents the contribution of the potential measured at the corresponding electrode marked
with a black circle (◦) to the reconstructed CSD. Every other electrode is marked with
a black cross (×). B) Map of CSD measurement uncertainty for 3 × 3 regular grid of
electrodes. The CSD measurement uncertainty is represented by variance of the CSD
reconstruction caused by the uncertainty in measurement of the potentials. It is assumed
that measurement errors for electrodes are mutually independent and follow standard
normal distribution (εi ∼ N (0, 1)). Location of electrodes is marked with red crosses (×).

functions one would compute the potential, perform reconstruction, and compare the 329

results with the original at every point. Finally, one could average this information over 330

multiple different test sources computing a single Reliability Map, which we now introduce. 331

Reliability maps Assume the standard kCSD setup, that is a region R ⊂ Rn where we 332

want to estimate the sources, set of electrode positions, xi, and perhaps additional infor- 333

mation, such as morphology for skCSD Cserpan et al. [2017]. We now want to characterize 334

predictive power of the combination of our setup and our selected basis, b̃i. To do this we 335

select a family of test functions, Ci(x), for example Gaussian test functions, centered in 336

different places, of multiple radii, or products of Fourier modes, etc. Then, for each Ci we 337

compute V i = ACi by forward modeling, generating a surrogate dataset. Next, we apply 338

the standard kCSD reconstruction procedure obtaining estimation of the tested ground 339

truth, C̃i. We can then compute reconstruction error using point-wise modification of 340

Relative Difference Measure (RDM) proposed by [Meijs et al., 1988]: 341

err(x) =

∣∣∣∣∣C̃i(x)∥∥C̃i
∥∥ − Ci(x)∥∥Ci

∥∥
∣∣∣∣∣ ∗ ‖Ci‖

maxx∈R |Ci|
, (9)

where i = 1, 2, . . . enumerates different ground truth profiles. A simple measure of recon- 342

struction accuracy is then given by the average over these profiles: 343

Reliability(x) := 〈erri(x)〉i∈[1,M ] =

∑M
i=1 erri(x)

M
. (10)

Fig. 8 shows example reliability map for the case of 10x10 electrode distribution. The 344

class of functions used were the families of small and large sources (see Methods). We 345

used eight mirror symmetries of the grid in computation. 346
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Figure 8: Reliability map created according to formula (9) and (10) for 10x10 regular grid
of electrodes with noise-free symmetrized data. Black dots represent locations of contacts
used in the study. Values on the map can be interpreted as follows: the closer to 0, the
higher reconstruction accuracy might be achieved for a given measurement condition.

We can use reliability map as another source of information about the precision of 347

reconstruction, which is shown in Fig. 9. In A) we show some dipolar source which is used

Figure 9: Example use of reliability maps. A) Example dipolar source (ground truth)
which is used to compute the potential on a grid of electrodes shown in B). C) shows
reconstructed sources superimposed on reliability map. D) shows the difference between
the ground truth and the reconstruction.

348

to compute the potential on a grid of electrodes shown in B). Fig. 9.C) shows reconstructed 349

sources superimposed on reliability map. Panel D) shows the difference between the ground 350

truth and reconstruction. Note that plots such as shown in panel A) and D) are feasible 351

only for simulated or model data, where we know actual sources and use them to validate 352

the method. On the other hand, plots shown in panel B and C represent what can be 353

routinely computed for experimental data. 354

Another interesting question is the effect of broken or missing electrodes on the recon- 355

struction. Formally one can attempt kCSD reconstruction from a single signal but it is 356

naive to expect much insight this way. It is thus natural to ask what information can be 357

obtained from a given setup and what we lose when part of it becomes inaccessible. 358

Fig. 10 shows the effect of removing electrodes on the reconstruction. Fig. 10.A shows 359

average error of kCSD method across many random ground truth sources for a regular 360

grid of 10x10 electrodes. Fig. 10.B to D show the increase of average reconstruction error 361
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as we remove 5 (B), 10 (C) and 20 (D) contacts. To emphasize the errors we show the 362

difference between the reliability map for the broken grid minus the original one. Note 363

the different scales in plots B–D versus A. The consecutive rows show similar results when 364

only small sources were used (E–H), or only large sources were used (I–L). Random sources 365

in Fig. 10.A are both small and large sources (see Methods). This shows, among others, 366

as we explained, that the reliability maps depend on the test function space, however, we 367

feel they are more inuitive to understand than the individual eigensources spanning the 368

solution space.

Figure 10: Average error (eq. 9) of kCSD method across random small and large (A),
only small (E) and only large (I) sources for regular 10x10 electrodes grid and the same
grid with broken 5 (B, F, J), 10 (C, G, K) and 20 (D, H, L) contacts. Plots (B, C, D,
F, G, H, J, K, L) show difference between average error for regular grid and grid with
broken contacts. Estimation was made in noise free scenario, R parameter selected in
cross-validation. Black dots represent locations of contacts used in the study.
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kCSD-python package tutorial 369

In this section we first illustrate the use of kCSD package for CSD reconstruction in the 370

simplest case of a regular 2D square grid. This is a simplified version of a slice on a 371

microelectrode array [Ness et al., 2015], or a planar silicone probe within the brain, where 372

we assume constant conductivity in the whole space. In the following sections we show 373

how we validate our methods and what kind of diagnostics we find useful in the analysis 374

of experimental data. This tutorial is available as a jupyter notebook and can also be 375

accessed through a web-browser without installation. For more details, see ’Overview of 376

kCSD-python package’ in the Discussion. 377

Basic features 378

We start with the basic CSD estimation on a regular grid. First, we define a region of 379

interest. Then, using predefined test functions for the current sources, we place a ground 380

truth current source in this region. We define the distribution of electrodes. Assuming 381

ideal electrodes, we compute the potential generated by the selected current sources as 382

measured at the electrodes. Given these potentials and the electrode locations we estimate 383

the current source density using kCSD. As a final step, we perform cross-validation to avoid 384

overfitting. Since we know the ground truth used to generate the potentials that were used 385

in the kCSD estimation, we can compare the ground truth to the estimate and see the 386

reconstruction accuracy. 387

Defining region of interest 388

In [1]: %matplotlib inline
import numpy as np
csd_at = np.mgrid[0.:1.:100j,

0.:1.:100j]
csd_x, csd_y = csd_at

We define the region of interest between 0 and 1 in the xy plane with a resolution of 100 389

points in each dimension. We will assume the distance is given in mm, so we want to 390

perform a reconstruction on a square patch of 1mm2 size. 391

Setting up the ground truth The kCSD-python library provides functions to generate 392

test sources which can be imported from the csd_profile module. Here we use the 393

gauss_2d_small function to generate two-dimensional Gaussian sources which are small 394

in the scale set by the interelectrode distance. The other implemented option for two- 395

dimensional test sources is the gauss_2d_large function. To generate the exact same 396

sources in each run we must invoke this function using the same random seed which is 397

stored in the seed variable. For simplicity, these current sources are static and do not 398

change with time. We visualize the current sources as a heatmap. 399

In [2]: from kcsd import csd_profile as CSD
CSD_PROFILE = CSD.gauss_2d_small
true_csd = CSD_PROFILE(csd_at, seed=15)
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The code below displays this test source as the True CSD. For convenience we define this 400

as a function make_plot. The output for this code is shown in Fig. 11A. 401

In [3]: import matplotlib.pyplot as plt
import matplotlib.cm as cm

def make_plot(xx, yy, zz, title=’True CSD’, cmap=cm.bwr):
fig = plt.figure(figsize=(7, 7))
ax = plt.subplot(111)
ax.set_aspect(’equal’)
t_max = np.max(np.abs(zz))
levels = np.linspace(-1 * t_max, t_max, 32)
im = ax.contourf(xx, yy, zz, levels=levels, cmap=cmap)
ax.set_xlabel(’X (mm)’)
ax.set_ylabel(’Y (mm)’)
ax.set_title(title)
ticks = np.linspace(-1 * t_max, t_max, 3, endpoint=True)
plt.colorbar(im, orientation=’horizontal’, format=’%.2f’, ticks=ticks)
return ax

make_plot(csd_x, csd_y, true_csd, title=’True CSD’, cmap=cm.bwr)

Out[3]: <matplotlib.axes._subplots.AxesSubplot at 0x7f8d08dd74a8>

Place electrodes We now define the virtual electrodes within the region of interest. We 402

place them between 0.05 mm and 0.95 mm of the region of interest, with a resolution of 403

10 (as indicated by 10j in mgrid) in each dimensions, totalling to 100 electrodes. Notice 404

that the electrodes do not span the entire region of interest. Although in this example the 405

electrodes are distributed on a regular grid, this is not required by the kCSD method as 406

it can handle arbitrary distributions of electrodes. 407

In [4]: ele_x, ele_y = np.mgrid[0.05: 0.95: 10j,
0.05: 0.95: 10j]

ele_pos = np.vstack((ele_x.flatten(), ele_y.flatten())).T

Compute potential To obtain the potential, pots, at the given electrode positions 408

due to the current sources that were placed in the previous steps we use the function 409

forward_method. We assume the sources are localized within a slab of tissue of thickness 410

2h on top the MEA (See Łęski et al. [2011], Ness et al. [2015] and Methods). We also 411

assume infinite homogeneous medium of conductivity sigma equal to 1 S/m. Finally, we 412

assume that the electrodes are ideal, point-size and noise-free. 413

In [5]: from scipy.integrate import simps

def integrate_2d(csd_at, true_csd, ele_pos, h, csd_lims):
csd_x, csd_y = csd_at
xlin = csd_lims[0]
ylin = csd_lims[1]
Ny = ylin.shape[0]
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Figure 11: Basic features tutorial A) Shows the ground truth (True CSD), here, two-
dimensional small Gaussian current sources, for the CSD seed of 15. B) The interpolated
potentials generated by this current source are shown, the electrodes are displayed as black
dots. C) CSD estimated with kCSD using the potentials from the electrode positions,
without cross-validation. D) Same as C but cross-validation was used. E-H) Analogous
to A–D, except large Gaussian current sources for seed 6 were used.

m = np.sqrt((ele_pos[0] - csd_x)**2 + (ele_pos[1] - csd_y)**2)
m[m < 0.0000001] = 0.0000001
y = np.arcsinh(2 * h / m) * true_csd
integral_1D = np.zeros(Ny)
for i in range(Ny):

integral_1D[i] = simps(y[:, i], ylin)
integral = simps(integral_1D, xlin)
return integral

def forward_method(ele_pos, csd_at, true_csd):
pots = np.zeros(ele_pos.shape[0])
xlin = csd_at[0, :, 0]
ylin = csd_at[1, 0, :]
h = 50. # distance between the electrode plane and midslice
sigma = 1.0 # S/m
for ii in range(ele_pos.shape[0]):

pots[ii] = integrate_2d(csd_at, true_csd,
[ele_pos[ii][0], ele_pos[ii][1]], h,
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[xlin, ylin])
pots /= 2 * np.pi * sigma
return pots

pots = forward_method(ele_pos, csd_at, true_csd)

To visualize the potential, we interpolate the hundred values computed at the electrodes 414

positions with interpolate.griddata function. Note that the kCSD estimation uses only 415

the potential recorded at the electrode positions. To distinguish between the potentials 416

and CSD plots we use different colormaps. The electrodes are marked with dots in this 417

plot. The output from this step is shown in Fig. 11B. 418

In [6]: from scipy.interpolate import griddata

def grid(x, y, z):
x = x.flatten()
y = y.flatten()
z = z.flatten()
xi, yi = np.mgrid[min(x):max(x):np.complex(0, 100),

min(y):max(y):np.complex(0, 100)]
zi = griddata((x, y), z, (xi, yi), method=’linear’)
return xi, yi, zi

pot_X, pot_Y, pot_Z = grid(ele_pos[:, 0], ele_pos[:, 1], pots)
ax = make_plot(pot_X, pot_Y, pot_Z, title=’Interpolated potentials’,

cmap=cm.PRGn)
ax.scatter(ele_pos[:, 0], ele_pos[:, 1], 10, c=’k’)

Out[6]: <matplotlib.collections.PathCollection at 0x7f8d05851198>

kCSD method Here we illustrate the most basic estimation of CSD with the kcsd 419

library. Since our example is two dimensional the relevant method is KCSD2D. For conve- 420

nience we encapsulate the actual method call with parameters being set inside a function 421

do_kcsd. We first set h and sigma parameters of the forward model. Then we restrict the 422

potentials to the first time point of the recording. For typical experimental data the shape 423

of this matrix would be Nele ×Ntime, where Nele is the number of electrodes and Ntime is 424

the total number of recorded time points. Next, we call the KCSD2D class with the relevant 425

parameters. The only required parameters are the electrode positions, ele_pos, and the 426

potentials they see, pots. We can also provide here the parameters for the forward model, 427

h and sigma. We define a rectangular region of estimation by setting the values xmin, 428

xmax and ymin, ymax. The number of basis functions, n_src_init is set to 1000, basis 429

functions are of the type gauss, and the width of the Gaussian basis source R_init is set 430

to be 1. Finally, estimated CSD is stored as est_csd. 431

In [7]: from kcsd import KCSD2D

def do_kcsd(ele_pos, pots):
h = 50. # distance between the electrode plane and the midslice
sigma = 1.0 # S/m
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pots = pots.reshape((len(ele_pos), 1)) # first time point
k = KCSD2D(ele_pos, pots, h=h, sigma=sigma,

xmin=0.0, xmax=1.0,
ymin=0.0, ymax=1.0,
n_src_init=1000, src_type=’gauss’, R_init=1.)

return k

k = do_kcsd(ele_pos, pots)
est_csd = k.values(’CSD’)

Estimated current sources are shown in Fig. 11C. Compare this to the True CSD obtained 432

before, Fig. 11A. Observe that the estimation is not very faithful. This is caused by the 433

ground truth varying significantly in the scale of a single inter-electrode distance. In the 434

next step we will use cross-validation to select better reconstruction parameters. 435

In [8]: make_plot(k.estm_x, k.estm_y, est_csd[:, :, 0],
title=’Estimated CSD without CV’, cmap=cm.bwr) # First time point

Out[8]: <matplotlib.axes._subplots.AxesSubplot at 0x7f8cfd447dd8>

Cross validation Leave-one-out cross-validation is performed with a single line com- 436

mand. In this procedure we scan a range of R values which set the size of the Gaussian 437

basis functions and the regularization parameter λ values. At the end of this step we 438

obtain the optimal parameters that would correct for overfitting. The function outputs 439

the progress of the cross-validation step and displays the optimal candidates in the last 440

line. Alternatively, one could use the L-curve method to find these optimal parameters. 441

Fig. 11D shows the kCSD reconstruction obtained after cross-validation. We find that this 442

estimation of the current sources resembles the True CSD better. 443

In [9]: k.cross_validate(Rs=np.linspace(0.01, 0.15, 15))
est_csd = k.values(’CSD’)

No lambda given, using defaults
Cross validating R (all lambda) : 0.01
Cross validating R (all lambda) : 0.02
...
Cross validating R (all lambda) : 0.15
R, lambda : 0.11 1.46779926762e-06

In [10]: make_plot(k.estm_x, k.estm_y, est_csd[:, :, 0],
title=’Estimated CSD with CV’, cmap=cm.bwr) # First time point

Out[10]: <matplotlib.axes._subplots.AxesSubplot at 0x7f8cfd2707f0>

Noisy electrodes 444

Until now we assumed noise-free data, however, experimental data are always noisy. In 445

this section we investigate how noise affects the kCSD estimation. We first show how 446

to compute the reliability map which we introduced before, Eq. (10). Then we discuss 447

reproducible generation of noisy data with varying noise amplitude. Finally, we study the 448

error in the reconstruction as a function of changing noise level. 449
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Reconstruction quality measure To assess the estimation quality we measure the 450

point-wise difference between the true sources and the sources reconstructed with the kcsd. 451

We define a function point_errors which takes the true_csd and the estimated_csd 452

as the inputs, normalizes them individually, and computes the Frobenius norm of their 453

difference. 454

In [11]: def point_errors(true_csd, est_csd):
true_csd_r = true_csd.reshape(true_csd.size, 1)
est_csd_r = est_csd.reshape(est_csd.size, 1)
epsilon = np.linalg.norm(true_csd_r)/np.max(abs(true_csd_r))
err_r = abs(est_csd_r/(np.linalg.norm(est_csd_r)) -

true_csd_r/(np.linalg.norm(true_csd_r)))
err_r *= epsilon
err = err_r.reshape(true_csd.shape)
return err

error_ideal = point_errors(true_csd, est_csd)

We visualize this difference as before, except we use greyscale colormap to display the 455

intensity of the reconstruction error. For convenience we define the plotting in a function 456

called make_error_plot. The output from this step is shown in Fig. 12A. 457

In [12]: def make_error_plot(xx, yy, error, title=’Error CSD’):
fig = plt.figure(figsize=(7, 7))
ax = plt.subplot(111)
ax.set_aspect(’equal’)
t_max = np.max(np.abs(error))
levels = np.linspace(0, t_max, 32)
im = ax.contourf(xx, yy, error, levels=levels, cmap=cm.Greys)
ax.set_xlabel(’X (mm)’)
ax.set_ylabel(’Y (mm)’)
ax.set_title(title)
ticks = np.linspace(0, t_max, 3, endpoint=True)
plt.colorbar(im, orientation=’horizontal’, format=’%.2f’, ticks=ticks)
return ax

make_error_plot(k.estm_x, k.estm_y, error_ideal,
title=’Error CSD, no noise’)

Out[12]: <matplotlib.axes._subplots.AxesSubplot at 0x7f8cfd1bac50>

Noise definition To study resilience of the reconstruction against the noise in a con- 458

trolled way we seed the random number generator in the function add_noise. We consider 459

normally distributed noise with the mean and standard deviation set by reference to the 460

recorded potentials. 461

In [13]: def add_noise(pots, noise_level=0, noise_seed=23):
rstate = np.random.RandomState(noise_seed)
noise = noise_level*0.01*rstate.normal(np.mean(pots),
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Figure 12: Noisy electrodes. A) The error between the True CSD and the estimation
obtained with kCSD for a 2 dimensional small Gaussian current source, using the csd seed
of 15. The electrodes in this case are assumed to be noise-free. B, C, D) Same as A,
however, noise is added to the recorded potentials, whose magnitude is 5%, 10%, or 30%,
respectively. E-H) Analogous to A–D, except in this case large Gaussian sources with seed
6 were used.

np.std(pots),
size=(len(pots), 1))

return pots + noise.reshape(pots.shape)

pots_noise = add_noise(pots, noise_level=15, noise_seed=23)

Source reconstruction from noisy data With these tools we can study the effects 462

of noise on the reconstruction. We now generate noise for a given noise level between 0 463

and 100, add it to the simulated potential, and estimate CSD from these noisy potentials. 464

We can then use the error plots to compare the reconstruction with the True CSD. Notice 465

that the parameters giving best reconstruction obtained for noisy data in general will be 466

different from those obtained for clean potentials to compensate for noise. 467

In [14]: k_noise = do_kcsd(ele_pos, pots_noise)
k_noise.cross_validate(Rs=np.linspace(0.01, 0.15, 15))
estm_csd_noise = k_noise.values(’CSD’)
error_noise = point_errors(true_csd, estm_csd_noise)
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No lambda given, using defaults
Cross validating R (all lambda) : 0.01
Cross validating R (all lambda) : 0.02
...
Cross validating R (all lambda) : 0.15
R, lambda : 0.01 0.00110069417125

We can display this error with the make_error_plot plotting function which we defined 468

earlier. Changing the noise_level and the noise_seed affects the reconstruction, but the 469

error depends also on the sources, so changing the True CSD type to a gauss_2d_large 470

or changing csd_seed will lead to different results. This is illustrated in Fig. 12A–D for 471

small Gaussian sources, and Fig. 12E–H for large Gaussian sources, with varying noise 472

levels. The actual ground truth and reconstructions are shown in Fig. 11. 473

In [15]: make_error_plot(k_noise.estm_x, k_noise.estm_y, error_noise,
title=’Error CSD, with noise’)

Broken electrodes 474

It often happens that one needs to discard recordings from a subset of setup. This can 475

happen when some electrodes are used for stimulation and cannot be used for recording, 476

or for data managing purposes the bandwidth limitations may require a compromise be- 477

tween sampling rates and the number of electrodes being monitored simultaneously, or 478

electrode may break down or get too noisy and their signals must be discarded. In this 479

tutorial we discuss how to handle such cases and how to investigate the incurred errors 480

in reconstruction. We first show how we remove recordings from selected (broken) elec- 481

trodes from considered data. Then we calculate the estimation error for a given source for 482

data from a damaged setup. Finally, we compute the average error across many sources 483

from incomplete data. Note that kCSD reconstruction is designed to work with arbitrary 484

electrode setups. Removing specific electrodes does not change the situation significantly. 485

We focus here on broken electrodes as we see it is a common enough situation in practice 486

that it deserves a consideration. We want to show how one can gain intuition regarding 487

ways and places in which reconstruction may go wrong, when we slightly disturb a setup 488

we are familiar with. 489

Remove broken electrodes To test the effects of removed electrodes on reconstruction 490

from a given setup we simulate this with a function remove_electrodes that takes all the 491

electrode positions for this setup and the number of electrodes that are to be removed. 492

In this example we remove the electrodes randomly. Like we did previously, to facilitate 493

reproducibility we also pass a broken_seed variable, so that at each subsequent run the 494

same electrodes are discarded. By changing this seed we select a different set of electrodes 495

for removal. 496

In [16]: def remove_electrodes(ele_pos, num_broken, broken_seed=42):
rstate = np.random.RandomState(broken_seed)
rmv = rstate.choice(ele_pos.shape[0], num_broken, replace=False)
ele_pos = np.delete(ele_pos, rmv, 0)
return ele_pos

ele_pos_new = remove_electrodes(ele_pos, 5) # Discard 5 electrodes of 100
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Error in estimation with broken electrodes After removing the broken electrodes 497

we compute the estimation error to gauge the effect of electrode removal on reconstruction. 498

Here, a fuction calculate_error takes a csd_seed as an input, which selects a specific 499

ground truth source, and all the remaining electrode positions, ele_pos. The function 500

computes the True CSD for a gauss_2d_small type source, computes the potential at 501

these electrode locations, performes kcsd estimation from these data, and computes the 502

error in the estimation of the true csd. 503

In [17]: def calculate_error(csd_seed, ele_pos):
true_csd = CSD_PROFILE(csd_at, seed=csd_seed)
pots = forward_method(ele_pos, csd_at, true_csd)
k = do_kcsd(ele_pos, pots)
k.cross_validate(Rs=np.linspace(0.01, 0.15, 15))
err = point_errors(true_csd, k.values(’CSD’))
return k, err

k, err = calculate_error(csd_seed=15, ele_pos=ele_pos_new)

No lambda given, using defaults
Cross validating R (all lambda) : 0.01
Cross validating R (all lambda) : 0.02
...
Cross validating R (all lambda) : 0.15
R, lambda : 0.14 1.33352143216e-05

Below (Fig. 13) we plot these errors. We also display the electrodes which were used in 504

the kcsd estimation. 505

In [18]: ax = make_error_plot(k.estm_x, k.estm_y, err,
title=’Error CSD, 5 broken electrodes’)

ax.scatter(ele_pos_new[:, 0], ele_pos_new[:, 1], 10, c=’k’)

Average error for multiple sources As we can see, the estimation error depends on 506

the test current sources used. To better understand the effects of the setup we compute the 507

average error across multiple sources. As an example here we show this for two seeds. In 508

principle, any type and number of sources may be tested, as we showed before in analysis 509

of reliability maps. This step is computationally expensive, however, it would normally be 510

carried out only once for a given electrode design configuration. We believe this approach 511

offers useful diagnostics and builds intuition regarding the estimation power for the given 512

setup. 513

In [19]: seed_list = range(15, 17)
error_list = []
for csd_seed in seed_list:

k, err = calculate_error(csd_seed=csd_seed, ele_pos=ele_pos_new)
error_list.append(err)

avg_error = sum(error_list) / len(error_list)

No lambda given, using defaults
Cross validating R (all lambda) : 0.01
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...
Cross validating R (all lambda) : 0.15
R, lambda : 0.14 1.33352143216e-05
No lambda given, using defaults
Cross validating R (all lambda) : 0.01
...
Cross validating R (all lambda) : 0.15
R, lambda : 0.04 3.48070058843e-15

In Fig. 13A–D we show this for the case of 0, 5, 10 and 20 broken electrodes, when the 514

average error for 100 small Gaussian sources was considered. In Fig. 13E–H we show the 515

same for large Gaussian sources. 516

In [23]: ax = make_error_plot(k.estm_x, k.estm_y, avg_error,
title=’Average Error, 5 broken electrodes’)

ax.scatter(ele_pos_new[:, 0], ele_pos_new[:, 1], 10, c=’k’)

Figure 13: Broken electrodes. A) Shows the average error between the True CSD and the
CSD estimated with kcsd for 100 random small Gaussian current sources. B) The same
average error as in A, except in this case 5 electrodes were discarded in the estimation.
Likewise for C and D, where 10 and 20 electrodes out of the 100 were considered broken.
E-H) analogous to A–D, except in this case we show the averages for 100 large Gaussian
current sources.
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Discussion 517

In the present work we returned to the kernel Current Source Density method introduced 518

by [Potworowski et al., 2012] for two reasons. First, to introduce a new Python package for 519

kCSD estimation. In the Results section we provided a brief tutorial to the new package 520

and an overview of its main functions. All the figures in this paper showing CSD and LFP 521

were computed with this package and source files are provided. Second, to discuss some 522

mathematical properties of the kCSD method, especially in view of what information it is 523

possible to extract from sparse sampling of the potential and the limitations of the kCSD 524

procedure. In this section we discuss several issues related to CSD analysis in general and 525

kCSD in particular. 526

To LFP or to CSD? Extracellular potentials provide valuable insight about the func- 527

tioning of the brain. Thanks to recent advances in multielectrode design and growing 528

availability of sophisticated recording probes we can monitor the electric fields in the ner- 529

vous system at thousands of sites, often simultaneously. One may wonder if this increased 530

resolution makes CSD analysis unnecessary. In our view, as we have discussed many times, 531

it is not so. The long range nature of electric potential means that even a single source 532

contributes to every recording. Thus in principle we should always expect strong correla- 533

tion between neighboring sites. However, if the separation between the electrodes becomes 534

substantial, on the order of millimeters, the level of correlation between the recordings on 535

different electrodes will decrease. This is because each electrode effectively picks up signals 536

from a different composition of sources. Even if some are shared they are overshadowed by 537

others which may lead to small interelectrode correlations. Still, our experience shows that 538

significant correlations can be observed in the range of several millimeters [Łęski et al., 539

2007, Hunt et al., 2011] which is consistent with literature [Lindén et al., 2011, Łęski et al., 540

2013].Fundamentally, the LFP profile is different from CSD profile, and may significantly 541

distort or hide features of importance. For example, Fig. 5.C shows the source composed 542

of three gaussians, while direct inspection of LFP indicates a simple dipole. 543

In view of these facts we argue that it is always beneficial to attempt kCSD analysis. 544

The caveat is not to believe the reconstructed CSD blindly but always interpret it against 545

known anatomical and physiological knowledge supported by the tools such as provided in 546

the present work (eigensources, reliability maps, etc). In the worst case, for a very small 547

number of electrodes, while the reconstructed CSD will not be a good representation of the 548

true sources, nevertheless, the kCSD procedure will still have the sharpening or deblurring 549

properties and can be thought of as another decomposition method, such as PCA or 550

ICA, simply using physical properties of electric field propagation for signal separation 551

rather than orthogonalization or entropy maximization (or others for other decomposition 552

methods). To use kCSD in this way we would estimate CSD at the positions of the 553

electrodes only since this gives as many values as recorded, does not pretend to introduce 554

new knowledge, but may correct for noise and better localize independent signals. This 555

could be combined with other decomposition methods if desired which may give more 556

physiologically interpretable results [Łęski et al., 2010, Głąbska et al., 2014]. 557

Approaches to CSD estimation. Several procedures for CSD estimation were intro- 558

duced over the years and are still in use today. The first approach, which probably still 559

dominates today, was introduced by Walter Pitts in 1952 [Pitts, 1952] and gained popular- 560

ity after Nicholson and Freeman adopted it for laminar recordings [Nicholson and Freeman, 561
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1975]. This was a direct numerical approximation to computation of the second derivative 562

in the Poisson equation (1). Only minor improvements were introduced over the years to 563

stabilize estimation [Rappelsberger et al., 1981] or handle boundaries [Vaknin et al., 1988]. 564

The first major conceptual change was introduced by Pettersen et al. [2006] who intro- 565

duced model-based estimation of the sources. Their idea was to assume a parametric model 566

of sources, for example, spline interpolated CSD between electrode positions, and using 567

forward modeling to connect measured potentials to model parameters. This model-based 568

approach was generalized by Potworowski et al. [2012] who proposed a non-parametric 569

kernel Current Source Density method which is the focus of the present work. 570

Apart from these main approaches several variants were proposed. For example, one 571

may interpolate the potential first before applying traditional CSD approach, or the oppo- 572

site, interpolate traditionally estimated CSD. Although in some cases the obtained results 573

may look close to those obtained with kCSD, we do prefer kernel CSD approach due to 574

the underlying theory which facilitates computation of estimation errors but also yields 575

a unified framework for handling underlying assumptions, noisy data and irregular elec- 576

trode distributions. In our view approaches combining ad hoc interpolation with numerical 577

derivatives conceptually and computationally are less convincing to iCSD and kCSD and 578

we would not recommend them. 579

Models of tissue. Throughout this work we assumed purely ohmic character of the 580

sources. This has been debated in recent years [Bédard and Destexhe, 2011, Riera et al., 581

2012, Gratiy et al., 2017] and it is true that more complex biophysical models of the tissue, 582

taking into account frequency dependent conductivity or diffusion currents, would influ- 583

ence the practice of source reconstruction or its interpretation. However, the available data 584

indicate that in the range of frequencies of physiological interest these effects are small. 585

While one should keep eyes open on the new data as they become available and keep in 586

mind the different possible sources which may affect the reconstruction or interpretation, 587

we believe that the traditional view of ohmic tissue is an adequate basis for typical ex- 588

perimental situations and going beyond that would probably require additional dedicated 589

measurement for the experiment at hand which may not always be feasible. For example, 590

as we discussed in [Ness et al., 2015], the specimen variability of the cortical conductivity 591

in the rat is much bigger than the variability between different directions within a given 592

rat [Goto et al., 2010]. This means that unless we have conductivity measurements for 593

our specific rat we are probably making smaller error assuming isotropic conductivity than 594

taking different values from literature. We feel there is not enough data to justify inclusion 595

of more complex terms in the standard CSD analysis to be applied throughout the brains 596

and species. 597

In this manuscript we also assumed constant conductivity. We are convinced this 598

is a reasonable approximation for typical depth recordings. In general, however, this 599

approximation needs to be justified or alternative models of tissue need to be considered. 600

In principle, the kCSD method can be applied for a variety of tissue models as long as the 601

basis potentials can be computed from the basis sources while incorporating the geometric 602

and conductivity changes. 603

For example, Ness et al. [2015] considered a cortical slice placed on a microelectrode 604

array (MEA) in which they included the geometry of the slice and modeled saline-slice 605

interface with changing conductivity in the forward model. They found that Method 606

of Images (MoI) gives a good approximation to the full solution obtained using finite- 607

element model (FEM). This approximation was incorporated within the kCSD method as 608
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MoIkCSD variant and is available in the kCSD-python package. 609

It is possible to generalize kCSD to reconstruct sources from recordings of multiple 610

electrical modalities — LFP, ECoG, EEG. In this case one needs to include the head 611

geometry and the changing tissue properties within the forward model and in the kCSD 612

method. The anisotropic (white matter tracts) and inhomogeneous (varying between skull, 613

cerebro-spinal fluid, gray matter and white matter) electrical conductivity changes can 614

be approximated using data obtained with imaging techniques such as MRI, CT or DTI. 615

Such sophisticated head models require numerical solutions such as finite element modeling 616

(FEM) to compute the basis potentials from the basis sources. We are currently working on 617

this approach to make it generic for any animal head and to eventually utilize it as a source 618

localization method for human data, for example, to localize foci of pharmacologically 619

intractable epilepsy seizures in humans. We call this extension kernel Electrical Source 620

Imaging (kESI). 621

High density microelectrode recordings. One of the trends clearly observed in mod- 622

ern neurotechnology is the drive towards increasing the number of sensors and their den- 623

sity [Buzsáki, 2004, Berdondini et al., 2005, Frey et al., 2009, Hottowy et al., 2012, Jun 624

et al., 2017, Angotzi et al., 2019], for in vitro and in vivo studies. While it seems that 625

a better resolution for recording spiking activity of multiple cells is the main goal, also 626

more precise stimulation and field potentials monitoring are targeted [Hottowy et al., 2012, 627

Ferrea et al., 2012, Bakkum et al., 2013]. Such massive high density data from thousands 628

of electrodes should greatly increase insight into the studied systems and significantly im- 629

prove results of CSD reconstructions. There are two obstacles to fully benefit from kCSD 630

analysis of data from these new systems. First, kCSD involves inversion of the kernel 631

matrix which is quadratic in the number of electrodes. Combined with cross-validation 632

the necessary matrix operations quickly become overwhelming. This can be mitigated in a 633

number of ways, by subsampling the data, approximate inversions, and by switching from 634

cross-validation to L-curve method, but the challenge remains. This is the easy problem. 635

The difficult problem is physical. As we move away from a source its contribution to the 636

recorded potential goes down. In consequence, since the present version of kCSD uses all 637

recordings to estimate every source, when using remote signals to estimate local source, 638

we obtain mainly contributions from noise. In effect we get a very reliable estimation of 639

sources varying slowly in space but the sources changing fast in space are treated as noise 640

and silenced by the regularization. 641

To take full advantage of these data a new approach must be developed. We are 642

currently working on a multiscale approach which we call kCSDHD. The idea is to perform 643

reconstructions in small windows in multiple scales to optimally reconstruct multiscale 644

features of the source distribution and the challenge is to efficiently and correctly stitch 645

them together. This will be reported in the future. 646

Parameter selection. In the Results section we discussed our strategy for data-based 647

parameter selection using cross-validation or L-curve. Often, we need to tune not just λ 648

but also other parameters. For example, for Gaussian basis sources we may need to decide 649

on the width of the Gaussian used, R. To obtain the optimal set of parameters in that case 650

we compute the curvature of the L-curve or the cross-validation error for some ranges of 651

parameters considered and select parameters corresponding to the maximum curvature / 652

minimum error in the parameter space. This is a simplification of the proposition by Belge 653

et al. [2002] which in practice we found very effective. 654
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As an example, in Fig. 14 we show results of such a scan for the problem shown in

Figure 14: L-curve curvature (left) and CV-error (right) for the problem studied in Fig. 5.
Observe that in both cases there are ranges of promising candidate parameter pairs, R, λ,
which can give good reconstruction given the measured data. Red dots shows local extrema
for each value of R fixed. See text for discussion of this effect.

655

Fig. 5. The range of λ to be considered can be set by hand but by default we base it on the 656

eigenvalues of K. The smallest λ is set as the minimum eigenvalue of K which here was 657

around 1e-10. We set maximum λ at standard deviation of the eigenvalues, which here 658

was around 1e-3. The range of R values studied was from the minimum interelectrode 659

distance to half the maximum interelectrode distance. Note that for very inhomogeneous 660

distributions of electrodes this approach may be inadequate. 661

What we find is that apart from a global minimum in R, λ space there is a range of 662

R values fixing which we can find optimal λ(R) which leads to very close curvatures / 663

CV-errors / estimation results. What happens is that within some limits we may achieve 664

similar smoothing effects changing either λ or R. Bigger λ means more smoothing, but 665

bigger R means broader basis functions and effectively also smoother reconstruction space. 666

This is why the CV-error and curvature landscapes are relatively flat, or have these marked 667

valleys observed in Fig. 14. This effect supports robustness of the kCSD approach. 668

The sources of error in kCSD estimation and how to deal with them. Kernel 669

CSD method assumes a set of electrode positions and a corresponding set of recordings. 670

Additionally, single cell kCSD requires morphology of the cell which contributed to the 671

recordings and its position relative to the electrodes. Each of these may be subject to 672

errors. 673

We assume that the electrode positions are known precisely. This is a justified assump- 674

tion in case of multishaft silicon probes or integrated CMOS-MEA but not necessarily when 675

multiple laminar probes are placed independently within the brain or for many other sce- 676

narios. We do not provide dedicated tools to study the effects of misplaced electrodes on 677

the reconstructed CSD, however, this can be achieved easily with the provided package if 678
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needed. The location of the cell with respect to the electrodes is much more questionable, 679

especially in 3D. Nevertheless, the necessary data to perform skCSD are too scarce to start 680

addressing these issues. 681

On the other hand we do assume that the recordings are noisy and we use regulariza- 682

tion to counteract the effects of noise. We have no mechanism to differentiate between 683

electrodes with varying degrees of noise to compensate this differently. However, we ob- 684

served that for cases with very bad electrodes, similar results are obtained for analysis of 685

complete data and for analysis of partial data with bad electrodes removed from analysis. 686

The difference was in λ selected which was larger when broken electrodes were included 687

in the analysis. Depending on situation, if there is a big difference in the noise visible 688

in different channels, an optimal strategy may be to discard the noisy data and perform 689

reconstruction from the good channels only, which kCSD permits. 690

The main limitation of the method itself lies in the character of any inverse problem. 691

Here it means that there is an infinite number of possible CSD distributions each consistent 692

with the recorded potential. It is thus necessary to impose conditions which allow unique 693

reconstruction and this is what every variant of CSD method is about. In kCSD this 694

condition is minimization of regularized prediction error. In practical terms one may 695

think of the function space in which we are making the reconstruction. This space is span 696

by the eigensources we discussed before. We feel it is useful to consider both this space 697

as well as its complement, that is the set of CSD functions whose contribution to every 698

potential is zero. This can facilitate understanding of which features of the underlying 699

sources can be recovered and which are inaccessible to the given setup. While for the 700

most common regular setups, such as rectangular or hexagonal MEA grids or multishaft 701

probes, intuitions from Fourier analysis largely carry over, in less regular cases this quickly 702

becomes non-obvious. 703

To facilitate intuition building in the provided toolbox we include tools to compute 704

the eigensources for a given setup. We also proposed here reliability maps, heuristic tools 705

to build intuition regarding which parts of the reconstructed CSD can be trusted and 706

which seem doubtful. These reliability maps are built around specific test ground truth 707

distributions and some default parameters facilitating validation for any given setup are 708

provided, due to the open source nature of the provided toolbox, more complex analysis 709

is possible if the setup or experimental context require that. 710

Overview of kCSD-python package 711

This paper introduces the kCSD-python package — a new implementation of the kernel 712

Current Source Density method [Potworowski et al., 2012] and its two recent variants 713

([Ness et al., 2015] and [Cserpan et al., 2017]). It is open source and available under the 714

modified BSD License (3-Clause BSD) on GitHub (https://github.com/Neuroinflab/kCSD- 715

python). It has been designed using test driven development and utilizes the continuous 716

integration provided by Travis CI. It supports Python 2.7 and 3.7 versions and has a 717

bare minimal library requirements (numpy, scipy and matplotlib). It can be installed 718

using the Python package installer (pip) or using Anaconda python package environment 719

(conda). 720

To facilitate uptake of this resource, the package comes with two extensive tutorials 721

implemented in jupyter notebook. These tutorials allow users to test different configura- 722

tions of current sources and electrodes to see the method in action. These provisions make 723

the advantages and limitations of this method transparent to its users. Furthermore, these 724

tutorials can be accessed without any installation on a web browser via Binder [Project 725
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Jupyter et al., 2018]. It is extensively documented (https://kcsd-python.readthedocs.io) 726

and includes all the necessary scripts to generate the figures in this manuscript. 727

Methods 728

Review of Kernel Current Source Density estimation 729

Basis functions. Here we repeat the key steps in the construction of kCSD estimation 730

framework [Potworowski et al., 2012] to introduce the notation and establish the basic 731

notions. 732

We first construct a pair of related function spaces in which we perform the estimation, 733

space of sources F̃ and space of potentials F , 734

F̃ =
{
C(x) = α1b̃1(x) + ...+ αM b̃M(x) : b̃i : MC −→ R

}
, (11)

F = {V (x) = α1b1(x) + ...+ αMbM(x) : bi : MV −→ R} . (12)

We select the basis source functions b̃i so that they are convenient to work with, such 735

as step functions or gaussians, with support over regions which are most natural for the 736

problem at hand. For example, when reconstructing the distribution of current sources 737

along a single cell from a set of recordings with a planar microelectrode array, MC is the 738

neuronal morphology, which we take to be locally 1D set embedded in real 3D space, while 739

MV would be the 2D plane defined by the MEA. 740

The potential basis functions, bi, are defined as the potential generated by b̃i, so that 741

bi = Ab̃i, where A : F̃ 7→ F . Specific form of A operator depends on the problem at hand, 742

the dimensionality of space in which estimation is desired, as well as on physical models 743

of the medium, such as tissue conductivity, slice or brain geometry, etc. [Pettersen et al., 744

2006, Łęski et al., 2007, 2011, Ness et al., 2015, Cserpan et al., 2017]. In the simplest case 745

of infinite, homogeneous and isotropic tissue in 3D we have 746

bi(x, y, z) = A3b̃i(x, y, z)

=
1

4πσ

∫
dx′
∫
dy′
∫
dz′

b̃i(x
′, y′, z′)√

(x− x′)2 + (y − y′)2 + (z − z′)2
. (13)

In general, we can consider arbitrary conductivity and geometry of the tissue which may 747

force us to use approximate numerical methods, such as finite element schemes. For 748

example, Ness et al. [2015] show an application of kCSD for a slice of finite thickness and 749

specific geometry, as well as a method of images approximation for kCSD for typical slices 750

on multielectrode arrays (recordings far from the boundary, slice much thinner than its 751

planar extent). 752

In the past we considered CSD reconstruction for recordings from 1D, 2D and 3D setups 753

under assumption of infinite tissue of constant conductivity [Potworowski et al., 2012], we 754

used method of images to improve reconstruction for slices of finite thickness on MEA 755

under medium of different conductivity (ACSF, [Ness et al., 2015]) and we considered 756

reconstruction of sources along single cells when we have reasons to trust the recorded 757

signal to come from a specific cell of known morphology [Cserpan et al., 2017]. All these 758

variants are implemented in the present code. Fig. 1 shows these scenarios. 759

For laminar probes, Fig. 1.A), following [Pettersen et al., 2006], we assumed elementary 760

current sources contributing to the potential of the form b̃i(z)H(x, y). Here b̃i(z) is the one- 761

dimensional basis source (we usually assume a Gaussian of width R). Since information 762
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beyond the electrode axis is unavailable we assume rotational symmetry around z. We 763

usually assume H(x, y) a step function on a disk of radius h: 764

H(x, y) =

{
1 x2 + y2 ≤ h2,

0 otherwise.

This can be integrated yielding 1D potential basis functions of the form 765

bi(z) =
1

2σ

∫
dz′
(√

(z − z′)2 + h2 − |z − z′|
)
b̃i(z

′). (14)

For planar setups, Fig. 1.B) [Łęski et al., 2011], we usually assume Gaussian basis 766

sources b̃i(x, y), physically contributing to the potential with b̃i(x, y)H(z), where 767

H(z) =

{
1 −h ≤ z ≤ h

0 otherwise.

This can be integrated to give the potential in the electrode plane: 768

bi(x, y) =
1

2πσ

∫
dx′
∫
dy′ arsinh

(
2h√

(x− x′)2 + (y − y′)2

)
b̃i(x

′, y′). (15)

This approach give two parameters describing the CSD basis functions, the width of the 769

relevant Gaussian, R, and the thickness of contributing layer in 2D case or radius of circular 770

sheath in 1D case (h). Note that if we assume above H(x, y) and H(z) to be Gaussian 771

as well with the same width, in all three dimensionalities the individual contributions 772

are spherically symmetrical Gaussians. Therefore, the same 3D approach can be used. 773

Further, it can be integrated to yield potential in a closed form. Indeed, from eq. (13), 774

taking 775

b̃j(x̄) =
1

(
√

2πR)3
exp
−(x̄− x̄j)2

2R2

we can show that 776

bj(x̄) =
1

4πσ|x̄− x̄j|
erf

(
|x̄− x̄j|√

2R

)
where 777

erf(r) =
2√
π

∫ r

0

e−t
2

dt.

This is also implemented in the present code. 778

kCSD framework. We can think of the whole set of the potential basis functions bi(x) 779

as features representing x in a M -dimensional space through related embeddings 780

Φ(x) = [b1(x), . . . , bM(x)]T ,

Φ̃(x) = [b̃1(x), . . . , b̃M(x)]T .

Let us introduce a kernel function in F through 781

K(x,x′) = Φ(x)TΦ(x′) =
M∑
i=1

bi(x)bi(x
′). (16)
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This kernel turns F into a reproducing kernel Hilbert space (RKHS, Aronszajn [1950]) 782

whose properties we discussed in Potworowski et al. [2012]. In particular, we can show that 783

all potential profiles admissible by our construction can be written as linear combinations 784

of multiple kernels fixed with one leg at different points: 785

F =

{
l∑

i=1

βiK(xi,x) : l ∈ N,xi,x ∈MV , βi ∈ R, i = 1, ..., l

}
. (17)

We introduce the inner product of functions in F , f(x) =
∑l

i=1 fiK(yi,x), g(x) = 786∑m
j=1 gjK(zj,x), as 787

〈f, g〉F =
l∑

i=1

m∑
j=1

figjK(yi, zj). (18)

Using this inner product we define the norm in F by ‖f‖2F = 〈f, f〉F , and we induce a 788

norm in F̃ by 789

‖f̃‖2F̃ := ‖Af̃‖2F = ‖f‖2F =
M∑
i=1

f 2
i . (19)

Note that we have now two representations of every function in F , as a sum of kernels 790

or a sum of basis elements 791

V (x) =
l∑

j=1

βjK(xj,x) =
M∑
i=1

αibi(x), (20)

where 792

αi =
l∑

j=1

βjbi(xj), (21)

where xj are some positions in space. 793

One can see that in the two representations we have 794

‖V ‖2F =
l∑

i=1

l∑
j=1

βiβjK(xi,xj) =
M∑
i=1

α2
i . (22)

Source estimation with kCSD. Estimation of current sources with kCSD consists of 795

two steps. The first is kernel interpolation of the potential, the second is changing the 796

space from potential to sources. Conceptually, in the simplest case, this is equivalent to 797

applying Laplacian or double derivative to the potential field obtained in the whole space. 798

However, using our approach with double kernels, which take into account underlying 799

physics and geometry of the studied system, it is possible to apply these ideas to more 800

complex situations, e.g. slices of specific shape and conductivity profile Ness et al. [2015] 801

or fields generated by individual cells Cserpan et al. [2017]. 802

To estimate the potential in the whole space we minimize an error function 803

err[V ] =
N∑
i=1

(V (xi)− Vi)2 + λ‖V (x)‖2F , (23)
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where the first term indicates proximity of our model to actual measurement, while the 804

second constrains complexity of the model2. Using the representer theorem Kimeldorf and 805

Wahba [1971] we can show that the solution is of the form 806

V ∗(x) =
N∑
j=1

βjK(x,xj), (24)

where xj are the N electrode positions. Minimum of (23) is obtained for 807

β = (K + λI)−1V,

where 808

Ki,j ≡ K(xi,xj). (25)

Now that we have the potential given by combination of kernels, Eq. (24), we can 809

expand it in the original basis bi(x), Eq. (20). From that we obtain a consistent estimate 810

of the CSD by lifting the model from the potential to the CSD representation: 811

C∗(x) =
M∑
i=1

αib̃i(x) =
N∑
j=1

βj

M∑
i=1

bi(xj)b̃i(x) =
N∑
j=1

βjK̃(x,xj), (26)

where we introduce the cross-kernel function3
812

K̃(x,y) ≡
M∑
i=1

b̃i(x)bi(y).

With this definition we can write 813

C∗ = K̃(K + λI)−1V. (27)

Test sources used 814

In several tests and demonstrations in this paper we use two families of sources which 815

we call small and large sources. They were defined by [Potworowski et al., 2012] in their 816

appendix. They are implemented in functions gauss_2d_small and gauss_2d_large 817

available in file csd_profile.py. Two pdf files with images showing both source fam- 818

ilies (100 sources each) are available as supplementary materials (large_all.pdf and 819

small_all.pdf). These specific source families were selected to test reconstruction of 820

easy (large) and difficult (small) cases while supporting reproducibility of computations 821

and figures. Otherwise, there is nothing special about them. 822

Supplementary Materials 823

Supplementary Fig. 15 shows spectral properties of kCSD method for simple 2D case with 824

9 regularly distributed electrodes in the square [0, 1]×[0, 1]. This corresponds conceptually 825

to Fig. 2 for the setup from Fig. 7). 826

2Note a typo in eq. (4.2) in the original paper, which incorrectly states the error term as
∑

i β
2
i while

it should be ‖V ‖2F , as given here by Eq. 22.
3Note that this definition replaces the two variables with respect to the original definition from [Pot-

worowski et al., 2012] to avoid transposition in the matrix formulation below.
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Supplementary Fig. 16 shows error propagation maps for 1D regular grid of 12 elec- 827

trodes. This corresponds conceptually to Fig. 7 for the setup from Fig. 2). 828

Fig. 17 shows an example of 3D kCSD source reconstruction with the new code. Files 829

small_srcs_3D_all.pdf and large_srcs_3D_all.pdf show 100 examples each of 3D 830

kCSD reconstructions of small and large sources. Similarly, files small_srcs_all.pdf 831

and large_srcs_all.pdf show each 100 examples each of 2D kCSD reconstructions of 832

small and large sources. The files are available at http://bit.ly/kCSD-supplementary. 833

Fig. 18 shows an example of skCSD reconstruction which corresponds to Fig. 8 from Cser- 834

pan et al. [2017]. The simulation, reconstruction and visualization are all reimplemented 835

in Python. 836
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S1 Fig 1018

Eigensources in a 2D example. 1019

Figure 15: Demonstration of spectral properties of kCSD method for simple 2D case with
9 regularly distributed electrodes in the square [0, 1]× [0, 1] (from Fig. 7). A) Eigenvalues
obtained from the decomposition of K for different number of basis sources (M=4, 9, 16,
64, 256), B) Shows the first eigenvalue in the function of growing number of basis, C–K)
Shows 9 eigensources (products of K̃ and all the eigenvectors), which combine to produce
the inverse solution in kCSD method.
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S2 Fig 1020

Error propagation maps in a 1D example. 1021

Figure 16: Error propagation maps for 1D regular grid of 12 electrodes (same as in
Fig. 2). Every panel represents the CSD contribution (red line) of the potential measured
at the corresponding electrode, for which the potential is 1 (green line).
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S3 Fig 1022

An example of 3D source reconstruction. 1023

Figure 17: An example of 3D kCSD source reconstruction. Each column shows five
consecutive parallel cuts through a box of size 1. A) Ground truth for the CSD seed of
16. B) Estimated potential; black dots indicate electrodes where potential is colected for
further reconstruction. C) 3D kCSD reconstruction from the measured potentials, λ = 0.
D) 3D kCSD reconstruction with cross-validation.
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S4 Fig 1024

An example of skCSD source reconstruction. 1025

Figure 18: An example of skCSD reconstruction Cserpan et al. [2017] of somatic
current injection together with random synaptic input patterns for a retinal ganglion cell
model. A) Somatic membrane potential. B) Current density and its C) skCSD recon-
struction in the segment space. Projection of D) ground truth and E) skCSD recon-
struction on the neuron’s morphology at 5 s of the simulation. We simulated a multi-
compartmental model of a mouse retinal ganglion cell (morphology Kong et al. [2005]
obtained from NeuroMorpho.Org Ascoli [2006]) with Hodgkin-Huxley sodium, potassium,
and leakage channels in the soma (hh mechanism) in NEURON simulation environment.
For calculation of the measured extracellular potentials we used LFPy package Lindén
et al. [2013]. The model neuron was stimulated by an injection of oscillatory current to
the soma (with frequency of 24.5 1/ms and amplitude of 3.6 nA) together with random
synaptic inputs (weight of 0.04 µS) to the dendritic tree. The activity of the model neuron
was measured by a rectangular grid of 100 electrodes (10 × 10, -400 µm × 400µm). The
figure corresponds to Fig. 8 from [Cserpan et al., 2017].
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