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Abstract 30 

The neural mechanisms that support naturalistic learning via effective pedagogical 31 

approaches remain elusive. Here we use functional near-infrared spectroscopy to 32 

measure brain activity from instructor-learner dyads simultaneously during 33 

naturalistic conceptual learning. Results show enhanced brain-to-brain coupling 34 

within learner-instructor dyads when the instructor use a scaffolding instruction. Such 35 

coupling enhancement is correlated with learning outcomes, and appears to be driven 36 

by specific scaffolding behaviors on the part of the instructors (e.g., asking guiding 37 

questions or providing hints). Those effects are absent when the instructors produce 38 

explanatory behaviors. Crucially, instructional approaches (scaffolding vs. explanation) 39 

can be successfully decoded based on brain-to-brain coupling, but not when using the 40 

same machine-learning techniques in a single-brain approach. These findings suggest 41 

that brain-to-brain coupling as a pedagogically informative measure tracks the 42 

naturalistic instructional process during instructor-learner interaction throughout 43 

constructive engagement, but not information clarification. 44 

Keywords: instruction, social interactive learning, brain-to-brain coupling, fNIRS 45 

hyperscanning, scaffolding, explanation, decoding, constructivism  46 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 16, 2019. ; https://doi.org/10.1101/704239doi: bioRxiv preprint 

https://doi.org/10.1101/704239
http://creativecommons.org/licenses/by-nc-nd/4.0/


 3

1. Introduction  47 

Humans have evolved the ability to learn through social interaction with others (e.g., 48 

an instructor), an important skill that serves us throughout our lifespan (Verga and 49 

Kotz, 2019; Pan et al., 2018). Such interactive learning is thought to be facilitated by 50 

instructional tools (Driscoll and Driscoll, 2005), like demonstrating rules or providing 51 

examples for practice. Verbal instruction has been shown to play an enabling and 52 

modulatory role in learning at multiple levels, ranging from functional brain 53 

re-organization (e.g., Hartstra et al., 2011; Olsson and Phelps, 2007; Ruge and 54 

Wolfensteller, 2009) to learning performance optimization (e.g., Clark and Mayer, 55 

2016; Wolfson et al., 2014). However, despite the dynamic and interactive nature of 56 

instruction-based learning, neurobiological research investigating learning through 57 

instruction has been mostly limited to controlled laboratory studies – stripped from 58 

any real-time interaction between the learner and the instructor (e.g., Ruge and 59 

Wolfensteller, 2009) – and have often ignored the role of different instruction 60 

approaches (e.g., Holper et al., 2013). As a result, the brain mechanisms that support 61 

dynamic interactive learning remain understudied, and thus poorly understood. 62 

Recent methodological advances (Brockington et al., 2018; for a review, see 63 

Hasson et al., 2012) have allowed researchers to begin investigating the neural basis 64 

of naturalistic instruction-based learning (Bevilacqua et al., 2019; Dikker et al., 2017; 65 

Liu et al., 2019; Pan et al., 2018). These studies have suggested that the interaction 66 

between instructor and learner is reflected in the extent to which brain activity 67 

becomes ‘coupled’ between them (Bevilacqua et al., 2019; Holper et al., 2013; Pan et 68 

al., 2018; Zheng et al., 2018). For example, brain-to-brain coupling has been reported 69 

to reliably predict the success of social interactive learning (Pan et al., 2018). 70 

However, while some studies have shown such a relationship between brain-to-brain 71 

coupling and learning outcomes (e.g., Holper et al., 2013; Liu et al., 2019; Pan et al., 72 

2018; Zheng et al., 2018), others did not in fact observe a correlation between 73 

teacher-student brain-to-brain coupling and content retention (e.g., Bevilacqua et al., 74 

2019). One potential limitation of most prior studies on learning concerns that they 75 
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only focused on the average brain-to-brain coupling across the entire teaching session 76 

and its relation with learning outcomes (Davidesco et al., 2019). It is possible that 77 

linking specific moments of brain-to-brain coupling (such as those associated with 78 

certain instructional behavior) to learning might yield complementary useful 79 

information (Pan et al., 2018). 80 

Here, we further investigated the functional significance of brain-to-brain 81 

coupling in learning and instruction. In addition to examining whether brain-to-brain 82 

coupling between instructors and learners can predict learning outcomes, we asked 83 

whether brain-to-brain coupling can be used to classify instructional dynamics during 84 

interactive learning. Such a finding would suggest that brain-to-brain coupling may be 85 

a pedagogically informative implicit measure that tracks learning throughout ongoing 86 

dynamic instructor-learner interactions.  87 

We distinguished two instructional strategies (explanation vs. scaffolding), 88 

derived from two distinct pedagogical approaches to the role of instruction in 89 

instructor-learning interactions. First, the “explanation-based” approach assumes that 90 

learning emerges as a result of information clarification, which serves to enhance 91 

learners’ comprehension (Chi, 2013; Duffy et al., 1986). In this framework, 92 

instructional modulation of learning is driven by meaningful explanatory information. 93 

A second line of instructional approaches emphasizes the importance of supportive 94 

scaffoldings provided by the instructor. Scaffolding behaviors include asking key 95 

questions (e.g., asking learners their understanding of a core concept) and providing 96 

hints (e.g., giving an analogy of the learning content) that are aimed at redirecting 97 

learners’ actions and understanding (Van de Pol et al., 2010). Scaffolding foregrounds 98 

bidirectional communication and information sharing – both instructors and learners 99 

are involved in a two-way dynamic process of receiving and sending out information.  100 

In addition to instructional strategy, adaptive behavior on the part of the instructor 101 

has also been shown critical for interactive learning (Chi, 2013; Chi and Roy, 2010). 102 

That is, the instructor provides personalized guidance based on the learner’s current 103 

level of knowledge (Wass and Golding, 2014). We therefore added a second 104 

dimension to our study design where half of the instructors were informed of the 105 
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learner’s knowledge level based on their performance on a pre-test (personalized 106 

instruction) and half of them were not informed (non-personalized instruction). 107 

Twenty-four instructor-learner dyads participated in a concept learning task, 108 

during which their brain activity was recorded simultaneously with functional 109 

near-infrared spectroscopy (fNIRS; Cheng et al., 2015; Pan et al., 2017; Zheng et al., 110 

2018). Brain-to-brain coupling between instructors and learners was first estimated 111 

using Wavelet Transform Coherence (Grinsted et al., 2004), and then correlated with 112 

learning outcomes. A video coding analysis allowed us to parse whether the 113 

brain-to-brain coupling in instructor-learner dyads was specifically driven by certain 114 

instructional behavior. Finally, to identify to what extent scaffolding strategies can be 115 

distinguished from explanation strategies in the neural data, we used a decoding 116 

analysis. We employed the same decoding approach on both brain-to-brain coupling 117 

and individual brain data to explore the possible added value of a two-brain vs. 118 

single-brain analysis. 119 

2. Results 120 

2.1. Participants and procedure 121 

Forty-eight healthy participants were assigned either the role of instructor or learner, 122 

forming 24 instructor-learner dyads. Instructor-learner dyads took part in two fNIRS 123 

experimental blocks, in a counterbalanced order (Figs. 1A&B): (i) teaching with the 124 

scaffolding strategy, and (ii) teaching with the explanation strategy. During each block, 125 

the instructor taught psychological concepts to the learner (see Methods for more 126 

details). Prior to the fNIRS scanning, half of the instructors were informed of the 127 

learner’s current knowledge level (personalized instruction) while half of them were 128 

not (non-personalized instruction). Immediately before and after the fNIRS scanning, 129 

learners’ content knowledge was evaluated. Brain imaging data from prefrontal and 130 

temporoparietal regions were collected from the instructor and the learner 131 

simultaneously (Figs. 1A&C), starting with a resting-state phase (baseline) 132 

immediately followed by the interactive-learning phase (task). Brain-to-brain coupling 133 
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was computed within each instructor-learner dyad (Fig. 1D).  134 

  135 

 136 

Figure 1. Experimental protocol, probe location, and brain-to-brain coupling analysis. (A) 137 

Experimental procedure. Before and after scanning, learners’ knowledge of the psychological concepts 138 

was evaluated. Brain activity from the instructor and the learner were acquired simultaneously using 139 

fNIRS, in two blocks, each starting with a 3-min rest (resting-state phase/baseline), followed by the 140 

instructor teaching concepts to the learner (interactive-learning phase/task). (B) Instructional 141 

Personalization and Instructional Strategies. Participants were randomly allocated to either 142 

personalized or non-personalized groups (Instructional Personalization). Within each instructor-learner 143 

dyad, scaffolding and explanation strategies were compared. (C) Optode probe set. The set was placed 144 

over prefrontal and left temporoparietal regions. (D) Overview of the brain-to-brain coupling analysis. 145 

Channel-wise raw time courses were extracted from both the instructor and the learner. After a battery 146 

of preprocessing, brain-to-brain coupling was estimated by Wavelet Transform Coherence between the 147 
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two clean time courses. i, j, fNIRS signals of two participants of a dyad; t, time. 148 

2.2. Behavioral performance 149 

A repeated measures ANOVA on learning outcomes with Instructional Strategy 150 

(Scaffolding vs. Explanation) as a within-dyad factor and Instructional 151 

Personalization (Personalized vs. Non-personalized) as a between-dyad factor 152 

revealed a main effect of Instructional Strategy (F(1, 24) = 5.10, p = 0.03, ηpartial
2 = 0.19), 153 

with the scaffolding strategy showing better learning outcomes than the explanation 154 

strategy (Fig. 2). There was no effect of Instructional Personalization on learning (F(1, 155 

24) = 0.82, p = 0.38) and there was no interaction between Instructional 156 

Personalization and Instructional Strategy  (F(1, 24) = 0.07, p = 0.79). In sum, learners 157 

who were taught using scaffolding retained more content from the instruction than 158 

learners who were taught using an explanation-based instructional strategy. 159 

 160 

 161 

Figure 2. Learning outcomes in all conditions. (A) Group levels: in both personalized and 162 

non-personalized groups, learning outcomes for the scaffolding condition was significantly higher than 163 

the explanation condition. Learning outcomes are indexed by the change score (post-test score minus 164 

pre-test score). Error bars represent standard errors of the mean. (B) Corresponding graph for 165 

individual levels. *p < 0.05. **p < 0.01. 166 
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2.3. Brain imaging results 167 

2.3.1. Interactive learning induces frequency-specific widespread brain-to-brain 168 

coupling 169 

In a first-pass data-driven analysis, we calculated brain-to-brain coupling in all 170 

conditions across the whole sample of 24 participant dyads to test whether interactive 171 

learning (i.e., task) was associated with enhanced brain-to-brain coupling compared to 172 

the resting-state session (i.e., baseline).  173 

In terms of frequency characteristics, brain-to-brain coupling was significantly 174 

higher during the interactive learning phase than during rest for frequencies ranging 175 

between 0.45 – 0.57 Hz and 0.17 – 0.27 Hz (all FDR-corrected, Fig. 3). These two 176 

ranges were then chosen as frequencies of interest (FOIs) for subsequent analyses. 177 

These FOIs are out of the range of physiological responses associated with cardiac 178 

pulsation activity (~ 0.8 – 2.5 Hz) and spontaneous blood flow oscillations (i.e., 179 

Mayer waves, ~ 0.1 Hz).  180 

Regarding spatial characteristics, task-related coupling enhancement was highest 181 

in the orbitofrontal cortex, frontopolar cortex, and inferior frontal cortex at 0.45 – 0.57 182 

Hz (Fig. 3C), and along superior temporal cortex, temporoparietal junction, and 183 

superior parietal lobule at 0.17 – 0.27 Hz (Fig. 3D). We also observed widespread 184 

brain-to-brain coupling in adjacent regions, including prefrontal, temporal, and 185 

parietal areas. These results replicate previous research showing that social interactive 186 

learning (through instruction) induces brain-to-brain coupling in high-order brain 187 

regions (Holper et al., 2013; Pan et al., 2018; Zheng et al., 2018). 188 

A control analysis confirmed that the patterns of brain-to-brain coupling (higher 189 

coupling associated with interactive learning compared to rest) were specific to the 190 

interaction between real instructor-learner dyads: pseudo dyads did not show higher 191 

brain-to-brain coupling during learning than rest (ps > 0.05, FDR controlled, Fig. 3E). 192 

Together, our first-pass results suggest that social interactive learning induces 193 

widespread brain-to-brain coupling. This coupling is concentrated in specific 194 
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frequencies and only emerges in ‘real’ dyads (who are actually interacting). 195 

 196 

 197 

Figure 3. Interactive learning evokes frequency-specific widespread brain-to-brain coupling across all 198 

conditions. (A) Brain-to-brain coupling associated with the instruction session and the rest session for 199 

frequencies ranging between 0.01 and 1 Hz (all participants and channels’ data were averaged). Grey 200 

horizontal lines on the top indicate which frequencies show statistical differences (FDR controlled). (B) 201 

An FDR-corrected P-value map resulting from comparisons between instruction and rest (for each 202 

channel) across frequencies between 0.01 and 1 Hz. Interactive learning evokes frequency-specific 203 

widespread brain-to-brain coupling in all conditions across all dyads at 0.45 – 0.57 Hz (C) and 0.17 – 204 

0.27 Hz (D). (E) Control analyses confirmed that the enhanced brain-to-brain coupling shown in (C) 205 

and (D) was dyad-specific: no significant task-related coupling was detected in pseudo-dyads in either 206 

frequency band of interest (all real dyads were shuffled, resulting in 24 new pseudo dyads). 207 

2.3.2. Instruction modulates brain-to-brain coupling within instructor-learner 208 

dyads 209 

Having established that social interactive learning is associated with a significant 210 

increase in brain-to-brain coupling between instructor and learner, we next sought to 211 
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determine whether such coupling enhancement was modulated by Instructional 212 

Strategy and Instructional Personalization. First, results showed a main effect of 213 

Instructional Strategy in prefrontal regions (i.e., CHs 5, 6, 10, 12) at 0.45 – 0.57 Hz 214 

(Fs > 9.50, FDR corrected ps < 0.05). Further analyses revealed that the scaffolding 215 

strategy exhibited higher brain-to-brain coupling than the explanation strategy in all 216 

significant CHs (Fig. 4A). There were no effects of Instructional Strategy for other 217 

CHs and other frequency bands (ps > 0.05, FDR corrected). There was no significant 218 

main effect of Instructional Personalization in any CHs and at any frequency bands 219 

(ps > 0.05, FDR corrected).  220 

 We did, however, observe an interaction between Instructional Strategy and 221 

Instructional Personalization in the superior temporal cortex (i.e., CH 25) at 0.17 – 222 

0.27 Hz (F(1, 24) = 13.49, FDR corrected p < 0.05). Post hoc comparisons indicated 223 

that brain-to-brain coupling was significantly larger for the scaffolding condition than 224 

the explanation condition in the personalized group (p < 0.05), but not in the 225 

non-personalized group (p > 0.05, Fig. 4B). No significant main effects or interactions 226 

where observed in any other CHs or frequency bands of interest (ps > 0.05, FDR 227 

corrected).  228 

Average brain-to-brain coupling in prefrontal regions was positively correlated 229 

with learning outcomes in the scaffolding condition (r = 0.65, p = 0.001; Fig. 4A, 230 

right panel) but not in the explanation condition (r = -0.24, p = 0.27), indicating that 231 

better learning was associated with stronger brain-to-brain coupling in the scaffolding 232 

condition alone. Mirroring the ANOVA results reported above, we saw that 233 

brain-to-brain coupling in superior temporal cortex only predicted learning outcomes 234 

in the personalized scaffolding condition (r = 0.66, p = 0.02; all other conditions: rs < 235 

-0.18, ps > 0.27; Fig. 4B, right). 236 

 237 
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 238 

Figure 4.  Instruction modulates brain-to-brain coupling during social interactive learning. Central: 239 

F-test maps of brain-to-brain coupling generated based on frequency-specific ANOVAs with 240 

Instructional Strategy and Instructional Personalization as independent variables. (A) The scaffolding 241 

condition showed higher brain-to-brain coupling in prefrontal regions than the explanation condition. 242 

Such brain-to-brain coupling predicted learning outcomes in the scaffolding condition, but not in the 243 

explanation condition (right panel). (B) The scaffolding condition also led to significantly larger 244 

brain-to-brain coupling in superior temporal cortex than the explanation condition, but only in the 245 

personalized instruction dyads. Brain-to-brain coupling predicted learning outcomes in the personalized 246 

scaffolding condition but not in other conditions (right panel). *p < 0.05. Error bars indicate standard 247 

errors of the mean. 248 
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2.3.3. Linking instructional behaviors with brain-to-brain coupling 249 

To investigate how instructional behaviors contributed to brain-to-brain coupling, we 250 

conducted a video coding analysis for each participant dyad. Two raters independently 251 

coded videos for scaffolding behaviors vs. non-scaffolding instructional behaviors (or 252 

explanatory behaviors vs. non-explanatory instructional behaviors). For analysis, time 253 

courses of brain-to-brain coupling during the task session were first matched with 254 

video-coded instructional behaviors (Figs. 5A–C). Brain-to-brain coupling was then 255 

extracted for segments of each type of instructional behavior and averaged for each 256 

condition. Task-related coupling was then obtained by subtracting time-averaged 257 

brain-to-brain coupling during the rest session from the averaged coupling segments 258 

during the task session (Figs. 5D&E). 259 

First, we examined whether task-related brain-to-brain coupling in prefrontal 260 

cortex detected in the scaffolding condition could be explained by scaffolding 261 

behaviors. Indeed, scaffolding behaviors induced significantly higher brain-to-brain 262 

coupling compared to the non-scaffolding instructional behaviors (t(23) = 2.72, p = 263 

0.01, Cohen’s d = 0.78; Fig. 5D, upper panel). Crucially, we also compared. However, 264 

no significant differences in brain-to-brain coupling were seen between explanatory 265 

behaviors and non-explanatory instructional behaviors in the explanation condition 266 

(t(23) = 1.58, p = 0.13; Fig. 5D, lower panel). 267 

Second, we compared brain-to-brain coupling for scaffolding vs. non-scaffolding 268 

instructional behaviors to test whether scaffolding behavior indeed drove the 269 

task-related brain-to-brain coupling observed in superior temporal cortex for the 270 

personalized scaffolding condition. As expected, scaffolding behaviors exhibited 271 

larger brain-to-brain coupling than non-scaffolding instructional behaviors (t(11) = 3.19, 272 

p = 0.01, Cohen’s d = 1.18; Fig. 5E, upper panel). In contrast, just like in prefrontal 273 

cortex, brain-to-brain coupling did not differ between explanatory behaviors and 274 

non-explanatory behaviors in the personalized explanation condition (t(11) = 0.91, p = 275 

0.38 (Fig. 5E, lower panel). Moreover, there was no significant difference between 276 

instructional behaviors in either non-personalized scaffolding (Fig. 5F, upper panel) 277 
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or non-personalized explanation conditions (Fig. 5F, lower panel, ts < 1.36, ps > 278 

0.20). 279 

Importantly, the effects reported here cannot be attributed to differences between 280 

conditions in terms of the mere quantity of instructional behaviors or the number of 281 

turn-takings, as evidenced by two control analyses. First, we calculated the duration 282 

ratio of instructional behaviors by quantifying the proportions of time (out of 8 283 

minutes) when instructional behaviors occurred (Jiang et al., 2015; Pan et al., 2018). 284 

For example, if scaffolding behaviors occurred for a total of 3 minutes in an 285 

instructor-learner dyad, then the duration ratio of scaffolding behaviors should be 3/8 286 

= 0.375. Results revealed that the duration ratio was comparable between scaffolding 287 

behaviors (0.56 ± 0.18) and non-scaffolding instructional behaviors (0.44 ± 0.18) in 288 

the scaffolding condition (t(23) = 1.22, p = 0.25). Second, we compared the cumulative 289 

number of sequential turn-takings during interactive learning (for example, one 290 

turn-taking event could be that the instructor asks one question, followed by the 291 

answer from the learner). Results showed that the scaffolding strategy involved 292 

marginally more turn-takings than the explanation strategy (16.67 ± 6.54 vs. 12.08 ± 293 

3.15; t(23) = 2.11, p = 0.06). No significant correlation between the number of 294 

turn-takings and brain-to-brain coupling was detected (rs < 0.42, ps > 0.18).  295 

In sum, brain-to-brain coupling could be explained by dynamic scaffolding 296 

behavior implemented in the instructor-learner interaction. Our complementary 297 

analyses ruled out frequency of instructional behaviors or turn-taking behavior as 298 

possible contributors to the observed brain-to-brain coupling effects.  299 
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 300 

Figure 5. Video coding analysis reveals that brain-to-brain coupling is driven by specific instructional 301 

behaviors. (A) Time course of brain-to-brain coupling in the learning phase for one randomly selected 302 

dyad from the scaffolding and explanation conditions. Vertical panels denote the instructional behaviors: 303 

red panels indicate scaffolding behaviors; blue ones indicate explanatory behaviors. (B) Examples of 304 

each instructional behavior as coded from the video frames. (C) Example sentences from the video 305 

coding analysis for scaffolding behaviors (asking key questions and providing hints) and explanation 306 

behaviors (definition and clarification). Box plots of task-related brain-to-brain coupling (task minus 307 

rest) across the instructional behaviors in the scaffolding and explanation conditions (D), in the 308 
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personalized scaffolding and personalized explanation conditions (E), and in the non-personalized 309 

scaffolding and non-personalized explanation conditions (F). Crosses indicate the average 310 

brain-to-brain coupling across participant dyads. Error bars range from the min to the max value 311 

observed. *p < 0.05. 312 

2.3.4. Decoding instructional strategy from brain-to-brain coupling 313 

Finally, we tested the extent to which one can identify the Instructional Strategy 314 

employed by an instructor (i.e., scaffolding or explanation) based on task-related 315 

brain-to-brain coupling alone. Brain-to-brain coupling was extracted from all channel 316 

combinations that showed significantly higher brain-to-brain coupling for task vs. 317 

baseline to train the classifiers. The classifier successfully distinguished instructors 318 

who employed the scaffolding or explanation strategy with an Area Under the Curve 319 

(AUC) of 0.90, i.e., significantly exceeding chance (p < 0.0001, Fig. 6A). The 320 

decoding analysis based on task-related brain-to-brain coupling further showed that 321 

the classifier was able to distinguish instructors who employed the scaffolding or 322 

explanation strategy for the personalized condition (AUC = 0.84; p = 0.005, Fig. 6B), 323 

but not in the non-personalized condition (AUC = 0.66; p = 0.17, Fig. 6C).  324 

Importantly, when using individual brain activation from either instructors’ or 325 

learners’ as classification features, classification performance to discriminate between 326 

the scaffolding and explanation strategies was low (AUCs < 0.66, ps > 0.05). The 327 

decoding analysis based on the individual brain activation was also insufficient to 328 

distinguish the scaffolding and explanation strategies for both personalized (AUCs < 329 

0.57, ps > 0.35) and non-personalized conditions (AUCs < 0.56, ps > 0.20). 330 

Taken together, these results indicate that brain-to-brain coupling, as a novel yet 331 

promising neural-classification feature (Jiang et al., 2015), was suitable for decoding 332 

instructional strategy with a reasonable classification performance, particularly when 333 

the instruction was tailored to the learner (i.e., personalized vs. non-personalized). 334 

Brain-to-brain coupling further served as a better classification feature compared to 335 

individual brain activation during instructor-learner interactions. 336 
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 337 

 338 

Figure 6. Decoding performance. The receiver operating characteristic (ROC) curve for classification 339 

distinguishing the scaffolding or explanation strategy in general (A), in the personalized (B), and 340 

non-personalized conditions (C). Area under the curve (AUC) was calculated. Significant levels were 341 

calculated by comparing the correct AUC from the real labels with 10000 renditions of randomized 342 

labels.   343 

3. Discussion 344 

This study investigated how verbal instruction modulates interactive learning using an 345 

fNIRS-based hyperscanning approach, which allowed us to record brain activity from 346 

both instructors and learners during an instruction exchange. Twenty-four 347 

instructor-learner dyads performed a conceptual learning task in a naturalistic 348 

instruction situation where a well-trained instructor taught a learner a set of 349 

psychological concepts. We found that interactive learning induced task-related 350 

brain-to-brain coupling. Brain-to-brain coupling co-varied with learners’ subsequent 351 

learning outcomes and was significantly higher when instructors employed 352 

scaffolding tactics (e.g., asking key questions and hinting) than when they used an 353 

explanation-based teaching approach. This brain-to-brain coupling associated with 354 

scaffolding was especially prominent if instructors were informed of the learner’s 355 

knowledge level in advance. Finally, different instructional strategies could 356 

successfully be decoded based on brain-to-brain coupling alone, but, crucially, not 357 

based on individual brain activation.  358 

Importantly, our findings were specific to the interacting instructor-learner dyads 359 
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(control analysis #1) and they did not reflect the mere quantity of instructional 360 

behaviors (control analysis #2), nor the amount of turn-takings between instructor and 361 

learner (control analysis #3). 362 

3.1. Using two brains to study learning and instruction 363 

Educators have long debated which method of instruction is most conducive to 364 

learning. Several researchers have sought an answer to this question by studying 365 

learners’ neural activity during both information encoding and retrieval. However, 366 

previous studies have primarily focused on isolated individuals (e.g., Hartstra et al., 367 

2011; Olsson and Phelps, 2007; Ruge and Wolfensteller, 2009). This poses a 368 

limitation to obtaining full insight into the learner process, especially for 369 

instruction-based learning, which relies on the dynamic instructional interaction 370 

between instructor and learner. A “second-person approach” (also termed as 371 

“hyperscanning”, i.e., measuring two brains simultaneously, Redcay and Schilbach, 372 

2019) provides a possible way to fill this knowledge gap. 373 

The second-person approach allowed us to quantify brain-to-brain coupling 374 

between the instructor and the learner, and possibly capture the continuous, 375 

meaningful alignment of interpersonal neural processes. It has been proposed that 376 

such neural alignment facilitates the matching of the temporal structure of inputs and 377 

optimizes the learning process (Leong et al., 2017). Our findings suggest that 378 

brain-to-brain synchrony is pedagogically relevant. First, brain-to-brain coupling was 379 

correlated with learning outcomes, strongly indicating its functional significance. 380 

Second, brain-to-brain coupling was successfully used to decode instructional 381 

approaches with a good classification performance.  382 

 To our knowledge, we are the first to use activity from two brains as opposed to 383 

one to decode instructional strategies. We found that brain-to-brain coupling served as 384 

a better neural-classification feature in contrast with individual brain activity. This 385 

finding was in line with recent advances; for example, a recent study found that 386 

brain-to-brain coupling yielded higher predictive power for learning outcomes 387 
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compared to single-brain measures (Davidesco et al., 2019). A possible explanation 388 

for this is that non-neuronal artifacts are systematic in individual brain activity (Zhang 389 

et al., 2016), while such artifacts are not consistent across brains. Indeed, 390 

brain-to-brain coupling has been reported to have higher signal-to-noise than 391 

single-brain measures (Parkinson et al., 2018). Moreover, measuring coupling across 392 

brains can provide complementary information that cannot be revealed by 393 

conventional individual brain measures (Balconi et al., 2017; Simony et al., 2016). 394 

Compared to single-brain activity, brain-to-brain coupling could be more sensitive 395 

when tracking ongoing social interactions because it considers the neural dynamics 396 

from all interacting agents simultaneously. In sum, there are several benefits of 397 

recording activity from two brains (versus one brain) to study learning and instruction.  398 

3.2. The role of prefrontal and temporal cortices in brain-to-brain coupling 399 

The modulatory effects of instruction on brain-to-brain coupling were concentrated in 400 

prefrontal and superior temporal cortices. This is in line with prior fNIRS-based 401 

hyperscanning studies that found that brain-to-brain coupling in prefrontal cortices 402 

(PFC; Holper et al., 2013; Pan et al., 2018; Takeuchi et al., 2017) and temporoparietal 403 

regions (Zheng et al., 2018) predicted learning outcomes following instruction. PFC 404 

has been associated with a wide range of human cognitive functions. Specific to 405 

hyperscanning, PFC has been implicated in cooperation (Cheng et al., 2015), 406 

competition (Liu et al., 2015), and emotion regulation (Reindl et al., 2018). In this 407 

study, the scaffolding process might require constant collaborative interaction between 408 

instructor and learner, a process for which prefrontal areas are heavily recruited. 409 

Superior temporal cortex (STC), like PFC, has been associated with many 410 

cognitive functions that are relevant for learning, and social cognition more broadly. 411 

For example, STC is a key area for theory of mind or mentalizing (Baker et al., 2016), 412 

and has been implicated in social perception and action observation (Thompson and 413 

Parasuraman, 2012). While the exact role of STC in brain-to-brain coupling during 414 

learning cannot be inferred based on the present findings, it is possible that 415 
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brain-to-brain coupling in this area reflects the shared intentionality or mental state 416 

between instructor and learner, or a process whereby instructors need to infer the 417 

understanding of the learner such that instruction can be adapted or personalized 418 

accordingly (Zheng et al., 2018).  419 

Another possibility is that the correlation between brain-to-brain synchrony and 420 

learning outcomes in STC and PFC can be accounted for in terms of the ability of the 421 

instructor and learner to predict each other’s mental states and utterances throughout 422 

the interaction. Prior fMRI studies investigating speaker-listener brain-to-brain 423 

coupling found that brain activity was more correlated between speakers and listeners 424 

in STC for more predictable speech (Dikker et al., 2014) and PFC brain-to-brain 425 

coupling has been associated with information retention (Stephens et al., 2010). Both 426 

PFC and STC have been found crucial for temporal predictive encoding and 427 

integration of behavior (Amoruso et al., 2018; Yang et al., 2015) and recent models 428 

attribute a large role to predictive coding in explaining interpersonal alignment at both 429 

the neural and the behavioral level (Garrod and Pickering, 2010; Shamay-Tsoory et al., 430 

2019).  431 

3.3. Linking brain imaging findings to pedagogical practice 432 

As the Chinese educator Confucius suggested, appropriate instruction matters during 433 

instructor-learner interactive learning (Chen, 2007). Several theoretical models have 434 

been proposed aiming at improving pedagogy. These models include 435 

explanation-based and constructivism-based theories, both of which have been shown 436 

demonstrated to support learning (Chi, 2013). 437 

 As laid out in the introduction, an explanation-based approach puts emphasis on 438 

information clarification and aims at providing prefabricated explanatory information 439 

to the learner. Explanation is a conventional strategy used in classroom instruction 440 

(Leinhardt and Steele, 2005), human tutoring (Chi et al., 2004), cooperative learning 441 

(Webb et al., 2006), and skill acquisition (Renkl et al., 2007). In a 442 

constructivism-based approach, in contrast, the instructor is encouraged to provide 443 
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support (i.e., scaffolding) tailored to the needs of the learner (Kleickmann et al., 2016). 444 

In this framework, instructional modulation of learning arises from exogenous 445 

constructivist instruction (Jumaat and Tasir, 2016). Arguably, our findings favor a 446 

constructivism-based model: brain-to-brain coupling during interactive learning was 447 

primarily driven by the moments of scaffolding behaviors, a central feature of a 448 

constructivist approach to instruction-based learning. It is important to note that our 449 

results do not warrant the conclusion that explanation-based instruction is not useful: 450 

This would go against decades of research showing that people do learn from 451 

explanations (Chi et al., 2004; Leinhardt and Steele, 2005; Renkl et al., 2007; Webb et 452 

al., 2006). 453 

Our findings can also be interpreted within the context of the 454 

Interactive-Constructive-Active-Passive (ICAP, Chi and Wylie, 2014) framework. The 455 

ICAP framework defines a set of cognitive engagement activities, which can be 456 

categorized into Interactive, Constructive, Active, and Passive modes, based on 457 

learners’ behaviors. The four modes correspond to different cognitive processes (Lam 458 

and Muldner, 2017): Interactive engagement corresponds to the cognitive process of 459 

co-creating knowledge (e.g., dialogues); Constructive engagement involves creating 460 

knowledge (e.g., explaining in one’s own words); Active engagement involves 461 

emphasizing or selecting knowledge (e.g., copying notes); Passive engagement 462 

involves storing knowledge (e.g., watching and listening to the instructor). The ICAP 463 

hypothesis proposes that the learning increase from Passive to Active to Constructive 464 

to Interactive. In the current study, although both strategies involved interactive 465 

engagement, the scaffolding strategy could additionally invoke constructive 466 

engagement whereas the explanation strategy could invoke relatively passive 467 

engagement in the learners (as summarized in Fig. 7). Consistent with the ICAP, 468 

learning outcomes were better in the scaffolding than the explanation strategies, i.e., 469 

(Interactive + Constructive) > (Interactive + Passive). What’s more, one can argue 470 

that our results extend the theoretical framework of ICAP by showing that the four 471 

components proposed should not be treated in isolation: real-life instruction is a 472 

complex activity and generally engages several cognitive components. Our findings 473 
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suggest that instructors should consider including and combining more interactive and 474 

constructive engagements. 475 

 476 

 477 

Figure 7. Interactive-Constructive-Active-Passive (ICAP) framework for the scaffolding and 478 

explanation instructions. The scaffolding instruction elicits more interactive and constructive responses, 479 

whereas the explanation instruction elicits more interactive and passive responses. 480 

3.4. Conclusions 481 

Recording brain activity from multiple participants simultaneously in ecologically 482 

valid settings is a nascent but promising field of research. We investigated interactive 483 

learning using fNIRS hyperscanning in a naturalistic learning situation, and found that 484 

verbal instruction modulates learning via brain-to-brain coupling between instructors 485 

and learners, which was driven by dynamic scaffolding representations. Importantly, 486 

brain-to-brain coupling was effective to discriminate between different instructional 487 

approaches and predict learning outcomes. Together, our findings suggest that 488 

brain-to-brain coupling may be a pedagogically informative implicit measure that 489 

tracks learning throughout ongoing dynamic instructor-learner interactions. 490 

 491 

4. Methods 492 

4.1. Participants 493 
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Twenty-four dyads (n = 48, all females, mean age = 21.46 ± 2.75 years) were 494 

recruited to participate in the study. Each dyad consisted of one learner and one 495 

instructor. Each instructor taught the learner in a one-to-one way. The instructors 496 

(mean age = 22.58 ± 2.75 years) had all received graduate training in psychology, had 497 

at least 1-year of instructional experience, and were familiar with the learning content, 498 

whereas the learners (mean age = 20.33 ± 2.30 years) in our sample majored in 499 

non-psychology related fields and had not been exposed to the content. All 500 

participants were healthy and right-handed and were recruited through advertisements. 501 

Each participant gave informed consent prior to the experiment and was paid for 502 

participation. The study was approved by the University Committee of Human 503 

Research Protection (HR 044-2017), East China Normal University. 504 

4.2. Tasks and materials 505 

The task used in the present fNIRS-based hyperscanning study was a conceptual 506 

learning task, which involved mastering two sets of materials, each explaining four 507 

psychological terms pertaining to an overarching concept. The material was chosen to 508 

be novel and attractive to non-psychology majors and teachable within 10 – 20 509 

minutes. The sets centered around the concepts of reinforcement and transfer. These 510 

concepts were chosen from a classic national standard textbook (Educational 511 

Psychology: A Book for Teachers, Wu & Hu, 2003). These two concepts belong to the 512 

similar topic (i.e., learning psychology) and occupy a similar instructional period (i.e., 513 

1~2 sessions). The reinforcement set consisted of teaching positive reinforcement, 514 

negative reinforcement, punishment, and retreat (Set 1), and transfer consisted of 515 

near-transfer, far-transfer, lateral-transfer, and vertical-transfer (Set 2). This design 516 

allowed us to provide different learning content for the two within-participant 517 

instructional strategies (i.e., scaffolding vs. explanation), without repeating any 518 

content. Learning outcomes did not differ between the two sets of concepts, and were 519 

thus pooled together in the results reported below.  520 

All instructors were informed and trained by experimenters two days prior to the 521 
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experiment. Training examples were selected from the textbook’s training section. 522 

Each example consisted of instructional goals, instructional difficulties, general 523 

instructional processes, and detailed instructional scripts. Such instructional scripts 524 

were composed and adapted with the help of two psychological experts with at least 525 

20 years of instructional experience at the university level. Instructors were required 526 

to prepare instruction at home for 2 days. They then practiced with each other in the 527 

lab until they were satisfied with their own instructional performance in both the 528 

scaffolding and explanation conditions (they spent approximately the same amount of 529 

time training for both types of instructions). Then they demonstrated instruction to the 530 

experimenter in a one-to-one way until their performance met the established standard 531 

requirements: the length of teaching, the speed of speech, and consistency with the 532 

instructional processes and scripts (Liu et al., 2019). 533 

4.3. Experimental factors 534 

We manipulated one within-participant variable and one between-participant variable. 535 

The within-participant variable was the Instructional Strategy (scaffolding vs. 536 

explanation). Following the scripts, the instructor using a scaffolding strategy would 537 

guide the learner in a Q&A manner along the following lines (one representative 538 

example, translated from Chinese): 539 

- Instructor: How can one provide positive reinforcement? 540 

- Learner: …By rewarding positive behavior? 541 

- Instructor: Bingo! Could you please give an example? 542 

- Learner: My sister gave me some candies after I cleaned my room. 543 

 …… 544 

For the explanation strategy, the instructor would explain each concept to the 545 

learner and provide examples. The following interaction provides a representative 546 

example of explanatory behavior: 547 

- Instructor: Positive reinforcement refers to rewarding goal-directed behavior 548 

to increase its frequency. Do you see what I mean? 549 
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- Learner: I am not sure whether I understand it correctly. Could you please 550 

explain it a bit more? 551 

- Instructor: For example, my mom cooks my favorite food for me when I pass 552 

exams. 553 

- Learner: That clarifies it. 554 

 …… 555 

The between-participant variable was Instructional Personalization (personalized 556 

vs. non-personalized; i.e., whether the instructor customizes their instructions to the 557 

learner’s aptitude and ability as established via a pre-test). Instructions might be 558 

intrinsically personalized: for example, instructors often monitor learners' 559 

comprehension and guide their understanding during face-to-face interactions. For 560 

instructors to be able to customize their instructions, learners have to inform them 561 

about their lack of understanding. Therefore, we exogenously manipulated 562 

Instructional Personalization. For half of the participants (n = 12 dyads), the learner’s 563 

pre-test results (i.e., prior knowledge level) of the eight concepts (4 from Set 1 and 4 564 

from Set 2) were provided to the instructor. The instructor was then asked to adapt 565 

their instruction to suit the needs of each learner (e.g., allocate more time to the 566 

teaching of a concept if the learner had difficulty learning it). For the 567 

non-personalized group (n = 12 dyads), the instructor was provided no information 568 

about the learner. 569 

4.4. Procedures 570 

The task included two blocks, each split into a resting-state phase and an interactive 571 

learning phase (Fig. 1A). The inter-block interval was approximately 1 minute. 572 

During the initial resting-state phase (3 min), both participants (sitting face-to-face, 573 

0.8 meters apart) were asked to relax and to remain still. This 3-min resting phase 574 

served as the baseline. 575 

The resting-state phase was immediately followed by the interactive-learning 576 

phase (8 min), where the learner and instructor engaged in interactive learning either 577 
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in a personalized (n =12 dyads) or non-personalized (n = 12 dyads) way (Instructional 578 

Personalization, Fig. 1B). For each group, the experimental procedure consisted of 579 

one of the following combinations of learning content and Instructional Strategy: (i) 580 

reinforcement with scaffolding (block 1) + transfer with explanation (block 2), (ii) 581 

reinforcement with explanation (block 1) + transfer with scaffolding (block 2). Block 582 

order was counterbalanced. 583 

During the experiment, learners’ and instructors’ brain activity was recorded 584 

simultaneously via fNIRS-based hyperscanning at prefrontal and left temporoparietal 585 

regions (Fig. 1C). A digital video camera (Sony, HDR-XR100, Sony Corporation, 586 

Tokyo, Japan) was used to record the behavioral interactions between participant 587 

dyads. The acquisition of video data and fNIRS data was synchronized with a 588 

real-time audio-video cable connecting the camera to the ETG-7100 equipment. The 589 

camera recordings were used to classify (following the experiment) behavior as either 590 

scaffolding or explanatory behaviors. 591 

4.5. Learning tests and outcome analysis 592 

Learners’ knowledge of psychological concepts was tested immediately before the 593 

onset of the resting-state phase and after the end of the interactive-learning phase. 594 

Relevant to Reinforcement and Transfer, 8 definitions, 16 true-false items and 4 short 595 

answer questions were selected from textbooks to compose a testing bank. These 596 

items were randomly split into two halves, one for the pre-test and the other for the 597 

post-test. Results from 9 participants who were not involved in the fNIRS study 598 

showed that the difficulty levels did not differ between the pre- and post-tests (t(8) = 599 

0.01, p = 0.99). The learners had a time limitation of 20 min to finish each of the tests 600 

(Zheng et al., 2018).  601 

The performance of learners in the pre- and post- tests was scored by two separate 602 

other raters who were blind to the group assignment. Three question types (i.e., 603 

definitions, true-false items, simple answer questions) were evaluated. For each 604 

learner, inter-coder reliability was calculated by the intra-class correlation on scores 605 
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for definitions and simple answer questions (ranging from 0.77 to 0.91). Rating scores 606 

were averaged across the two raters. The sum of the judgments made on all three 607 

question types (for a given learner) was considered as the index of overall learning 608 

performance [maximum score: 4 (for 4 definitions) + 16 (for 8 true-false items) + 10 609 

(for 2 simple answer questions) = 30 points). Pre-test scores did not differ between 610 

any of the conditions (Fs < 1.60, ps > 0.17). For all subsequent analyses, learning 611 

outcomes were quantified as the difference pre-learning scores and post-learning 612 

scores. A mixed-design repeated measures ANOVA was conducted on the learning 613 

outcomes, with Instructional Personalization (personalized vs. non-personalized) as a 614 

between-subject variable and Instructional Strategy (scaffolding vs. explanation) as a 615 

within-subject variable. 616 

4.6. Image acquisition 617 

An ETG-7100 optical topography system (Hitachi Medical Corporation, Japan) was 618 

used for brain data acquisition. The absorption of near-infrared light (two wavelengths: 619 

695 and 830 nm) was measured with a sampling rate of 10 Hz. The oxyhemoglobin 620 

(HbO) and deoxyhemoglobin (HbR) were obtained through the modified 621 

Beer-Lambert law. We focused our analyses on the HbO concentration, for which the 622 

signal-to-noise ratio is better than HbR (Mahmoudzadeh et al., 2013). A number of 623 

fNIRS-based hyperscanning reports have used this indicator to compute of 624 

brain-to-brain coupling (e.g., Cheng et al., 2015; Dai et al., 2018; Jiang et al., 2012, 625 

2015; Pan et al., 2017; Tang et al., 2015).  626 

Two optode probe sets were used to cover each participant’s prefrontal and left 627 

temporoparietal regions (Fig. 1C), which have been previously associated with 628 

information exchanges between instructors and learners during interactive learning 629 

(Holper et al., 2013; Pan et al., 2018; Takeuchi et al., 2017; Zheng et al., 2018). One 3 630 

× 5 optode probe set (eight emitters and seven detectors forming 22 measurement 631 

points with 3 cm optode separation) was placed over the prefrontal area. The middle 632 

optode of the lowest probe row of the patch was placed at Fpz (Fig. 1C), following 633 
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the international 10-20 system (Okamoto et al., 2004). The middle probe set columns 634 

were placed along the sagittal reference curve. The other 4 × 4 probe set (eight 635 

emitters and eight detectors forming 24 measurement points with 3 cm optode 636 

separation) was placed over the left temporoparietal regions (reference optode was 637 

placed at P5, Fig. 1C). The correspondence between the NIRS channels (CHs) and the 638 

measured points on the cerebral cortex was determined using a virtual registration 639 

approach (Singh et al., 2005; Tsuzuki et al., 2007). 640 

4.7. Imaging-data analyses 641 

4.7.1. Analysis step A: Brain-to-brain coupling 642 

Data collected during the resting-state phase (3 min, served as the baseline) and the 643 

interactive-learning phase (8 min, served as the task) in each block were entered into 644 

the brain-to-brain coupling analysis (Fig. 1D). A principal component spatial filter 645 

algorithm was used to remove systemic components such as blood pressure, 646 

respiratory and blood flow variation from the fNIRS data (Zhang et al., 2016). To 647 

remove head motion artifacts, we used a “Correlation Based Signal Improvement” 648 

approach (Cui et al., 2010).  649 

We then employed a wavelet transform coherence (WTC) analysis to estimate 650 

brain-to-brain coupling. The WTC of signals i(t) and j(t) was defined by: 651 

WTC��, �� 	  
|���������,��	|�

|��������,��	|�|��������,��	|�
 , 652 

where t denotes the time, s indicates the wavelet scale, ��
 represents a smoothing 653 

operation in time and scale, and W is the continuous wavelet transform (see Grinsted 654 

et al., 2004 for details). Our brain-to-brain coupling analysis was conducted in a 655 

data-driven manner and entailed three sub-steps: 656 

Step 1: Does interactive learning lead to enhanced brain-to-brain coupling 657 

compared to baseline?   658 

As a first step, we estimated whether brain-to-brain coupling was enhanced 659 

during the interactive learning task (estimated by WTC) compared to baseline. 660 
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Time-averaged brain-to-brain coupling (also averaged across channels in each dyad) 661 

was compared between the resting phase (i.e. baseline session) and the interactive 662 

learning phase (i.e. task session) using a series of paired sample t-tests, one for each 663 

frequency band (frequency range: 0.01 – 1 Hz, Nozawa et al., 2016). This analysis 664 

yielded a series of p-values that were FDR corrected (p < 0.05). This analysis enables 665 

the identification of frequency characteristic, which help us determine the frequency 666 

of interest (FOI) for subsequent analyses. 667 

To verify if the enhanced brain-to-brain coupling was dyad-specific, data from all 668 

48 participants were reshuffled in a pseudo-random way so that 24 new dyads were 669 

created (e.g., time series from instructor #1 were paired with those from learner #3) 670 

(Fig. 3E). Then, the above brain-to-brain coupling analysis was performed again to 671 

obtain brain-to-brain coupling for pseudo-pairs. 672 

Step 2: Does task-related brain-to-brain coupling enhancement differ across the 673 

experimental conditions?  674 

We averaged brain-to-brain coupling within each identified FOI and compared all 675 

conditions. We computed an index of task-related brain-to-brain coupling by 676 

subtracting the averaged coupling during the resting phase from that during the 677 

interactive learning phase. Fisher z transformation was applied to the task-related 678 

coupling values to generate a normal distribution. The resulting values for each 679 

channel were then submitted into an Instructional Strategy (scaffolding vs. 680 

explanation) × Instructional Personalization (personalized vs. non-personalized) 681 

mixed-design ANOVA. Parallel analyses were conducted separately in each FOI. The 682 

resulting p values were FDR-corrected for multiple comparisons. The results yielded 683 

F maps for each FOI. These F maps were visualized using BrainNet Viewer (Xia et al., 684 

2013).   685 

Step 3: Is condition-specific brain-to-brain coupling predictive of learning? 686 

Finally, we assessed behavior-brain relationships. Pearson correlational analyses 687 

were employed to test the relationship between task-related brain-to-brain coupling 688 

from significant channels and learning outcomes.  689 
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4.7.2. Analysis step B: Brain-to-brain coupling segmentation 690 

Following the brain-to-brain coupling analyses, we grouped and averaged the adjacent 691 

CHs that showed significant brain-to-brain coupling as channels of interest. The time 692 

course of brain-to-brain coupling in the channels of interest was down-sampled to 1 693 

Hz to obtain point-to-frame correspondence between the time series and video 694 

recordings (Figs. 5A&B).  695 

Two graduate students were recruited to independently code instructional 696 

behaviors in the interactive-learning phase using the video-recording data. The two 697 

coders underwent a weeklong training program by an educational expert (with 28 698 

years of instructional experience in the field of education) to correctly identify 699 

instructional behaviors. Two types of instructional behaviors were categorized for 700 

each Instructional Strategy: for the scaffolding condition, there were (i) scaffolding 701 

behaviors, such as asking key questions, providing feedback and hints, prompting, 702 

simplifying problems, and (ii) other non-scaffolding instructional behaviors, i.e., those 703 

segments in the videos where scaffolding did not occur; for the explanation condition, 704 

there were (i) explanatory behaviors, such as giving detailed definitions, providing 705 

prefabricated materials, and information clarification, and (ii) other non-explanatory 706 

instructional behaviors, i.e., those segments in the videos where explanation did not 707 

occur.  708 

Each one-second (s) video fragment (from the 8 minutes during the 709 

interactive-learning phase) was coded as either containing scaffolding behaviors or 710 

non-scaffolding instructional behaviors in the scaffolding condition; and as either 711 

consisting of explanatory behaviors or non-explanatory instructional behaviors in the 712 

explanation condition. For all coding activities, inter-coder reliability was calculated 713 

by the intra-class correlation (Werts et al., 1974). Inter-coder reliability was 0.87 for 714 

the scaffolding behaviors (vs. non-scaffolding instructional behaviors) in the 715 

scaffolding condition, and 0.81 for the explanatory behaviors (vs. non-explanatory 716 

instructional behaviors) in the explanation condition. If there was an inconsistency, 717 

the two coders discussed it and came to an agreement. 718 
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Based on the results of the coding procedures mentioned above, we categorized 719 

the segments of brain-to-brain coupling associated with different video-coded 720 

instructional behaviors (Figs. 5A&B). We subtracted brain-to-brain coupling during 721 

the rest session (baseline) from these segments of brain-to-brain coupling to obtain the 722 

task-related coupling. Contrasts between task-related brain-to-brain coupling 723 

associated with different video-coded instructional behaviors were obtained using a 724 

series of paired-sample t-tests.  725 

4.7.3. Analysis step C: Brain-to-brain coupling prediction 726 

Finally, we explored whether brain-to-brain coupling allowed us to predict if an 727 

instructor employed the scaffolding or explanation strategy, using a decoding analysis 728 

(Dai et al., 2018; Jiang et al., 2015). The analysis details and strategies can be 729 

described as follows.  730 

Classification features and labels. The time-averaged brain-to-brain coupling 731 

values at channels of interest were used as classification features. We first averaged 732 

the brain-to-brain coupling across the whole time series, resulting in time-averaged 733 

coupling for each channel. We focused on the channel(s) that exhibited significant 734 

task-related coupling (task vs. baseline; Goldstein et al., 2018). Instructional 735 

Strategies (i.e., scaffolding or explanation) were used as class labels.  736 

Classification algorithm. Brain-to-brain coupling features were incorporated into 737 

a logistic regression algorithm. Logistic regression is a supervised machine-learning 738 

algorithm that has been previously used to predict behavioral measures with 739 

neuroimaging data (e.g., Ryali et al., 2010). The aim of logistic regression-based 740 

machine learning is to find the best fitting model that describes the relationship 741 

between the dichotomous features of the dependent variable and independent 742 

variables (Yan et al., 2004).  743 

Classification performance. Classification performance was assessed using the 744 

standard metric of area under the receiver operating characteristic curve (AUC). The 745 

AUC is one of the most common quantitative indexes (Faraggi and Reiser, 2002; 746 
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Hanley and McNeil, 1982), which illustrates the sensitivity and specificity for the 747 

classifier output. It has been successfully used to quantify the accuracy of the 748 

prediction in many neuroimaging studies (e.g., Cohen et al., 2018; Ki et al., 2016).  749 

A permutation test was used to determine whether the obtained AUC was 750 

significantly larger than that generated by chance. Chance level of the AUC was 751 

determined by randomly shuffling the labels (scaffolding or explanation) for the 752 

brain-to-brain coupling values. Significant levels (p < 0.05) were calculated by 753 

comparing the correct AUC from the real labels with 10000 renditions of randomized 754 

labels. 755 

Additional analyses. Finally, we tested whether decoding based on brain-to-brain 756 

coupling generated a better classification of instructional behavior than decoding 757 

based on individual brain activation. The raw fNIRS data were first preprocessed 758 

following the same procedure described in Analysis Step A. Clean (task-related) 759 

signals were then converted into z-scores using the mean and the standard deviation of 760 

the signals recorded during rest (baseline). Normalized intra-brain activity values at 761 

channels of interest in both instructors and learners were extracted as classification 762 

features. The parallel decoding analyses were then repeated as described above. 763 
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