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Abstract 1 

The ability to vividly remember the past, and imagine the future, involves two key 2 

regions: the hippocampus and ventromedial prefrontal cortex (vmPFC). Despite 3 

evidence of a direct anatomical connection between these structures, it is unknown 4 

whether hippocampal-vmPFC structural connectivity supports both past and future-5 

oriented episodic thinking. We applied diffusion-weighted magnetic resonance 6 

imaging (dMRI) and a novel tractography protocol to reconstruct distinct fornix 7 

subdivisions previously detected in axonal tracer studies, namely pre-commissural 8 

(connecting anterior hippocampus to vmPFC) and post-commissural (linking posterior 9 

hippocampus and medial diencephalon) fornix, in a group of healthy humans who 10 

undertook a past-future autobiographical interview. Inter-individual differences in pre- 11 

but not post-commissural fornix microstructure significantly correlated with the 12 

episodic richness of both past and future autobiographical narratives. These results 13 

remained significant when controlling for both non-episodic narrative content and 14 

regional volumes. Reconstructing events from one’s past, and constructing possible 15 

future events, thus involves a distinct, structurally-instantiated hippocampal-vmPFC 16 

pathway. 17 

 18 

Keywords:  19 

Hippocampus, Episodic memory, Future thinking, Structural connectivity, vmPFC, 20 

White matter tractography 21 
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Significance Statement 23 

A novel anatomically-guided protocol that allows the pre-commissural and post-24 

commissural fornix fibers to be separately reconstructed in vivo (Christiansen et al., 25 

2016) was applied to  reconstruct the pre-commissural subdivision of the white matter 26 

fornix tract (anatomically linking the hippocampal formation to the vmPFC) and 27 

investigate its contribution to episodic memory and future simulation. We 28 

demonstrated that the amount of episodic details contained in past and future 29 

narratives, collected via an adapted autobiographical interview, was positively 30 

correlated with pre-, but not post-, commissural fornix microstructure. These findings 31 

highlight how inter-individual variation in the pre-commissural subdivision of the fornix 32 

underpins the construction of self-reflective, contextual events – for both the past and 33 

future.   34 

  35 
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Introduction 36 

A key adaptive feature of human cognition is the ability to re-experience our personal 37 

histories and imagine the future in vivid detail. According to the constructive episodic 38 

simulation hypothesis, the processes and neural machinery that allow us to remember 39 

past experiences also allow us to imagine future experiences (Addis, 2018; Schacter 40 

et al., 2012). Consistent with this view, remembering past and imagining future events 41 

activate a common set of brain regions, including the hippocampus and ventromedial 42 

prefrontal cortex (vmPFC) (Addis, Wong, & Schacter, 2007; Benoit & Schacter, 2015). 43 

Furthermore, the ability to retrieve episodically rich autobiographical memories and 44 

construct coherent future simulations is diminished following lesions to both the 45 

hippocampus and vmPFC (McCormick, Ciaramelli, De Luca, & Maguire, 2018; Race, 46 

Keane, & Verfaellie, 2011; but see Squire et al., 2010). Such findings have led to the 47 

suggestion that the hippocampus and vmPFC are critical nodes within a default 48 

(Raichle, 2015) or ‘core’ network that interact to support autobiographical memory and 49 

imagination (Addis, 2018; Schacter et al., 2012; Schacter, Benoit, & Szpunar, 2017) 50 

(see Behrens et al., 2018; McCormick et al., 2018; Murray, Wise, & Graham, 2017; 51 

Robin & Moscovitch, 2017, for related proposals).  52 

 53 

Converging evidence has shifted focus towards this neural network-level approach to 54 

support the way we reconstruct our personal past and construct possible future 55 

experiences (Bellana, Liu, Diamond, Grady, & Moscovitch, 2017; Schacter et al., 2012; 56 

Schacter et al., 2017). For instance, studies using functional magnetic resonance 57 

imaging (fMRI) have found increased functional connectivity between the 58 

hippocampus and vmPFC during both the retrieval of autobiographical memories 59 

(McCormick, St-Laurent, Ty, Valiante, & McAndrews, 2015) and the construction of 60 

episodic future events (Campbell, Madore, Benoit, Thakral, & Schacter, 2017), and 61 

resting state functional connectivity between these regions has been shown to predict 62 

the episodic quality of individual’s memories (Yang, Bossmann, Schiffhauer, Jordan, 63 

& Immordino-Yang, 2013).  64 

 65 

The communication of information across networked areas depends on the 66 

organization and integrity of the white matter connections between them (Jbabdi & 67 

Behrens, 2013). Invasive tract-tracing techniques have revealed a direct 68 

hippocampus-to-PFC pathway comprising the major efferent anatomical connection 69 
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from the hippocampus to the PFC (Jin & Maren, 2015). In rats, the hippocampus-PFC 70 

pathway projects, via the pre-commissural fornix, from ventral CA1 and ventral 71 

subiculum to medial PFC (Cenquizca & Swanson, 2007). Similarly in primates, the 72 

pre-commissural fornix provides the route for anterior CA1 and subiculum projections 73 

to medial and orbitofrontal PFC (Aggleton, Wright, Rosene, & Saunders, 2015). In 74 

humans, diffusion-weighted imaging (dWI), which can non-invasively delineate the 75 

path of major fiber pathways and evaluate their microstructure through indices such 76 

as fractional anisotropy (FA) (Jbabdi & Behrens, 2013), has provided initial evidence 77 

for hippocampus-PFC connections via the fornix (Croxson et al., 2005). Building on 78 

this work, Christiansen et al. (2016) recently developed an anatomically guided dWI 79 

protocol for the selective in vivo reconstruction of pre-commissural fornix fibers in 80 

humans, allowing investigation of the functions of the human hippocampus-PFC 81 

pathway for the first time.  82 

 83 

By application of this novel protocol, we investigated the role of the pre-commissural 84 

fornix in autobiographical past and future thinking using an individual differences 85 

design (Palombo, Sheldon, & Levine, 2018). Participants were asked to recall past 86 

experiences and generate future events using word cues according to a modified 87 

Galton-Crovitz cue-word paradigm (Crovitz & Schiffman, 1974). White matter 88 

microstructure was assessed in these individuals using high angular resolution 89 

diffusion-weighted imaging (HARDI) and constrained spherical deconvolution 90 

tractography (Dell'Acqua & Tournier, 2019). Given the directed hippocampus-PFC 91 

functional connections identified above in relation to (re)constructing events in 92 

episodic memory and episodic simulation (Campbell et al., 2017; McCormick et al., 93 

2015), we hypothesized that individual differences in the episodic richness of past and 94 

future thinking would be related to the microstructure (FA) of the hippocampus-PFC 95 

pathway underpinned by the pre-commissural fornix. As a comparison tract, we used 96 

the post-commissural fornix, which connects posterior hippocampus to mammillary 97 

bodies and anterior thalamic nuclei (Aggleton, 2012; Christiansen et al., 2016). Since 98 

higher values of FA are considered indicative of increased myelination and improved 99 

organization, cohesion, and compactness of white matter fiber tracts (Beaulieu, 2002), 100 

we predicted a positive association between pre-commissural FA and the episodic 101 

richness of past and future constructions.  102 

 103 
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Materials and methods 104 

Participants  105 

Participants were 27 healthy Cardiff University undergraduates (aged 18–22 years, 106 

mean age = 19, 25 females). They completed an adapted Galton-Crovitz cue word 107 

paradigm (Crovitz & Schiffman, 1974) in a separate session from diffusion-weighted 108 

magnetic resonance imaging (dMRI). All participants gave written informed consent 109 

before participating. Cardiff University School of Psychology Research Ethics 110 

Committee reviewed and approved this research.  111 

 112 

Experimental Design 113 

Past-future AI task procedure 114 

Participants completed an adapted version of the Autobiographical Interview (AI) 115 

(Addis, Wong, & Schacter, 2008) that probed both past and future events. In each of 116 

the two conditions (past, future), ten cue words (e.g. “holiday”, “birthday”) were 117 

provided to each participant, in response to which they were asked to recall or imagine 118 

a personal event and to generate as much detail as possible within a 1-min time-limit. 119 

Each event was required to be spatiotemporally specific, occurring over a timescale 120 

of minutes or hours, but no longer than a day. Future events were required to be 121 

plausible given the participant’s current plans and not previously experienced by the 122 

participant. Three alternate word lists were used; these were matched for semantic 123 

category (i.e., participants either heard the cue-word ‘holiday’, ‘journey’ or ‘vacation’). 124 

Prior to commencing, participants were instructed:  125 

“In this test I am going to give you a series of words and ask you to recall an episode 126 

from your past, or think of an episode that you might be involved in in the future, related 127 

to each of these words. The episode needs to be as specific and detailed as possible. 128 

I would like you to give me as much information as you can.” 129 

 130 

In cases where the participant either lacked specificity or detail in their description, the 131 

experimenter would provide a non-specific prompt for further information (e.g., “Is 132 

there anything else you can tell me about this event?”). All trials for one temporal 133 

direction (past or future) were completed before beginning the trials for the other 134 

condition. Order of presentation of temporal direction (past or future) was 135 

counterbalanced, as were the word lists (across the past and future conditions). 136 

Participants were tested individually, and responses were recorded using a portable 137 
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recording device (Zoom H1 Digital Field Recorder) for subsequent transcription and 138 

scoring. 139 

 140 

Scoring 141 

The standardized AI scoring procedure (Levine, Svoboda, Hay, Winocur, & 142 

Moscovitch, 2002) was used. Events (past and future) generated were segmented into 143 

distinct chunks of information in order to allow analysis of the levels of episodic or 144 

semantic information provided within each. These chunks were typically characterized 145 

by grammatical clauses that referenced a unique occurrence, observation or thought 146 

(Levine et al., 2002). Two broad categories were used to categorize details: ‘internal’ 147 

details (which described the central event) and ‘external’ details (decontextualized 148 

information, including semantic details and information concerning extended events 149 

that are not specific in time and place, and repetitions). In the case that a participant 150 

described more than one event, the event that was described in the most detail was 151 

coded as ‘internal’ and the other as ‘external’. The central event was required to refer 152 

to a specific time and place, thus it can be considered ‘episodic’ and will be referred 153 

to as such henceforth. Episodic details included not only time and place details, but 154 

also any other episodic information (sensory details, thoughts and emotions) that were 155 

part of the central event (Levine et al., 2002). Figure 1 contains examples of external 156 

and episodic details from past and future narratives. Total score was computed by 157 

summing over the 10 event narratives.  158 

 159 

Past narrative 160 

 161 

  External  External  External 
Vacation um I went to India (.) Saw some elephants (,) my sister got married out there (.) Um (.)  

 External   External  External   

We went to the beach (.) Went to Panaji the capital of Goa (.) Um saw the bridge where it was (,)  

 External      External 
in one of the Bourne Identity films or something (.) Erm that's not for me but the boys liked it (.)  

 External 
Um (.) Yeah went for lots of dinners (.) 
 

  Episodic       Episodic           Episodic 

Um (.) My sister when she got married (,) she looked really nice (,) and we were er on the beach (,)  

Episodic       Episodic                  Episodic 

and we had the waves coming in (.) And it was sunset (,) and we had like a white gazebo (.) And 

Episodic                    Episodic      
her dress was kind of floating around erm in the wind (,) and then we all jumped into the sea (,) 

Episodic 
and had our pictures taken (.) 
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Future narrative 162 

 163 

Figure 1. Examples of external and episodic details from past and future narratives. 164 

 165 

Consensus scoring was established based on the near perfect inter-rater reliability 166 

from two raters who scored the past events (intra-class correlation analysis, two-way 167 

random model: episodic r = 0.99; external r = 1.0). The values from one primary coder, 168 

who completed both the past and future scoring, were used in the analysis. All raters 169 

were blind to dMRI results.  170 

 171 

For each event the numbers of episodic and external details were tallied, and the totals 172 

were then summed across the 10 events in each condition (past, future) to create 173 

episodic and external AI scores for each condition for each participant. 174 

 175 

MRI data acquisition  176 

Imaging data were acquired using a General Electric Healthcare (GE) 3-T HDx MRI 177 

system with an 8-channel receive-only head coil, at Cardiff University’s Brain 178 

Research Imaging Centre (CUBRIC). A standard T1-weighted 3D FSPGR sequence 179 

(178 axial slices, 1mm isotropic resolution, TR/TE = 7.8/3.0s, FOV = 256 x 256 x 180 

176mm, 256 x 256 x 176 data matrix, 20° flip angle) provided high-resolution 181 

anatomical images. 182 

 183 

A diffusion weighted single-shot spin-echo Echo-Planar Imaging (EPI) pulse sequence 184 

was used to acquire whole-brain High Angular Resolution Diffusion Image (HARDI) 185 

data (60 contiguous slices acquired along an oblique-axial plane with 2.4mm thickness 186 

and no gap, TE = 87ms; voxel dimensions = 2.4 x 2.4 x 2.4mm3; FOV = 23 x 23 cm2; 187 

96 x 96 acquisition matrix). The acquisition was cardiac gated, with 30 isotropic 188 

External  External     External 
Erm in a couple of weeks (,) I'm going to go on holiday (,) um to Cyprus (.) My stepsister is getting  

Episodic      Episodic 
married out there (,) and so we're um going to have the wedding on um the beach front (.) um a lot  

Episodic             Episodic             
of her friends and family are going (.) um and I'm gonna be a bridesmaid (.) Um the weather’s  

External         External      

supposed to be really nice out there (.) Um and erm mmm yeah there's about 20 people going (.)  

                  External            Episodic 

It's gonna be quite a small wedding (.) Um and um yeah we're gonna have dinner at the hotel (.) 
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directions at b = 1200 s/mm2. In addition, three non-diffusion weighted images were 189 

acquired with b = 0 s/mm2. 190 

 191 

MRI preprocessing  192 

Diffusion MRI 193 

Diffusion MRI (dMRI) data were preprocessed using ExploreDTIv4.8.3 (Leemans & 194 

Jones, 2009). Distortions resulting from eddy currents and participant head motion 195 

were corrected. A particular issue for white matter pathways located near the 196 

ventricles (e.g., the fornix), is free water contamination from cerebrospinal fluid. This 197 

has been shown to significantly affect tract delineation (Concha, Gross, & Beaulieu, 198 

2005). Thus, to correct for voxel-wise partial volume artifacts arising from free water 199 

contamination, the two-compartment 'Free Water Elimination' (FWE) procedure 200 

(Pasternak, Sochen, Gur, Intrator, & Assaf, 2009) was applied – this improves 201 

Diffusion Tensor Imaging (DTI)-based tract reconstruction and tissue specificity 202 

(Pasternak et al., 2014). Following FWE, corrected diffusion tensor indices were 203 

computed. Fractional anisotropy (FA) – a DTI-based index proposed to reflect axonal 204 

organization (Pierpaoli, Jezzard, Basser, Barnett, & Di Chiro, 1996), reflects the extent 205 

to which diffusion within biological tissue is anisotropic (constrained along a single 206 

axis) (Beaulieu, 2002). FA values can range from 0 (fully isotropic) to 1 (fully 207 

anisotropic). The resulting free water corrected FA maps were inputs for the 208 

tractography analysis.  209 

 210 

Tractography  211 

Deterministic tractography was performed from all voxels based on constrained 212 

spherical deconvolution (CSD) (Dell'Acqua & Tournier, 2019; Jeurissen, Leemans, 213 

Jones, Tournier, & Sijbers, 2011). CSD allows for the representation of 214 

bending/crossing/kissing fibers in individual voxels, as multiple peaks in the fiber 215 

orientation density function (fODF) can be extracted within each voxel (Dell'Acqua & 216 

Tournier, 2019). The step size was 1mm, and the fODF amplitude threshold was 0.1. 217 

An angle threshold of 30° was used to prevent the reconstruction of anatomically 218 

implausible fibers.  219 

 220 

To generate 3D fiber reconstructions of each tract segment, waypoint region-of-221 

interest (ROI) gates were drawn manually onto whole-brain free water corrected FA 222 
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maps. The waypoint ROIs defined the tracts based on a ‘SEED’ point and Boolean 223 

logical operations: ‘NOT’ and ‘AND’. The ‘NOT’ and ‘AND’ gates corresponded to 224 

whether tracts passing through were omitted from analyses or retained, respectively. 225 

These gates were combined to reconstruct the tracts, based on anatomical plausibility. 226 

Initially, a multiple ROI approach was applied to reconstruct the fornix (see Hodgetts, 227 

Postans, et al., 2017; Metzler-Baddeley, Jones, Belaroussi, Aggleton, & O'Sullivan, 228 

2011).  229 

 230 

Fornix reconstruction 231 

A ‘SEED’ point ROI was placed on the coronal plane, encompassing the body of the 232 

fornix. An ‘AND’ ROI was placed on the axial plane, capturing the crus fornici in both 233 

hemispheres at the lower part of the splenium of the corpus callosum. ‘NOT’ ROIs 234 

were placed intersecting the corpus callosum on the axial plane, and anterior to the 235 

fornix pillars and posterior to the crus fornici on the coronal plane. Further ‘NOT’ way-236 

gates were placed after the initial reconstruction and ensuing visual inspection, to 237 

remove anatomically implausible fibers. Subsequently, the anterior body of the fornix 238 

was split into the pre- and post- commissural column segments (Figure 2). 239 

 240 

 241 
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Figure 2. Schematic illustration of the anatomical landmarks for fornix tract sub-242 

division, and the connecting areas of interest. vmPFC = Ventromedial Prefrontal 243 

Cortex; MB = Mammillary Bodies. 244 

 245 

Waypoint ROIs for the pre-post split (Figure 3) were based on the protocol described 246 

in Christiansen et al. (2016), and example tract reconstructions are depicted in Figure 247 

4. After tract reconstruction for each participant, mean FA values were calculated by 248 

averaging the values at each 1mm step along each segment. 249 

 250 

 251 

Figure 3. Waypoint region-of-interest (ROI) gates used for reconstructing the pre- and 252 

post- commissural fornix tract segments (Blue = SEED, Red = NOT, Green = AND). 253 

 254 

 255 

Figure 4. Example reconstructions for the pre- and post- commissural fornix segments 256 

(Blue = Pre, Yellow = Post). 257 

 258 

Pre- and post- commissural fornix reconstruction 259 

The fornix was split, isolating the anterior-body, by an ‘AND’ gate positioned at the 260 

point of the downward bend to the crus and fimbria of the fornix. In line with 261 
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Christiansen et al. (2016), fibers of the crus and fimbria of the fornix were excluded 262 

from the anterior-body and hence pre- and post- commissural fornix reconstructions. 263 

Partial volume effects due to the intermingling of the two fiber populations beyond the 264 

crus were, therefore, minimized (Saunders & Aggleton, 2007). In addition, this 265 

procedure avoided ‘jumping’ where tract voxels that pass close to, or across, 266 

neighboring tract voxels ‘jump’ onto them (Jones & Cercignani, 2010). This split was 267 

conducted using the tract segmentation tool “splitter” within ExploreDTIv4.8.3.  268 

 269 

The anterior-body of the fornix was then divided into the pre- and post-commissural 270 

segments. This delineation took advantage of the manner in which the fibers separate 271 

at the anterior columns of the fornix. At this level, the segments contain approximately 272 

the same number of fibers (Powell, Guillery, & Cowan, 1957). The pre-commissural 273 

fornix was delineated by positioning an additional ‘AND’ gate on the coronal plane at 274 

the anterior-commissure, as well as an additional ‘NOT’ gate meeting this ‘AND’ gate 275 

on the axial plane. For the post-commissural fornix reconstruction, the additional ‘NOT’ 276 

and ‘AND’ gates placed for reconstruction of the pre-commissural fornix were swopped 277 

(see Figure 3). Thus, for the pre-commissural fornix, tracts were included only if they 278 

extended anterior to the anterior commissure, and for the post-commissural fornix only 279 

tracts running posterior to the anterior commissure were retained (see Figure 4) 280 

(Christiansen et al., 2016).  281 

 282 

Grey matter volumetrics 283 

T1-weighted images were corrected for spatial intensity variations using FMRIB's 284 

Automated Segmentation Tool (FAST; Zhang, Brady, & Smith, 2001). Bilateral grey 285 

matter volumes (expressed as a proportion of estimated total intracranial volume) of 286 

the hippocampus were subsequently obtained using FMRIB's Integrated Registration 287 

& Segmentation Tool (FIRST; Patenaude, Smith, Kennedy, & Jenkinson, 2011). 288 

Volumes for the vmPFC ROI were derived using FreeSurfer 289 

(surfer.nmr.mgh.harvard.edu: Destrieux, Fischl, Dale, & Halgren, 2010), via summing 290 

volumes of the medial orbitofrontal cortex (mOFC) and rostral anterior cingulate cortex 291 

(rACC) parcels. One participant was removed from the grey matter analyses due to 292 

poor overall data quality on the T1 FSPGR.   293 

  294 
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Statistical Analysis 295 

Directional Pearson’s correlations were conducted between individual’s total scores of 296 

episodic and external details produced for the ten past and future narratives; and 297 

individual’s episodic past and future scores and their FA values for the pre- and post-298 

commissural fornix. Vovk-Sellke Maximum (VS-MPR) p –ratios were computed: based 299 

on the p -value, the maximum possible odds in favor of H₁ over H₀ equals 1/(-e p 300 

log(p)) for p ≤ .37 (Sellke, Bayarri, & Berger, 2001). Complementary non-parametric 301 

Spearman’s rho rank tests were also conducted for the key correlations. These are 302 

less sensitive to potential outliers and differences in range (Croux & Dehon, 2010). In 303 

addition, partial correlations were conducted for the key episodic-fornix microstructure 304 

correlations, to control for the contribution of the number of external details given and 305 

regional grey matter volume. All analyses were conducted in JASP (2018, version 306 

0.9.1.0).  307 

 308 

Results 309 

Correlations between tract microstructure and past-future AI scores 310 

Number of details produced (episodic and external) for the past and future narratives 311 

Consistent with previous studies (e.g. Addis, Sacchetti, Ally, Budson, & Schacter, 312 

2009; Addis et al., 2008; Race et al., 2011), the total number of episodic details 313 

(summed across the 10 cue words) an individual recalled for the past (mean = 121.3, 314 

median = 114, SD = 40.8, range = 64 - 247) correlated strongly with the number of 315 

episodic details imagined for the future (mean = 59.3, median = 54, SD = 23.4, range 316 

= 27 - 105) (Figure 5A. Pearson’s r = 0.69, p < 0.001, VS-MPR = 1027.33). 317 

Additionally, in line with previous studies, there were significantly more episodic details 318 

given for the past in comparison to the future (t(26) = 10.75, p < 0.001, dz = 2.07, 319 

paired t-test). The number of external details an individual recalled for the past (mean 320 

= 73.8, median = 71, SD = 39, range = 20 – 182) also correlated significantly with the 321 

number of external details imagined for the future (mean = 86.5, median = 75, SD = 322 

40.8, range = 23 - 198) (Figure 5B. Pearson’s r = 0.73, p < 0.001, VS-MPR = 3254.64). 323 

There were also significantly more external details given for the future in comparison 324 

to the past (t(26) = 2.23, p = 0.035, dz = 0.43, paired t-test). The number of episodic 325 

details an individual recalled for the past also correlated with the number of external 326 

details recalled for the past (Pearson’s r = 0.35, p = 0.035, VS-MPR = 3.15); this was 327 

not the case, however, for the future (Pearson’s r = -0.16, p = 0.783, VS-MPR = 1.00).  328 
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 329 

 330 

Figure 5 (A, B). Scatterplots depicting correlations between the number of details 331 

produced for the past versus the future AI narratives (A. Episodic, B. External) (N=27). 332 

Marginal density is displayed on the opposite axis. Grey shading equals the 95% CI. 333 

 334 

Episodic past details and pre-/post- commissural fornix FA 335 

We found a significant positive correlation between the number of past episodic details 336 

and pre-commissural fornix FA (Figure 6A. Pearson’s r = 0.49, p = 0.005, VS-MPR = 337 

14.49, Spearman’s rho = 0.464, p = 0.007, VS-MPR = 10.09). There was no significant 338 

correlation between post-commissural fornix FA and episodic past details (Figure 6B. 339 

Pearson’s r = -0.12; p = 0.725, VS-MPR = 1.00, Spearman’s rho = 0.02, p = 0.457, 340 

VS-MPR = 1.00). The correlation between episodic past details and pre-commissural 341 

fornix FA was significantly greater than between episodic past details and post-342 

commissural fornix FA (Steiger z (27) = 2.29, p = 0.011) (computed using R package 343 

cocor, Diedenhofen & Musch, 2015).  344 

 345 

.CC-BY-NC-ND 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 18, 2019. ; https://doi.org/10.1101/706150doi: bioRxiv preprint 

https://doi.org/10.1101/706150
http://creativecommons.org/licenses/by-nc-nd/4.0/


15 
 

 346 

Figure 6 (A-D). Scatterplots depicting the correlations of episodic past (A, B) and 347 

future (C, D) AI details with pre-/post- commissural fornix microstructure (fractional 348 

anisotropy, FA). Number of episodic past/future details (summed over 10 cue words) 349 

is plotted on the y-axis (N=27). Grey shading equals the 95% CI.  350 

 351 

The correlation between episodic past details and pre-commissural fornix FA was also 352 

significantly greater than between external past details and pre-commissural fornix FA 353 

(Steiger z (27) = 1.69, p = 0.046). Additionally, when controlling for the number of 354 

external details produced by the individual, the correlation between episodic past 355 

details and pre-commissural fornix FA remained significant (Pearson’s r = 0.48, p = 356 

0.007, Spearman’s rho = 0.47, p = 0.007). 357 

 358 

Episodic future details and pre-/post- commissural fornix FA 359 

The findings for the episodic future simulation details mirrored those for the episodic 360 

past retrieval. There was a significant positive correlation between the total number of 361 

future episodic details (summed over the 10 cue words) and pre-commissural fornix 362 
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FA (Figure 6C. Pearson’s r = 0.35, p = 0.035, VS-MPR = 3.11, Spearman’s rho = 0.33, 363 

p = 0.045, VS-MPR = 2.62), and, correspondingly, there was no significant correlation 364 

between episodic future details and post-commissural fornix FA (Figure 6D. Pearson’s 365 

r = -0.14, p = 0.752, VS-MPR = 1.00, Spearman’s rho = 0.09, p = 0.330, VS-MPR = 366 

1.01). The correlation between episodic future details and pre-commissural fornix FA 367 

was also significantly greater than between episodic future details and post-368 

commissural fornix FA (Steiger z (27) = 1.78, p = 0.038). The correlation between 369 

episodic future details and pre-commissural fornix FA was not significantly greater 370 

than between external future details and pre-commissural fornix FA, however, when 371 

controlling for the number of external details given the correlation between episodic 372 

future details and pre-commissural fornix FA remained significant (Pearson’s r = 0.38, 373 

p = 0.028, Spearman’s rho = 0.33, p = 0.0499). 374 

 375 

Influence of grey matter volume 376 

When hippocampal volume was controlled for, the correlation between past episodic 377 

details and pre-commissural fornix FA remained significant (partial correlation: 378 

Pearson’s r = 0.49, p = 0.006), and there was no significant association between post-379 

commissural fornix FA and episodic past details (partial correlation: Pearson’s r = -380 

0.09, p = 0.341). Likewise, the correlation between future episodic details and pre-381 

commissural fornix FA remained significant when controlling for hippocampal volume 382 

(partial correlation: Pearson’s r = 0.37, p = 0.035), and there was no significant 383 

association between post-commissural fornix FA and episodic future details (partial 384 

correlation: Pearson’s r = 0.04, p = 0.422).  385 

 386 

Similarly, when vmPFC volume was controlled for, the correlation between past 387 

episodic details and pre-commissural fornix FA remained significant (partial 388 

correlation: Pearson’s r = 0.54, p = 0.003), and there was no significant correlation 389 

between post-commissural fornix FA and past episodic details (partial correlation: 390 

Pearson’s r = -0.22, p = 0.143). For the future simulations, the correlation between the 391 

number of episodic details and pre-commissural fornix FA remained significant when 392 

controlling for vmPFC volume (partial correlation: Pearson’s r = 0.36, p = 0.037), and 393 

there was no significant correlation between post-commissural fornix FA and episodic 394 

future details (partial correlation: Pearson’s r = -0.19, p = 0.178).  395 

 396 
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Discussion 397 

The goal of this study was to investigate the role of the direct hippocampal-vmPFC 398 

pathway, formed by the pre-commissural fornix, in autobiographical past and future 399 

thinking. We applied a novel anatomically-guided protocol that allows the pre-400 

commissural and post-commissural fornix fibers to be separately reconstructed in vivo 401 

(Christiansen et al., 2016). To assess both past- and future-oriented thinking, we used 402 

an adapted autobiographical cueing paradigm (Addis et al., 2008; Crovitz & Schiffman, 403 

1974) alongside a validated coding scheme that specifically parses episodic from non-404 

episodic detail within individuals’ real-world descriptions (Hodgetts, Postans, et al., 405 

2017; Levine et al., 2002). Using this approach, we found that inter-individual variation 406 

in pre-commissural, but not post-commissural, fornix microstructure was significantly 407 

correlated with the amount of episodic detail produced during the construction of both 408 

past and future events. Critically, this effect was still seen when controlling non-409 

episodic content. These findings deepen our understanding of hippocampal-vmPFC 410 

interactions in human episodic autobiographical memory and future thinking and 411 

provide a ‘structural realization’ of hippocampal-vmPFC functional connectivity 412 

(Kosslyn & Van Kleeck, 1990), that is, a direct relationship between the microstructure 413 

of the fiber pathway connecting these distributed regions and individual differences in 414 

episodic past and future thinking.  415 

 416 

Our findings highlight the importance of direct hippocampus-PFC connectivity 417 

mediated by the pre-commissural fornix (Aggleton et al., 2015; Cenquizca & Swanson, 418 

2007; Jin & Maren, 2015), in episodic construction across past and future events. This 419 

builds upon previous fMRI studies that have shown that functional coupling between 420 

these distributed regions is increased during both the retrieval of autobiographical 421 

memories and the construction of future events (Campbell et al., 2017; McCormick et 422 

al., 2015). One recent study, which used structural equation modelling of fMRI data, 423 

found increased functional connectivity from anterior hippocampus to vmPFC when 424 

participants retrieved autobiographical memories in response to cue words 425 

(McCormick et al., 2015). Similarly, another investigation applied dynamic causal 426 

modeling to fMRI data and found that anterior hippocampus to vmPFC effective 427 

connectivity increased specifically during the initial construction of episodic future 428 

events (Campbell et al., 2017). From this, the authors proposed that ‘the hippocampus 429 
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initiates event construction in response to retrieval cues, which then drives activation 430 

in the vmPFC where episodic details may be further integrated’.  431 

 432 

This conceptualization is consistent with previous work in both humans and rodents 433 

that demonstrated that hippocampal activity precedes medial PFC activity during 434 

memory retrieval (McCormick et al., 2015; Place, Farovik, Brockmann, & Eichenbaum, 435 

2016), and with findings in rodents that ventral hippocampus mediates theta drive to 436 

vmPFC (O'Neill, Gordon, & Sigurdsson, 2013). Optogenetic studies in mice (e.g. 437 

Ciocchi, Passecker, Malagon-Vina, Mikus, & Klausberger, 2015) have also shown that 438 

during memory retrieval ventral hippocampal signals carrying contextual information 439 

are sent directly to medial PFC, facilitating coordinated activity between these areas. 440 

 441 

The precise contributions of the hippocampus and vmPFC to episodic memory and 442 

future thinking are hotly debated. As noted earlier, the pre-commissural fornix 443 

originates primarily from the ventral (rodent) or anterior (primate) hippocampus, 444 

particularly the subiculum and CA1 (Aggleton et al., 2015; Cenquizca & Swanson, 445 

2007), whereas the post-commissural fornix arises from the posterior hippocampus 446 

(Aggleton et al., 2015). Thus, our findings have implications for understanding 447 

functional specializations or gradients within the hippocampus itself, and how these 448 

are reflected in its extrinsic connectivity (Poppenk & Moscovitch, 2011; Strange, 449 

Witter, Lein, & Moser, 2014). According to scene construction theory, the anterior 450 

hippocampus, and particularly the subiculum, plays a central role in forming 451 

representations of spatially coherent scenes across memory, perception and 452 

imagination (Hodgetts, Voets, et al., 2017; Zeidman & Maguire, 2016), and these 453 

conjunctive scene representations have been proposed to provide a scaffold when 454 

constructing both past and future events (Barry & Maguire, 2019; Murray et al., 2017; 455 

Robin, 2018). In contrast, the constructive episodic simulation hypothesis contends 456 

that the construction of spatial contexts arises out of a general relational processing 457 

mechanism housed in anterior hippocampus, which is also responsible for the 458 

integration of other event details into the event representation (Addis, 2018; Schacter 459 

et al., 2012; Schacter et al., 2017).  460 

 461 

Other accounts emphasize graded representations along the hippocampal long-axis.  462 

In particular, both human neuroimaging and electrophysiological studies in rodents 463 
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suggest an anterior–posterior gradient in the ‘scale’ of spatial/event representations in 464 

the hippocampus (Brunec et al., 2018; Buzsáki & Moser, 2013; Komorowski et al., 465 

2013; Nielson, Smith, Sreekumar, Dennis, & Sederberg, 2015; Sheldon & Levine, 466 

2016), in which the anterior hippocampus forms coarser, ‘gist-like’ generalized 467 

representations of extended events or contexts and the posterior hippocampus 468 

represents finer-grained perceptual and spatiotemporal detail (Addis, 2018). As we 469 

used broad retrieval cues, featuring extended events like ‘holiday’, our experiment may 470 

have emphasized construction processes mediated by anterior hippocampus. More 471 

specific cues leading directly to detailed representations may entail earlier posterior 472 

hippocampal activity. This is an important area for future studies to explore.   473 

 474 

The vmPFC’s contribution to episodic construction, by contrast, has been linked to 475 

demands on schematic representations (Campbell et al., 2017; Robin & Moscovitch, 476 

2017), in particular the self-schema (Buckner & Carroll, 2007; D'Argembeau, 2013). 477 

For instance, Kurczek et al. (2015) (see also Verfaellie, Wank, Reid, Race, & Keane, 478 

2019) compared the number of references to ‘the self’ included in autobiographical 479 

event narratives from patients with bilateral hippocampal or medial PFC damage as 480 

well as healthy controls. Patients with medial PFC damage, despite being able to 481 

construct highly detailed episodic events, produced relatively few self-references, and 482 

they incorporated themselves in the narratives of their (re)constructions less frequently 483 

than the healthy participants. Patients with hippocampal damage showed the opposite 484 

pattern: they were impaired in their ability to construct highly detailed episodic events 485 

across time periods but not in their incorporation of the self. We have previously 486 

suggested (Murray et al., 2017) that hippocampal-vmPFC connectivity serves to 487 

(re)create complex conjunctive representations in which one’s self is oriented in a 488 

particular time, place, and overall situational context (Murray et al., 2017). These 489 

conjunctive representations may subsequently constrain further retrieval and 490 

construction by the hippocampus (Campbell et al., 2017; Graham, Barense, & Lee, 491 

2010; Place et al., 2016; Preston & Eichenbaum, 2013). Thus, recall/imagination of 492 

personally relevant episodes involves a prefrontal system which can work in 493 

conjunction with the MTL system to help individuals recombine episodic details to 494 

construct a personally relevant past/future event (but see Barry & Maguire, 2019; 495 

Ciaramelli, De Luca, Monk, McCormick, & Maguire, 2019; McCormick et al., 2018, 496 

scene construction theory, for a view which de-emphasizes self-processes).  497 
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 498 

Critically, the pre-commissural fornix does not carry reciprocal projections from the 499 

vmPFC to the hippocampus (which are indirect via the thalamic nucleus reuniens and 500 

entorhinal cortex) (Murray et al., 2017; Preston & Eichenbaum, 2013), but only carries 501 

connections to the vmPFC from the anterior hippocampus. While several models of 502 

episodic memory emphasize the importance of bi-directional interactions between 503 

hippocampus and vmPFC (e.g. Manns, Howard, & Eichenbaum, 2007; Preston & 504 

Eichenbaum, 2013; Robin & Moscovitch, 2017), with vmPFC playing a regulatory 505 

(Barry & Maguire, 2019; Manns et al., 2007; Preston & Eichenbaum, 2013; Robin & 506 

Moscovitch, 2017) or even initiating (Barry, Barnes, Clark, & Maguire, 2019; 507 

McCormick et al., 2018) role in episodic construction, our findings reveal that the direct 508 

inputs that the hippocampus provides to vmPFC are a critical source of individual 509 

differences in episodic memory and future thinking, and that the pre-commissural 510 

fornix is a key link in this broader hippocampal-vmPFC circuit. 511 

 512 

While these findings highlight a key role for anterior hippocampal connectivity with 513 

medial PFC in constructing self-relevant event representations, previous work in both 514 

humans and rodents have emphasized the importance of connections between the 515 

hippocampus and medial diencephalon (i.e., mammillary bodies and thalamus) in 516 

spatial and contextual memory (Aggleton & Brown, 1999), which is mediated by the 517 

post-commissural fornix (Christiansen et al., 2016). While the current findings 518 

seemingly challenge this account, it is important to note that the post-commissural 519 

fornix tract reconstructions principally involve the connections of the hippocampus with 520 

the hypothalamus, including the mammillary bodies, and largely exclude the 521 

projections to the anterior thalamic nuclei, as these turn towards posterior regions as 522 

the fornix columns descend (Christiansen et al., 2016; Poletti & Creswell, 1977). 523 

Indeed, previous work has demonstrated that thalamic degeneration can impair 524 

episodic autobiographical memory and future thinking (Irish, Hodges, & Piguet, 2013). 525 

Notably, however, Vann (2013) found that lesions to the descending post-commissural 526 

fornix columns in rats did not impact on spatial memory tests that are sensitive to 527 

mammillary body, mammillothalamic tract, anterior thalamic, and hippocampal lesions. 528 

The implication of this finding is that the hippocampal-mammillary connection may not 529 

be important for all classes of episodic memory, particularly those that place demand 530 

on constructive and self-referential processing.  531 
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 532 

Although FA is highly sensitive to the microstructure of fibers, it lacks biological 533 

specificity, and may reflect myelination, axon diameter and packing density, axon 534 

permeability and fiber geometry (Concha, Livy, Beaulieu, Wheatley, & Gross, 2010; 535 

Jones, Knösche, & Turner, 2013). Each of these may differently affect communication 536 

efficiency and synchronicity between distal brain regions (Jbabdi & Behrens, 2013) 537 

and be influenced by distinct genetic and environmental factors (Budisavljevic et al., 538 

2015). Future studies using novel approaches to estimate specific microstructural 539 

properties including axon density (Assaf, Johansen‐Berg, & Thiebaut de Schotten, 540 

2017) will provide further insight into the specific biological attributes underlying these 541 

brain-cognition associations. Further, while our sample size was comparable to related 542 

investigations (Hodgetts, Postans, et al., 2017; Palombo, Bacopulos, et al., 2018), and 543 

VS-MPRs showed that our findings provide a good level of diagnosticity, it will be 544 

important to replicate these effects in larger samples. 545 

 546 

In summary, we report a novel association between white matter microstructure of the 547 

pre-commissural fornix and episodic past and future thinking, thus elucidating a 548 

potential anatomical mechanism by which direct hippocampal and vmPFC connectivity 549 

support constructive episodic processing. These findings provide important support 550 

for the idea of a core-network supporting both the re-construction of past events and 551 

the construction of hypothetical events in the future, and that individual differences in 552 

structural connectivity may reflect how richly people can reconstruct the past and 553 

construct possible futures.  554 

  555 
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