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Abstract7

Evolutionary game theory has been developed primarily under the implicit assump-8

tion of an infinite population. We rigorously analyze a standard model for the evolution9

of cooperation (the multi-player snowdrift game) and show that in many situations in10

which there is a cooperative evolutionarily stable strategy (ESS) if the population is11

infinite, there is no cooperative ESS if the population is finite (no matter how large).12

In these cases, contributing nothing is a globally convergently stable finite-population13

ESS, implying that apparent evolution of cooperation in such games is an artifact of the14

infinite population approximation. The key issue is that if the size of groups that play15

the game exceeds a critical proportion of the population then the infinite-population16

approximation predicts the wrong evolutionary outcome (in addition, the critical pro-17

portion itself depends on the population size). Our results are robust to the underlying18

selection process.19
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1 Introduction20

Many evolutionary games assume—for mathematical convenience—that populations are in-21

finitely large (e.g., (1–7)). This assumption is sometimes justified on the grounds that22

“[p]opulations which stay numerically small quickly go extinct by chance fluctuations” (8,23

§2.1). Of course, all real populations are finite, and important differences in evolutionary24

dynamics between finite and infinite populations have been demonstrated (9–15). In spite25

of the technical challenges of working with finite populations, some exact analytical results26

have been obtained for two-player games with discrete strategy sets (9, 12, 14–16). How-27

ever, most existing finite-population results rely on approximation methods and simulations28

(11, 15, 17–21). Notably, almost all finite-population results involve discrete strategy sets,29

such as when individuals must choose between making a fixed positive contribution to a30

public good, or nothing at all (e.g., (9, 12, 14–16)). Yet, evolutionary games involving con-31

tinuous strategy sets (e.g., allocating time or effort to a communal task) are both widely32

applicable and extensively studied using infinite-population models (22). Moreover, to our33

knowledge, all existing results for finite populations depend on a choice of selection process34

(e.g., Moran or Wright-Fisher (23, 24)).35

Here, we present mathematically rigorous results that identify critical differences in the36

predictions of evolutionary games in finite and infinite populations. We focus on a standard37

model for exploring the evolution of cooperation—the continuous multi-player snowdrift38

game (3)—which has previously been studied in infinite populations using exact analysis39

and simulations (3, 7, 25–27) and in finite populations using approximations and simulations40

(11, 21, 28, 29).41

We show that evolutionary outcomes in finite and infinite populations can be dramatically42

different. In particular, for a class of snowdrift games for which a cooperative ESS exists43

in infinite populations (30), we find conditions under which there is no cooperative ESS44

when played in finite populations. This qualitative difference in predictions for finite and45

infinite populations can occur no matter how large the finite population is, and is universal46

in the sense that it is independent of the selection process (31). To our knowledge, there47

are no other examples in the literature of qualitatively different dynamics in finite and48

infinite populations that persist for arbitrarily large populations and are independent of the49

selection process; other studies that demonstrate such differences (e.g., (32)) are restricted50

to particular selection processes.51

The results we present are supported by formal mathematical theorems, which we state52

in Results and prove in Methods and Supporting Information.53

2 Terminology54

The snowdrift game is an abstraction of the situation in which a group of individuals55

encounters a snowdrift that blocks their path. We suppose that n players are drawn from a56

population of self-interested individuals (n is the group size), and that each player chooses57

how much to contribute to a public good—e.g., snow cleared off the path—from which all58

group members benefit. A focal individual contributing x incurs a cost C(x) that depends59

only on its own contribution, whereas its benefit B(τ) depends on the total good τ con-60

tributed by the group as a whole. The focal individual’s payoff—which is interpreted as a61
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change in fitness—is then62

W (x, τ) = B(τ)− C(x) . (1)63

If x is a continuous variable, as we assume here, the game is said to be continuous. Positive64

contributions represent cooperative strategies, and individuals who contribute nothing65

are said to defect. If the population is finite and containsN individuals, then for convenience66

we refer to the ratio G = N/n as the number of groups; however, we do not assume that67

the population is simultaneously subdivided into groups of n individuals (and in particular,68

G need not be an integer).69

To avoid mathematical complexities that are not relevant to the biological issues that70

concern us, we impose a few natural conditions on the cost and benefit functions and refer71

to the natural snowdrift game (NSG; see Methods §5.1). The NSG was introduced in72

(30), where it was shown that—when played in infinite populations—the game always has73

a cooperative ESS. Cost, benefit and fitness functions for an NSG example are shown in74

figure 1.75

Traditionally, an evolutionarily stable strategy (ESS) is one such that, when adopted76

by the entire population, a single mutant individual playing a different strategy cannot in-77

vade the population (33). Because the phenotypic changes caused by mutations are often78

small, local ESSs are of particular interest: a population of individuals playing a local ESS79

is resistant to the invasion of a single individual playing a slightly different strategy. A80

strategy is convergently stable if a population playing a different strategy evolves toward81

it (34); convergence can be either global or local.82

In infinite populations, the theory of adaptive dynamics (2, 8, 35) identifies a singular83

strategy as one at which the selection gradient, ∂xW
(
x, x+ (n− 1)X

)∣∣
x=X

, vanishes (36,84

Table 1); for an NSG, this reduces to85

B′(nX)− 1 = 0 . (2)86
87

A singular strategy for which the mutant fitness is concave near the singular strategy is a88

local ESS.∗ Local convergent stability of singular strategies is also defined via a condition on89

the local fitness difference [see Table 1 of (2)].90

The definition of singular strategies can be extended to finite populations: The defining91

feature of a singular strategy is that when it is played by a resident population, directional92

selection vanishes; for an NSG, this condition reduces to93

N − n
N − 1

B′ (nX)− 1 = 0 , (3)94

95

[see definition 4.3.5 of (37) and equation (28)]. The finite-population extension of the concept96

of evolutionary stability is more involved, because it must account for the fact that selection97

can favour fixation of a mutant strategy, even if selection opposes its invasion (9). Thus,98

the standard definition of an evolutionary stable strategy in a finite population (ESSN99

(9)) requires that selection oppose both invasion by, and fixation of, mutant strategies. In100

addition, the presence of one or more mutants in a finite population has a non-negligible101

effect on the fitness of residents (whereas finitely many mutants cannot affect the mean102

fitness of residents in an infinite population).103

∗We assume throughout this paper that the strategy space is one-dimensional.
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Figure 1: Example cost, benefit and fitness functions for a natural snowdrift game (NSG, defined
in Methods §5.1). Top panel: The cost function is simply C(x) = x. Middle panel: The benefit
function B(τ) is given in Methods equation (23); parameter values are L = 10, k = 1, m =
1.5, τturn = 15. Bottom panel: Fitness is shown for three situations involving groups of n =
2 individuals. (i) Residents cooperate and contribute the ESSN (light green, Xres = 9.63) (ii)
Residents cooperate but contribute less than the ESSN (medium green, Xres = 5). (iii) Residents
defect, i.e., contribute nothing (dark green, Xres = 0). Resident strategies are indicated by vertical
lines in the same colour as the associated fitness function. In the case of defecting residents, a focal
individual’s fitness function does not depend on the group size (n) and has a local maximum at the
maximizing total good (τmax = 19.3, thin grey vertical line).
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Fixation probabilities depend on the selection process (31), i.e., the stochastic process104

by which differences in fitnesses of individuals playing different strategies generate changes in105

the frequencies of strategies in the population over time. As a result, the strategies that are106

evolutionarily stable in finite populations depend on the selection process. Variants of the107

Moran and Wright-Fisher processes (23, 38, 39) are commonly assumed, but are idealizations108

that do not exactly describe realistic populations (e.g., (40)). We are spared this complication109

in this paper because, for the games we consider, every ESS is a universal ESS , that is, all110

ESSs are evolutionarily stable irrespective of the selection process. Consequently, we need111

not specify the population-genetic processes underlying selection, and we obtain general112

results about evolutionary stability. We use the term universal more generally to indicate113

that a property or statement holds for any selection process.114

3 Results115

ESSs in infinite populations. As we have previously shown (30), if an NSG (Meth-116

ods §5.1) is played in an infinite population then there are always two (and only two) ESSs:117

defect: contribute nothing (x = 0), or118

cooperate: make a positive contribution that is inversely proportional to the group size119

n (x = X∗∞ > 0).120

Both ESSs are global, and both are locally convergently stable [theorem 4.1 of (30)]. At121

the cooperative ESS, everyone contributes an equal share of the amount that maximizes122

individual fitness given that everyone contributes equally. In terms of this maximizing123

total good τmax (see Methods §5.1 and figure 1), the cooperative ESS is124

X∗∞ =
τmax

n
. (4)125

ESSs in finite populations. In a finite population, NSGs do not necessarily have a coop-126

erative ESSN, and when they do it is not necessarily possible to find an explicit formula for127

evolutionarily stable cooperation levels in terms of the parameters of an NSG (nevertheless,128

cooperative ESSNs are always easy to find numerically within the interval (6) identified in129

the following theorem).130

Theorem 1 (Existence and universality of stable cooperation levels in the natural snowdrift131

game). Consider a finite population (of N individuals) that is subject to selection resulting132

from groups of n individuals playing an NSG [defined in Methods §5.1]. A strategy X is133

singular if and only if134

B′(nX) = 1 +
n− 1

N − n , (5)135

and any such strategy X lies in the open interval136 (τ
min

n
,
τmax

n

)
. (6)137
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Necessary condition for ESSN: Any cooperative ESSN (X > 0) satisfies both equa-138

tion (5) (which implies X < X∗∞) and139

B′′(nX) ≤ 0 . (7)140

Sufficient condition for universal ESSN: If X satisfies equation (5) and141

B′′(nX) < 0 , (8)142

then X is a universal ESSN that is (universally) locally convergently stable.143

ESSNs in large populations: If B′′(τmax) 6= 0 and the group size n is either fixed, or144

satisfies n(N)
N

N→∞−−−→ 0, then for any sufficiently large population size N , there is a universal145

ESSN X = X∗N satisfying inequality (8). Moreover, X∗N → X∗∞ as N →∞.146

While the evolutionarily stable cooperation levels in finite and infinite populations are never147

exactly the same, theorem 1 shows that the difference is negligible in sufficiently large pop-148

ulations if as the population size N →∞, groups become a vanishingly small proportion of149

the population (cf. figure 2). However, if group size is not sufficiently small relative to the150

total population size then evolutionary predictions from finite population models differ qual-151

itatively from the predictions for infinite ones: it may actually be impossible for cooperation152

to evolve at all. This is formalized in the next theorem.153

Theorem 2 (ESSNs of the natural snowdrift game). Consider a finite population (of N154

individuals) that is subject to selection resulting from groups of n individuals playing an155

NSG [defined in Methods §5.1 with fitness W defined by equation (20)]. Let m denote the156

maximal marginal fitness, i.e.,157

m ≡ max
τ≥0

(∂W
∂x

)
= max

τ≥0

(
B′(τ)− 1

)
. (9)158

Then m > 0 and there is a critical maximal marginal fitness threshold,159

mc =
N − 1

N − n − 1 , (10)160

such that†

m > mc =⇒


Generically, at least one cooperative local ESSN (X =
X∗N > 0) exists that is universal and universally locally
convergently stable. In addition, defection is (univer-
sally) a locally convergently stable ESSN.

(11a)

m = mc =⇒
{

Generically, no cooperative ESSN exists. Defection is
(universally) globally evolutionarily stable and locally
convergently stable.

(11b)

m < mc =⇒
{

No cooperative ESSN exists. Defection is (universally)
globally evolutionarily and convergently stable.

(11c)

†In (11a), “generically” means excluding the unlikely possibility of singular strategies also being inflection
points of B(nx); in (11b), it excludes the possibility of the marginal benefit B′ (τ) being constant in a
neighbourhood of arg maxB′ (τ).
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This theorem predicts qualitatively different evolutionary outcomes, depending on the max-161

imal marginal fitness (m): Equation (10) gives the critical maximal marginal fitness above162

which a cooperative ESSN exists, and below which defection is the only ESSN. Theorem 2163

thus connects the maximal marginal fitness—a property of the fitness function that relates164

investments in the communal task to fitness benefits—with properties of the population of165

interacting agents: the population size (N), the number of players in a group (n), and the166

number of groups (G = N/n).167

Equation (10) expresses the critical maximal marginal fitness in terms of a given popula-168

tion size and given group size. To clarify the roles of group size and number of groups in the169

evolution of cooperation, it is useful to think instead of the maximal marginal fitness (m) as170

given (i.e., as a fixed property of the strategic interaction). Then, in the inequality m > mc171

[see (11a)], we can replace mc by the expression on the right hand size of Equation (10), and172

solve for a critical number of groups (Gc) or critical group size (nc).173

ESS conditions in relation to the number of groups (G). Condition (11a) can be174

expressed equivalently as175

G > Gc ≡
m+ 1

m+ (1/N)
= 1 +

1

m

(
1− 1

n

)
, (12)176

i.e., the number of groups G must be greater than Gc, the minimum number of groups that177

support cooperation in a population of size N (or in groups of n players). For any given178

number of players in a group (n), if we multiply inequality (12) by n we see that cooperation179

cannot evolve—i.e., no cooperative ESSN exists—unless the population size is greater than180

a critical population size‡,181

N > Nmin ≡ n+
n− 1

m
. (13)182

Figure 2 illustrates this result for the particular NSG specified by the benefit function shown183

in figure 1. Put another way, for a given group size n, if the population size N is too small184

then there is no cooperative ESSN, but if N is sufficiently large then there is a (universal)185

cooperative ESSN. For any given population size N , there are group sizes n and benefit186

functions B(τ) that yield Nmin > N , so a qualitative difference between the evolutionary187

outcomes in finite and infinite populations can occur either for small or large population188

sizes.189

ESS conditions in relation to group size (n). Rearranging condition (11a) again, we190

can write191

n < nc ≡
mN + 1

m+ 1
=

{
1

1−m(G−1)
if m < 1/(G− 1) ,

∞ otherwise.
(14)192

i.e., for cooperation to evolve, the group size n must be less than nc, the maximum size of193

groups that support cooperation in a population of size N (or a population divided into G194

‡Condition (c) in the definition of the NSG (§5.1) implies that m > 0, so Nmin is always well-defined in
(13).
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Figure 2: Evolutionarily stable strategies in the natural snowdrift game (Methods §5.1, with the
sigmoidal benefit function shown in figure 1). For several group sizes (n), the infinite population ESS
(X∗∞, equation (4)) is shown as a horizontal line, and the finite population ESSN (X∗N ) is shown with
dots as a function of population size N . The vertical line segments indicate the critical population
size threshold (Nmin, inequality (13)). A cooperative ESSN exists if and only if N > Nmin.
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groups§). Multiplying inequality (14) by G and rearranging, we obtain195

N < Nmax ≡
{

G
1−m(G−1)

if m < 1/(G− 1) ,

∞ otherwise,
(15)196

i.e., if the number of groups is fixed (and smaller than 1+1/m) then in order for a cooperative197

ESSN to exist, the population size must be less than the threshold in inequality (15), as198

illustrated in figure 3.199

Lack of ESSN for any population size. It is even possible that there is a cooperative200

ESS if the population is infinite, but no cooperative ESSN for any finite population size201

N . This is easy to verify for an NSG as follows. As noted above, an NSG always has an202

infinite-population cooperative ESS (4). An ESSN exists if and only if inequality (11a) [or203

inequality (14) or inequality (12)] is satisfied. Rearranging inequality (12) [or equation (10)],204

we can write, equivalently,205

m > mc ≡
1− (G/N)

G− 1
, (16)206

i.e., there is a cooperative ESSN if and only if the maximum marginal fitness m exceeds207

the threshold mc (exactly the same threshold that appears in equation (10), but expressed208

here in terms of G rather than n). Suppose now that the population is divided into a given209

number of groups, G ≥ 2. There must be at least two individuals in each group, so N ≥ 2G210

and hence G/N ≤ 1/2. Consequently, for any possible population size N , we have211

mc ≥
1

2(G− 1)
. (17)212

Therefore, if the benefit function is such that213

m <
1

2(G− 1)
(18)214

then no cooperative ESSN exists, no matter how large the population size N . Yet, when the215

game defined by the same cost and benefit functions is played in an infinite population, a216

cooperative ESS exists (regardless of the group size n). Given G, in the example of the NSG217

defined using equation (23), it is easy to satisfy inequality (18) since the only constraint on218

m is that it must be positive.219

Above, we have considered populations divided into a given number of groups. Alter-220

natively, we could consider groups of a given size (n), and ask whether it is possible for a221

public goods game to have a cooperative ESS if the population is infinite but no cooperative222

ESSN for any finite population size. As we show elsewhere, NSGs do not have this property,223

but there are snowdrift games that do have it (41).224

Confirmation with both selection and mutation. Lastly, in figure 4 we complement225

our rigorous analyses with individual-based simulations of finite populations in which indi-226

viduals undergo both selection and mutation (see appendix 5.2 for details). Simulations such227

§Note that nc is always finite for a given population size, but when the number of groups G is fixed and
larger than 1 + 1/m, then there is an ESSN for any number of players n.
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Figure 3: Evolutionarily stable strategies in the natural snowdrift game (Methods §5.1), with the
sigmoidal benefit function B(τ) given in Methods equation (23); parameter values are L = 1000,
k = 1, m = 0.05, τturn = 7. For several numbers of groups (G), the infinite population ESS (X∗∞,
equation (4)) is shown as a curve, and the finite population ESSN (X∗N ) is shown with dots as a
function of population size N . For each number of groups, the minimum population considered
is N = G + 1. The vertical line segments indicate the critical population size threshold (Nmax,
inequality (15)), below which a cooperative ESSN exists (in contrast to the situation in which the
group size n is fixed and an ESSN exists only above a critical population size; cf. figure 2).
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as these confirm that rigorous game-theoretical analyses—which are based on selection acting228

with only two types in the population—correctly predict evolutionary outcomes in realistic229

populations in which each individual can, in principle, be playing a different strategy.230

4 Discussion231

We have seen that the evolutionary dynamics of the class of natural snowdrift games (NSGs,232

defined in Methods §5.1) are different when played in finite vs. infinite populations. Since all233

real populations are finite, it is important to understand how inferences based on infinite-234

population analyses of the multi-player snowdrift game (e.g., (3, 30, 42)) might be affected.235

More generally, under what circumstances are infinite-population analyses of the evolution236

of cooperation likely to lead to invalid inferences about real populations?237

We have shown that there are games for which it is possible that cooperation can evolve in238

an infinite population but not in any finite population (no matter how large). This extreme239

possibility emphasizes that inferences drawn from infinite population analyses should always240

be regarded cautiously.241

The infinite-population approximation is likely to predict incorrect evolutionary outcomes242

if the number of individuals playing the game (the group size, n) is substantial relative to243

the total population size (N). Exactly what “substantial” means will depend on the game244

in question and the population size; we have specified this threshold precisely for NSGs in245

inequality (14). Evolutionary predictions derived from infinite population analyses can be246

incorrect for finite populations of any size (figure 2 and theorem 2). The origin of such247

erroneous inferences is that finite groups (no matter how large) are always negligible in248

size compared to an infinite underlying population, but not compared to a finite underlying249

population.250

Intuition for how different predictions arise in finite and infinite populations can be251

developed by considering a thought experiment in which the population (of size N) is si-252

multaneously divided into G groups that play the game. If a single mutant invades the253

resident population, the probability that a randomly chosen group contains the mutant is254

1/G. If the population size were then increased by adding more and more groups of the255

same size (G → ∞, keeping n fixed), then the effect of the mutant on the residents would256

be “infinitely diluted” (the mutant would have a negligible effect on residents’ fitnesses as257

N → ∞). If, instead, the population size were increased by adding individuals to the258

existing groups (without increasing the number of groups) then the probability that a ran-259

domly selected group contains the mutant would not change; however, in this version of the260

thought experiment, the limit N →∞ entails the size of each group also becoming infinitely261

large.262

Adaptive dynamics, which has been extensively used in the study of evolutionary dynam-263

ics [e.g., (3, 42, 43), as well as (44) and references therein], relies on an infinite-population264

approximation (8). Previous work has presented reasonable arguments to justify this ap-265

proximation (e.g., (35)) and reported general agreement between adaptive dynamics and266

stochastic simulations of finite populations (see (45) for a review). In addition, specific267

agreement has been noted (15) between the finite- and infinite-population evolutionary dy-268

namics of the multi-player snowdrift game with discrete strategies. These results appear to269

contrast those presented here, though (15) did observe that defectors prevail when the group270

11

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 19, 2019. ; https://doi.org/10.1101/707927doi: bioRxiv preprint 

https://doi.org/10.1101/707927
http://creativecommons.org/licenses/by-nc-nd/4.0/


Figure 4: Individual-based simulations (details in appendix 5.2) of populations playing an NSG
with cost and benefit functions as in figure 1 and group size n = 15, for population sizes N = 225
(red), 165 (black) and 120 (grey). The horizontal axis is the number of generations elapsed, and the
vertical axis is the strategy (contribution level) of each individual in the population. The strategies
present in the population in each generation are plotted on a vertical line intersecting the horizontal
axis at the corresponding point. For N = 120, defecting is the unique, globally convergently stable
ESSN; for N > 155, a cooperative ESSN is predicted at X∗ = 3.54 (marked with a horizontal
yellow line). The ESS for an infinite population playing this game is X∗∞ = 3.56. Note in these
simulations, the mutation rate is high enough that populations contain more than two strategies at
any given generation (in contrast to our rigorous mathematical analysis of dimorphic populations).
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size approaches the population size (even in situations in which cooperators and defectors271

can coexist in an infinite population). In other work, there has been a focus on situations in272

which the group size is much smaller than the population size, which reduces the chance of273

discovering discrepancies between finite and infinite population evolutionary predictions.274

Our analysis of the class of natural snowdrift games is rigorous (theorems 1 and 2), and275

our conditions for existence of a cooperative ESSN are universal (in the sense of being en-276

tirely independent of the selection process). Broadly, our results indicate that approximating277

large populations by infinite ones may generate misleading conclusions. In particular, infer-278

ences based on adaptive dynamics are not necessarily applicable to real (finite) populations.279

There is a general need to reevaluate the theoretical justification for approximating large280

populations by infinite ones, and to derive clear conditions for when such approximations281

are useful.282

5 Methods283

5.1 The natural snowdrift game (NSG)284

This biologically motivated version of the continuous snowdrift game (§2) was introduced285

in (30). We consider a population of individuals that are identical except (possibly) with286

respect to the strategy (contribution level) adopted when playing the snowdrift game. In287

particular, there is no age, spatial, social or other structure in the population. Evolution288

affects only the contribution levels of individuals, so at any time the population is completely289

characterized by the set of strategies present in the population and the numbers of individuals290

(or population proportions) playing each strategy. An individual’s fitness is determined291

entirely by its payoff from the continuous snowdrift game played in groups of n individuals.292

We say that this population plays a natural snowdrift game (NSG) if, in addition, the293

cost and benefit functions have the following properties (which are satisfied by the example294

shown in figure 1):295

(a) The cost to the focal individual of a contribution x is measured in units of its impact296

on this individual’s fitness, that is,297

C(x) = x . (19)298

Thus, the focal individual’s fitness is299

W (x, τ) = B
(
τ
)
− x , (20)300

where τ is the total contribution in the focal individual’s group.301

(b) The benefit B(τ) is a smooth function of the total contribution τ (more precisely, B′′(τ)302

exists for all τ ≥ 0).303

(c) There exist total contribution levels τ
min

and τmax (0 ≤ τ
min

< τmax) such that B(τ)− τ304

decreases for τ < τ
min

and τ > τmax and increases for τ
min

< τ < τmax . Consequently,305

given condition (a), if only one member of a group contributes anything then that306

individual’s fitness [take x = τ in equation (20)] is locally minimized (maximized) if307

its contribution is x = τ
min

(τmax).308
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(d) There is a net fitness cost to an an individual who contributes τmax when all other309

group members contribute nothing,310

B(τmax) < C(τmax) , (21)

but there is a net incremental fitness benefit for contributing τmax/n if other group311

members contribute that amount,312

B(τmax)−B
(

(n− 1)
τmax

n

)
> C

(τmax

n

)
. (22)313

314

In an infinite population, condition (c) implies that τmax/n and 0 are the only local315

ESSs (30). Adding condition (d) guarantees that they are both global ESSs [0 via and316

condition (21) and τmax/n via condition (22); see (30)].317

5.1.1 Benefit function used for numerical examples318

For the purpose of making example graphs and running simulations, we have used sigmoidal319

benefit functions. The biological motivation for this is that one would expect a nonlinear320

increase in the ease of passing the barrier as more snow is cleared, but eventually there can321

be no further benefit from additional work because all the snow has been cleared.322

Specifically, for any integer k > 0 and real numbers m > 0, L > 0 and τturn ≥ 0, consider323

the benefit function324

B(τ) = L erf2k

(
(m+ 1)

Γ
(
1/(2k)

)
2kL

(τ − τturn)

)
, τ ≥ 0 , (23)325

where erf`(x) is the generalized error function (46) of order `,326

erf` (x) =
`

Γ (1/`)

∫ x

0

e−t
`

dt , (24)327

and Γ(x) is the gamma function [equation (50a)]. We analyze this flexible class of sigmoidal328

benefit functions in appendix B, where we show that the parameters L and τturn are the329

horizontal asymptote and the inflection point, respectively, k controls the “width” of the330

sigmoid¶, and m + 1 is the maximal marginal benefit (so that m is the maximal marginal331

fitness that results from this functional form, justifying our notation).332

Figure 1 shows the benefit function (23) for particular values of k, m, L and τturn, together333

with the corresponding fitness function (20) that results if residents defect, or—in groups334

of two individuals—if residents play the infinite population ESS [equation (4)]. Based on335

equation (23), in appendix B we derive explicit formulae for τ
min

, τmax , and X∗∞ and X∗N (in336

terms of m, L, τturn and k).337

The class of sigmoids based on generalized error functions is much more flexible than338

the more common “logistic” sigmoid used by (30, 42) (which is based on shifting, and hor-339

izontally and vertically stretching, the hyperbolic tangent function, tanh(x)). Whereas the340

maximum slope, horizontal asymptote and position of the inflection point uniquely deter-341

mine the “width” of a logistic sigmoid, the generalized error function allows the width to be342

set independently via the parameter k [see equation (60)].343

¶More precisely, for a given maximal marginal fitness (m) and horizontal asymptote (L), k controls
the distance between the benefit function’s inflection point (τturn) and the total contribution at which the
marginal benefit is half of its maximum.
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5.2 Individual-based simulations344

The three individual-based simulations shown in figure 4 [for population sizes N = 120345

(grey), 165 (black) and 250 (red)] were run using algorithm 1, which we implemented in an346

R (47) package. In the following description, we denote the normal distribution truncated347

to the interval (l, u) by TruncNormal(µ, σ, l, u). It is a assumed that values of the following348

parameters have been set:349

• Parameters (k, m, L and τturn) of the benefit function (23).350

• Group size (n) and population size (N), such that G = N/n is an integer.351

• Number of repetitions of the NSG between reproductive events (nreps).352

• Maximum number of generations to evolve (nGen).353

• Upper bound for contribution level (xmax).354

• Mean (µx) and standard deviation (σx) of an underlying Normal(µx, σx) distribu-355

tion of strategies; the initial strategies (xi, i = 1, . . . , N) are to be sampled from356

TruncNormal(µx, σx, 0, xmax).357

• Mutation probability (pmut) per individual per generation.358

• Standard deviation (σ) of an underlying Normal(0, σ) distribution of the strategy359

changes caused by mutations, and upper and lower bounds on mutation sizes, (l, u);360

when an individual playing strategy x mutates, its new strategy is sampled from361

TruncNormal(x, σ,max {0, x− l} ,min {xmax, x+ u}), so that the mutation is within362

the interval [l, u] and the mutated strategy is in [0, xmax].363
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SUPPORTING INFORMATION513

A Proofs514

A.1 Analysis of the natural snowdrift game (NSG; §5.1) in a finite515

population516

Our main results are stated in theorems 1 and 2 (§3). Before developing the proofs in detail,517

it is useful to note that:518

• τ
min

> 0 (where τ
min

is defined in assumption (c) of the definition of the NSG, § 5.1).519

To see this, suppose that τ
min

= 0. Then assumption (c) implies that B(τmax) ≥ τmax ,520

contradicting assumption (d).521

• The benefit function B(τ) is twice-differentiable. This follows from assumption (b) in522

the definition of the NSG (§ 5.1).523

• B′(τ
min

) = B′(τmax) = 1, B′(τ) > 1 for τ
min

< τ < τmax , and B′(τ) < 1 otherwise [these524

properties of B(τ) follow from assumption (c)]. Consequently, m > 0 and B′′(τmax) ≤ 0.525

A.1.1 The mean fitness difference between mutants and residents526

Consider a population of N individuals, comprised of Mp mutants who play x and N −Mp527

residents who play X, and denote the proportion of mutants in the population by ε = Mp/N .528

Suppose that groups of n individuals are randomly sampled from this population without529

replacement, which implies that the number of mutants in each such group is hypergeomet-530

rically distributed with parameters N , Mp and n (37, 48); thus, the probability of k mutants531

occurring in a random sample of n individuals is532

Pr (Mg = k) =

(
N−Mp

n−k

)(
Mp

k

)(
N
n

) . (25)533

Suppose, moreover, that a focal individual is selected from the population by first sampling a534

group of n individuals, and then selecting one of the members of this group. Lastly, suppose535

for simplicity that individual fitnesses are given by the payoffs from a single round of the536

NSG played in such randomly selected groups#. We show elsewhere (37, eq. 4.61, p. 137)537

that the expected difference between the mutant and resident fitnesses is then538

δWε(x,X) = X − x+
n∑
k=0

(
N−Mp

n−k

)(
Mp

k

)(
N−1
n−1

) ( kN −Mpn

Mp(N −Mp)

)
B
(
kx+ (n− k)X

)
. (26)539

540

#Equation (26) remains valid if individual fitnesses are obtained by averaging payoffs from an arbitrary
(either fixed or random) number of rounds of the NSG, as long as groups are selected independently in each
round.
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Differentiating equation (26) yields541

∂xδWε(x,X) = −1 +
n∑
k=0

(
N−Mp

n−k

)(
Mp

k

)(
N−1
n−1

) kN −Mpn

Mp(N −Mp)
kB′
(
kx+ (n− k)X

)
542

= −1 +
n∑
k=0

(
N−Mp

n−k

)(
Mp−1
k−1

)(
N−1
n−1

) · kN −Mpn

N −Mp

B′
(
kx+ (n− k)X

)
(27)543

544

Differentiating with respect to x and setting x = X, we find (37, pp. 138–139)545

∂xδWε(x,X)|x=X = −1 +
N − n
N − 1

B′ (nX) , (28a)546

∂2
xδWε(x,X)|x=X =

N − n
N − 1

(
N − 2n

N − 2
+ 2

(n− 1)

N − 2
Nε

)
B′′
(
nX
)
. (28b)547

548

From these expressions we see that549

• ∂xδWε(x,X)|x=X is independent of ε, and550

• ∂2
xδWε(x,X)|x=X is linear in ε.551

We will exploit these facts below.552

A.1.2 Evolutionary and convergent stability of defection553

Lemma 3 (Evolutionary stability of defection). If the NSG (§ 5.1) is played in a finite554

population then not contributing (X = 0) is a locally convergently stable ESSN for any555

selection process. Moreover, if the population and group sizes are the same (N = n, so the556

entire population plays the game together) then defecting is the unique ESSN and is globally557

evolutionarily and convergently stable.558

Proof. B′(0) < 1 because B(τ)− τ decreases for 0 ≤ τ < τ
min

, so using equation (28a),559

∂xδWε(x, 0)|x=0 =
N − n
N − 1

B′
(
0
)
− 1 < 0 . (29)560

561

Because ∂xδWε(x,X)|x=X is continuous in X,562

∂xδWε(x,X)|x=X < 0 , (30)563
564

for X sufficiently small. From Theorem 4.3.9 in (37), it follows that X = 0 (defection)565

is convergently stable, and selection opposes invasion of mutants contributing a sufficiently566

small but positive amount, x > 0. To establish that X = 0 is evolutionarily stable, observe567

that equation (29) implies that δWε(x, 0) < 0 for sufficiently small x, so such mutants are568

selected against, regardless of their proportion (ε) in the population. Thus, corollary 5.4 of569

(31) implies that selection also opposes the fixation of such mutants.570

Now suppose groups constitute the entire population, i.e., N = n. Then, for any resident571

strategy X > 0 and any number of mutants Mp ∈ {1, 2, . . . , N − 1}, mutants contributing572

less than residents to the public good (0 ≤ x < X) have a higher payoff than residents; hence573

defection is the unique ESSN and is globally convergently stable. Defection is also globally574

evolutionarily stable because for any mutant strategy x > 0 and any number of mutants575

(Mp < N), residents obtain a higher payoff than mutants (because they receive the same576

benefit without paying a cost).577
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A.1.3 Proof of theorem 1578

Inserting equation (28a) into the definition of an evolutionarily singular strategy (definition579

4.3.5 of (37)) implies that cooperative singular strategies are characterized by equation (5).580

Any solution of equation (5) must satisfy nX∗N ∈ (τ
min
, τmax), because the right hand side of581

equation (5) is greater than 1 and, as noted above, if τ 6∈ (τ
min
, τmax) then B′(τ) ≤ 1.582

Necessary condition for ESSN: Suppose that X solves equation (5) but B′′(nX) >583

0. Plugging equation (5) into equation (28a) gives ∂xδWε(x,X)|x=X = 0. Rearranging584

equation (28b), we have585

∂2
xδWε(x,X)|x=X =

N − n
N − 1

(
1 + 2

(n− 1)

N − 2
(Nε− 1)

)
B′′
(
nX
)

(31)586

587

so ∂2
xδWε(x,X)|x=X is increasing in ε and positive for any ε ≥ 1/N (i.e., any mixed popu-588

lation). Thus, when mutants play x sufficiently close to X, ∂xδWε(x,X)|x=X is negative for589

x < X and positive for x > X; hence, since δWε(X,X) = 0, we must have δWε(x,X) > 0590

for any x that is near but not equal to X (and this is true for any number of mutants591

Mp = 1, . . . , N − 1). Corollary 5.4 of (31) then implies that selection favours the fixation of592

such mutants, so X is not an ESSN, regardless of the selection process. Thus, if X∗N > 0 is593

an ESSN then it cannot be that B′′(nX) > 0, i.e., inequality (7) holds.594

Sufficient condition for universal ESSN: The sufficient condition for local universal595

evolutionary and convergent stability follows immediately from theorem 4.D.1 of (37) and596

equation (28).597

ESSNs in large populations: Suppose that B′′(τmax) 6= 0 and consider the equation598

f(X, y) = B′(nX)− y = 0 . (32)599

Noting that f(τmax/n, 1) = 0 and that600

∂Xf(X, y)|(X,y)=(τmax/n,1) = B′′(τmax) 6= 0 , (33)601

from the implicit function theorem (49, Theorem 12.40), there exists a differentiable function602

X(y) defined in a neighbourhood of y = 1, such that X(1) = τmax/n and603

f
(
X(y), y

)
= yB′

(
nX(y)

)
− y = 0 . (34)604

Now suppose that the group size n is either fixed, or varies with population size but satisfies605

n(N)

N

N→∞−−−→ 0 .606

If we define yN := 1 + n−1
N−n then yN → 1, so for all sufficiently large population sizes N ,607

equation (34) can be solved implicitly for X∗N := X(yN). Such X∗N then solve equation (5),608

and X∗N
N→∞−−−→ X∗∞ because X(y) is continuous. Recalling that B′′(τmax) ≤ 0 and B′′(τmax) 6=609

0 by assumption, we have B′′(τmax) < 0, so for sufficiently large N , B′′(nX∗N) < 0. Theorem610

4.D.1 of (37) then implies that for sufficiently large N , X∗N is a universal local ESSN and is611

locally convergently stable.612
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A.1.4 Proof of theorem 2613

First, note that X = 0 is always a locally convergently stable ESSN (lemma 3). From614

Corollary 4.3.8 of (37), selection opposes invasion of a cooperative resident strategy X > 0615

by sufficiently similar mutant strategies only if X is singular, which (using equation (28a))616

occurs iff X satisfies617

B′(nX) = 1 +
n− 1

N − n . (35)618

Because B′(nX) > 1 only if
τmin

n
< X < τmax

n
, if a cooperative ESSN exists then it must lie619

in this interval.620

Case m > mc. Because B′(τmax) = 1 and B′(nX) is a continuous function of X on the621

interval [τ
min
/n, τmax/n], it follows from the intermediate value theorem (49) that equa-622

tion (5) has a solution in this interval. Let S be the set of singular strategies, i.e.,623

solutions of equation (5),624

S =

{
X

∣∣∣∣B′(nX) = 1 +
n− 1

N − n

}
. (36)625

Note that from theorem 1, S ⊂ (τ
min
/n, τmax/n). Denote the largest solution of equa-626

tion (35) by X∗N , i.e.,627

X∗N = maxS (37)628

(this maximum exists because the continuity of B′(nX) on a closed interval implies629

supS ∈ S).630

Generically‖, B′′
(
nX∗N

)
6= 0. We claim that B′′

(
nX∗N

)
< 0. To see this, suppose,631

in order to derive a contradiction, that B′′
(
nX∗N

)
> 0. Then, B′(nX) increases in a632

neighbourhood of X∗N , so there exists X̃ such that X∗N < X̃ < τmax/n and633

B′(nX̃) > B′(nX∗N) = 1 +
n− 1

N − n . (38)634

From the intermediate value theorem, there exists X ∈ S such that635

X > X̃ > X∗N = maxS , (39)636

a contradiction.637

Thus B′′
(
nX∗N

)
< 0 and C ′′(X) = 0, so theorems 4.D.1 and 4.3.9 of (37) imply that638

X∗N is a local ESSN and is locally convergently stable.639

Case m = mc. Suppose, in order to derive a contradiction, that X > 0 is a cooperative640

ESSN. From theorem 1, X must solve equation (35) so, from the definition of mc in641

equation (10),642

B′(nX) =
N − 1

N − n = mc + 1 . (40)643

‖We need to avoid the situation in which singular strategy X∗N is also an inflection point of B(nx). This
occurs when nX∗N is both a critical point and an inflection point of B (x) − (N − 1)x/ (N − n), which is
generically not the case.
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Suppose further that arg maxB′(τ) does not contain an interval (i.e., the marginal644

benefit B′ is not maximal for an interval of total contributions τ), which happens645

generically. Then, any total contribution in arg maxB′(τ) is a local maximum of B′(τ).646

It follows that if x < X and x is sufficiently close to X, then647

B′
(
x+ (n− 1)X

)
<
N − 1

N − n , (41)648

and therefore from equation (27),649

∂xδWε(x,X) = −1 +
n∑
k=0

(
N−Mp

n−k

)(
Mp−1
k−1

)(
N−1
n−1

) · kN −Mpn

N −Mp

B′
(
kx+ (n− k)X

)
650

< −1 +

(
n∑
k=0

(
N−Mp

n−k

)(
Mp−1
k−1

)(
N−1
n−1

) · kN −Mpn

N −Mp

)
N − 1

N − n , (42)651

652

which, together with the identity (37, equation (4.63), p. 138),653

n∑
k=0

(
N−K
n−k

)(
K−1
k−1

)(
N−1
n−1

) (kN −Kn
N −K

)
=
N − n
N − 1

, (43)654

implies that ∂xδWε(x,X) < 0. Hence, similar to an argument in the proof of theorem 1,655

since δWε(X,X) = 0, we must have δWε(x,X) > 0 for any x that is slightly less than656

but not equal to X (and this is true for any number of mutants Mp = 1, . . . , N − 1).657

Consequently, selection favours the invasion and replacement of X by any such x, so658

X is not evolutionarily stable.659

To see that defection is globally evolutionarily stable, substitute X = 0 in equation (27)660

to get661

∂xδWε(x, 0) = −1 +
n∑
k=0

(
N−Mp

n−k

)(
Mp−1
k−1

)(
N−1
n−1

) · kN −Mpn

N −Mp

B′
(
kx
)
. (44)662

663

Noting that for all x > 0, B′
(
kx
)
≤ mc + 1, we have664

∂xδWε(x, 0) ≤ −1 +

(
n∑
k=0

(
N−Mp

n−k

)(
Mp−1
k−1

)(
N−1
n−1

) · kN −Mpn

N −Mp

)
(mc + 1) = 0 , (45)665

666

where we have used equations (10) and (43) in the last equality. Thus, δWε(x, 0) is667

non-decreasing in x. Moreover, if x < τ
min
/n, then B′

(
kx
)
< 1 for all k = 0, . . . , n, so668

similarly, equations (43) and (44) imply that ∂xδWε(x, 0) < 0. Because δWε(0, 0) = 0,669

it follows that δWε(x, 0) < 0 for all x > 0 (regardless of the proportion of mutants670

in the population). Thus, from (31, corollary 5.4), when residents defect, selection671

opposes invasion and fixation of any mutants.672

Case m < mc. In this case, equation (5) has no solution, and no cooperative ESSN exists.673
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To see that defection (X = 0) is globally evolutionarily and convergently stable, observe674

first that m < mc implies675

B′(τ) < 1 +
n− 1

N − n =
N − 1

N − n , for all τ ≥ 0 . (46)676

Then, using equations (27), (46) and equation (4.63) on p.1̇38 of (37), it follows that677

∂xδWε(x,X) < −1 +

(
n∑
k=0

(
N−Mp

n−k

)(
Mp−1
k−1

)(
N−1
n−1

) · kN −Mpn

N −Mp

)
N − 1

N − n678

= −1 +
(N − n
N − 1

)(N − 1

N − n
)

= 0 ,679

680

so δWε(x,X) decreases with x ≥ 0 for any X ≥ 0. Thus, from (31, corollary 5.4),681

defection (X = 0) is a globally evolutionarily and convergently stable strategy.682

B Analysis of the benefit function used for numerical683

examples684

In this appendix we define the class of sigmoidal benefit functions that we have used to685

illustrate our results, and derive a variety of analytical formulae that we have found useful686

when working with these functions.687

B.1 Sigmoids using generalized error functions688

For any integer k > 0 and real m > 0, L > 0 and τturn ≥ 0, consider the benefit function689

B(τ) = L erf2k

(
(m+ 1)

Γ
(
1/(2k)

)
2kL

(τ − τturn)

)
, τ ≥ 0 , (47)690

where erf`(x) is the generalized error function of order `,691

erf` (x) =
`

Γ (1/`)

∫ x

0

e−t
`

dt . (48)692

This class of functions generalizes the the error function, erf, which is recovered for ` = 2693

or, equivalently, k = 1; see § B.2.694

Expressing generalized error functions using gamma functions: It is sometimes695

convenient to express erf` in terms of gamma functions. For x > 0, the transformation696

z = t` (t = z1/` and dt = z
1
`
−1dz/`) gives697

erf` (x) =
1

Γ (1/`)

∫ x`

0

z
1
`
−1e−zdz =

1

Γ (1/`)

(
Γ

(
1

`

)
− Γ

(
1

`
, x`
))

, (49)698

699
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where700

Γ (s) =

∫ ∞
0

ts−1e−tdt , (50a)701

Γ (s, x) =

∫ ∞
x

ts−1e−tdt , (50b)702

703

are the gamma∗∗, and upper incomplete gamma functions, respectively. Note that we are704

only interested in generalized error functions of even order (` = 2k), which are odd functions705

of x.706

Parameter meanings: Because equation (49) implies707

lim
x→∞

erf` (x) = 1 , (51)708

it follows that709

lim
x→∞

B (x) = L . (52)710

We show below that the inflection point of B (47) is τturn, and that the maximal marginal711

fitness given the benefit function B is m.712

From the integral definition of the generalized error function [equation (48)]713

d erf`(x)

dx
=

`

Γ (1/`)
e−x

`

, (53a)714

d2erf`(x)

dx2
= − `

Γ (1/`)
`x`−1e−x

`

, (53b)715

716

so717

B′(τ) =

√
πL

Γ
(
2k
)
Γ
(
1/(2k)

) (m+ 1)
Γ
(
1/(2k)

)
2kL

(2k)!√
π

exp

−[(m+ 1)
Γ
(
1/(2k)

)
2kL

(τ − τturn)

]2k
718

= (m+ 1) exp

−[(m+ 1)
Γ
(
1/(2k)

)
2kL

(τ − τturn)

]2k
 , (54a)719

B′′(τ) = −2k

[
(m+ 1)

Γ
(
1/(2k)

)
2kL

]2k

(τ − τturn)2k−1
720

× (m+ 1) exp

−[(m+ 1)
Γ
(
1/(2k)

)
2kL

(τ − τturn)

]2k
721

= −2k

[
(m+ 1)

Γ
(
1/(2k)

)
2kL

]2k

(τ − τturn)2k−1B′(τ) . (54b)722

723

∗∗For any positive integer k, Γ(k) = (k − 1)!.
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Consequently, τturn is the unique solution of B′′(τ) = 0, and is thus the only inflection point.724

B′ (τ) is always positive, and hence B (τ) is monotonically increasing. However, B′′ (τ) > 0725

for τ < τturn and B′′ (τ) < 0 for τ > τturn, and hence726

max
τ≥0

B′(τ) = B′(τturn) = m+ 1 , (55)727

so from equation (9), the maximal marginal fitness is728

max
τ≥0

(∂W
∂x

)
= max

τ≥0
B′(τ)− 1 = m. (56)729

The minimizing and maximizing total goods: Since B′(τ) is monotonic on each of730

the intervals, (−∞, τturn) and (τturn,∞) and B′(τ) is even, for any b ∈ B′(R≥0) = (0,m+ 1],731

we can find two real values of τ for which B′(τ) = b (although one of these values may732

be negative and therefore biologically irrelevant, because total contributions to the public733

good cannot be negative). To find these values of total contribution τ , we set B′(τ) = b in734

equation (54a), and get735

log
m+ 1

b
=

[
(m+ 1)

Γ
(
1/(2k)

)
2kL

(τ − τturn)

]2k

, (57)736

τ = τturn ±
2kL

(m+ 1) Γ
(
1/(2k)

) 2k

√
log

m+ 1

b
. (58)737

738

To find τmax and τ
min

, we substitute b = B′(τ) = 1 in equation (58) and, noting that B′′(τ)739

changes sign from positive to negative at τturn, we have740

τ
min

= τturn −
2kL

(m+ 1) Γ
(
1/(2k)

) 2k
√

log (m+ 1) , (59a)741

τmax = τturn +
2kL

(m+ 1) Γ
(
1/(2k)

) 2k
√

log (m+ 1) , (59b)742

743

and the distance between the location of the fitness minimum and maximum is744

∆τ = τmax − τmin
=

4kL

(m+ 1) Γ
(
1/(2k)

) 2k
√

log (m+ 1) . (60)745

The infinite-population cooperative ESS: Equation (4) then gives746

X∗∞ =
τmax

n
=

1

n

(
τturn +

2kL

(m+ 1) Γ
(
1/(2k)

) 2k
√

log (m+ 1)

)
. (61)747

Using B′(τmax) = 1 and equation (59b) in equation (54b), we have748

bcurve := B′′(τmax) = B′′ (nX∗∞) = −2k

[
(m+ 1) Γ

(
1/(2k)

)
2kL

]2k

(τmax − τturn)2k−1
749

= −2k

[
(m+ 1) Γ

(
1/(2k)

)
2kL

]2k(
2kL

(m+ 1) Γ
(
1/(2k)

))2k−1

(log (m+ 1))
2k−1
2k750

= −Γ

(
1

2k

)
m+ 1

L
(log (m+ 1))1− 1

2k . (62)751

752
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Using equation (47) and the fact that erf2k is odd,753

B(τmax)−B(τ
min

) = 2L erf2k

(
2k
√

log (m+ 1)
)
. (63)754

755

Singular and evolutionarily stable cooperative strategies in finite populations:756

In a finite population of size N , a singular strategy X∗N of the NSG is a solution of equa-757

tion (5), that is,758

B′(nX∗N) = 1 +
n− 1

N − n =
N − 1

N − n . (64)759

so equation (58) implies that at the ESS, the total contribution must be one of760

τ = τturn ±
2kL

(m+ 1) Γ
(
1/(2k)

) 2k

√
log

(
(m+ 1)

N − n
N − 1

)
. (65)761

762

There are therefore two singular strategies,763

X∗N± =
1

n

(
τturn ±

2kL

(m+ 1) Γ
(
1/(2k)

) 2k

√
log

(
(m+ 1)

N − n
N − 1

))
. (66)764

Similarly to τ
min

and τmax , B′′(nX∗N+) > 0 and B′′(nX∗N−) < 0, so from theorem 1, the unique765

ESSN is766

X∗N =
1

n

(
τturn +

2kL

(m+ 1) Γ
(
1/(2k)

) 2k

√
log

(
(m+ 1)

N − n
N − 1

))
. (67)767

The curvature of the benefit function at the ESSN: Similar to equation (62), we768

have769

B′′ (nX∗N) = −2k

[
(m+ 1) Γ

(
1/(2k)

)
2kL

]2k

(nX∗N − τturn)2k−1 N − 1

N − n (68)770

= −2k

[
(m+ 1) Γ

(
1/(2k)

)
2kL

]2k(
2kL

(m+ 1) Γ
(
1/(2k)

))2k−1

771

×
(

log

(
(m+ 1)

N − n
N − 1

)) 2k−1
2k

N − 1

N − n772

= − (m+ 1)
N − 1

N − n
Γ
(
1/(2k)

)
L

773

×
(

log

(
(m+ 1)

N − n
N − 1

)) 2k−1
2k

. (69)774

775

Condition for the fitness difference having a minimum when a single mutant776

defects and residents play the ESS: To guarantee that when a single mutant invades a777

population playing the ESS, the fitness difference has both a minimum and a maximum (as a778
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function of the mutant strategy), we need the mutant contribution that minimizes fitness to779

be positive (or equivalently, the contribution of the nonfocal individuals—all residents—must780

be less than the minimizing total good τ
min

),781

τ
min
− n− 1

n
τmax > 0 . (70)782

783

Using equations (59b) and (60), this is equivalent to τmax > n∆τ , or784

n <
τmax

∆τ
=

τturn

4kL

(m+1)Γ
(

1/(2k)
) 2k
√

log (m+ 1)
+

1

2
785

= τturn
m+ 1

4kL

Γ
(
1/(2k)

)
2k
√

log (m+ 1)
+

1

2
. (71)786

787

Rewriting this condition in terms of the horizontal asymptote L,788

L <
τturn (m+ 1)

2k (2n− 1)

Γ
(
1/(2k)

)
2k
√

log (m+ 1)
. (72)789

790

The payoff extrema difference: We now calculate the payoff extrema difference (PED),791

∆Ψ, that is, the difference between a mutant’s local minimum and maximum fitnesses when792

residents contribute the infinite-population ESS.793

∆Ψ =
[
B(τmax)− τmax

n

]
−
[
B(τ

min
)−

(
τ
min
− n− 1

n
τmax

)]
794

= B(τmax)−B(τ
min

)− (τmax − τmin
)795

= B(τmax)−B(τ
min

)−∆τ , (73)796
797

so using equations (60) and (63), we have798

∆Ψ = 2L erf2k

(
2k
√

log (m+ 1)
)
− 4kL

(m+ 1) Γ
(
1/(2k)

) 2k
√

log (m+ 1) . (74)799

800

The mean fitness slope: To choose parameter values that generate a fitness difference801

with a distinct peak at the ESS (when residents play the ESS), we would like to find the mean802

fitness slope between the extrema, i.e., the ratio of the PED, ∆Ψ, and the distance between803

the fitness extrema as a function of our parameters. To that end, using equation (70), the804

distance between the fitness extrema is805

τmax

n
−
(
τ
min
− n− 1

n
τmax

)
= τmax − τmin

= ∆τ . (75)806

807

Equations (60) and (74) then yield808

∆Ψ

∆τ
=

2L erf2k

(
2k
√

log (m+ 1)
)

4kL

(m+1)Γ
(

1/(2k)
) 2k
√

log (m+ 1)
− 1809

= (m+ 1)
Γ (1/ (2k))

2k

erf2k

(
2k
√

log (m+ 1)
)

2k
√

log (m+ 1)
− 1 , (76)810

811

30

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 19, 2019. ; https://doi.org/10.1101/707927doi: bioRxiv preprint 

https://doi.org/10.1101/707927
http://creativecommons.org/licenses/by-nc-nd/4.0/


which only depends on the maximal marginal fitness, m (and the order of the generalized812

error function, 2k). Note also that using equation (48) and L’Hôpital’s rule (49),813

lim
x→0

erf`(x)

x
= lim

x→0

`

Γ (1/`)
e−x

`

=
`

Γ (1/`)
, (77)814

so815

lim
m→0

∆Ψ

∆τ
= 0 . (78)816

In addition, equation (49) implies that for any x > 0,817

lim
k→∞

erf` (x) = 1 , (79)818

(because Γ(x)→∞ as x→ 0, and Γ
(

1
`
, x`
)

is bounded), and819

lim
x→0

xΓ(x) = lim
x→0

Γ(x+ 1) = 1 , (80)820

so we have821

lim
k→∞

∆Ψ

∆τ
= m. (81)822

The ratio of ESSs in infinite and finite populations: Using equations (60), (61) and823

(67),824

X∗∞
X∗N

=

τturn + 2kL

(m+1)Γ
(

1/(2k)
) 2k
√

log (m+ 1)

τturn + 2kL

(m+1)Γ
(

1/(2k)
) 2k

√
log
(
(m+ 1)N−n

N−1

)825

=
2τturn + ∆τ

2τturn + ∆τ
2k

√
log((m+1)N−n

N−1 )
log(m+1)

826

=
2τturn + ∆τ

2τturn + ∆τ
2k

√
1 +

log(N−n
N−1 )

log(m+1)

. (82)827

828

Rewriting the population size as N = nG,829

X∗∞
X∗N

=
2τturn + ∆τ

2τturn + ∆τ
2k

√
1 +

log

(
G−1

G− 1
n

)
log(m+1)

. (83)830

831

We see that the ratio X∗∞/X
∗
N → 1 as G→ ∞ with n fixed. However, X∗∞/X

∗
N approaches832

a (finite) value greater than 1 as n → ∞ with G fixed (assuming X∗N exist for all N ; see833

inequality (15)).834
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B.2 Sigmoid using standard error-function835

In the special case k = 1 (i.e., ` = 2), since Γ (1/2) =
√
π, equation (47) reduces to836

B(τ) = L erf

(
(m+ 1)

√
π

2L
(τ − τturn)

)
, τ ≥ 0 . (84)837

Then, setting k = 1 in equation (85) gives the maximizing and minimizing total goods,838

τ
min

= τturn −
2L

m+ 1

√
log (m+ 1)

π
, (85a)839

τmax = τturn +
2L

m+ 1

√
log (m+ 1)

π
, (85b)840

841

and the distance between the location of the fitness minimum and maximum is842

∆τ = τmax − τmin
= 4

L

m+ 1

√
log (m+ 1)

π
. (86)843

Equation (61) then gives844

X∗∞ =
1

n

(
τturn +

2L

m+ 1

√
log (m+ 1)

π

)
, (87)845

and equation (62) becomes846

bcurve = B′′(τmax) = −m+ 1

L

√
π log (m+ 1) . (88)847

848

From equation (63),849

B(τmax)−B(τ
min

) = 2L erf
(√

log (m+ 1)
)
. (89)850

851

Equation (67) gives the unique ESSN:852

X∗N =
1

n

τturn +
2L

m+ 1

√
log
(
(m+ 1)N−n

N−1

)
π

 , (90)853

and equation (68) becomes854

B′′ (nX∗N) = −m+ 1

L

√
π log

(
(m+ 1)

N − n
N − 1

)
. (91)855

Condition (71), which guarantees that when a single mutant invade a population playing856

the ESS, the fitness difference has both a minimum and a maximum (as a function of the857

mutant strategy), reduces to858

n < τmax/∆τ =
τturn

4

m+ 1

L

√
π

log (m+ 1)
+

1

2
, (92)859

860
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the PED, ∆Ψ (equation (74)) becomes861

∆Ψ = 2L erf
(√

log (m+ 1)
)
− 4

L

m+ 1

√
log (m+ 1)

π
, (93)862

863

and the mean fitness slope (equation (76)) between the extrema reduces to864

∆Ψ

∆τ
=
m+ 1

2

√
π

log (m+ 1)
erf
(√

log (m+ 1)
)
− 1 . (94)865

866
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