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ABSTRACT 

In this data descriptor, we document a dataset of multiplexed immunofluorescence images and 

derived single-cell measurements of immune lineage and other markers in formaldehyde-fixed 

and paraffin-embedded (FFPE) human tonsil and lung cancer tissue. We used tissue cyclic 

immunofluorescence (t-CyCIF) to generate fluorescence images which we artifact corrected 

using the BaSiC tool, stitched and registered using the ASHLAR algorithm, and segmented using 

ilastik software and MATLAB. We extracted single-cell features from these images using 

HistoCAT software. The resulting dataset can be visualized using image browsers and analyzed 

using high-dimensional, single-cell methods. This dataset is a valuable resource for biological 

discovery of the immune system in normal and diseased states as well as for the development of 

multiplexed image analysis and viewing tools. 

 

METADATA SUMMARY 

Design Type(s) Data transformation 

Measurement Type(s) Immunofluorescence 

Technology Type(s) Multiplexed immunofluorescence imaging 

Factor Type(s) Imaging, Single-Cell 

Sample Characteristic(s) Homo sapiens tissue 

 

BACKGROUND & SUMMARY 

Tissues comprise individual cells of diverse types along with supportive membranes and 

structures as well as blood and lymphatic vessels. The identities, properties and spatial 

distributions of cells that make up tissues are still not fully known: classical histology provides 

excellent spatial resolution, but it typically lacks molecular details. As a result, the impact of 

intrinsic factors such as lineage and extrinsic factors such as the microenvironment on tissue 

biology in health and disease requires molecular profiling of single cells within the broader 

context of organized tissue architecture. Such deep spatial and molecular phenotyping is 

especially pertinent to the study of cancer resection tissues. These samples are routinely acquired 

prior to, on, and after a therapeutic intervention, providing opportunities to characterize the 

interplay between malignant tumor cells and surrounding immune cell populations and how 
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those relationships are influenced over time by treatments. Understanding these relationships 

may provide biomarker signatures that predict response to therapy1,2 and is particularly relevant 

in the case of immunotherapeutics. Many available immunotherapies, including those targeting 

cytotoxic T lymphocyte-associated antigen-4 (CTLA-4), programmed cell death-1 receptor (PD-

1), and programmed cell death-1 ligand (PD-L1), influence interactions between tumor and 

immune cells to inhibit immune checkpoints and activate the immune system’s surveillance of 

tumor cells3–7. However, even in tumor types that are highly responsive to such therapies, many 

patients do not benefit, and many types of tumors remain broadly refractory to these agents. A 

deeper understanding of immune cell states, location, interactions, and architecture 

(“immunophenotypes”) promises to provide new prognostic and predictive information for 

cancer research and treatment. 

 

With recent advances in multiplexed imaging technologies8, multiple epitopes can be detected 

within a tissue section and the spatial distributions and interactions of cell populations precisely 

mapped. One such method is tissue-based cyclic immunofluorescence (t-CyCIF)9 which yields 

high-plex images at subcellular resolution and has been used to characterize immune populations 

in several tumor types10–12. In t-CyCIF, a high-plex image is constructed from a series of 4 to 6 

color images, which are then registered and superimposed. The images provide information on 

the amount of an epitope that is expressed as well as the location of the epitope within the tissue. 

By segmenting the images to demarcate single cells or subcellular compartments, we can then 

use epitope expression levels to discriminate immune, tumor, and stromal cell types and compute 

their numbers and distributions within tumors and surrounding normal tissue. 

 

The quality of the antibody reagents largely dictates the reliability of data that is generated by 

antibody-based imaging methods such as multiplexed ion beam imaging (MIBI)13, imaging mass 

cytometry (IMC)14, co-detection by indexing (CODEX)15, DNA exchange imaging (DEI)16, 

MultiOmyx (MxIF)17, imaging cycler microscopy (ICM)18–20, multiplexed IHC21, NanoString 

Digital Spatial Profiling (DSP)22 , and t-CyCIF itself. We have recently published detailed 

methods for validating antibodies and assembling panels of antibodies for multiplexed tissue 

techniques in Du, Lin, Rashid et al., (Nature Protocols 2019, in press)23. That work highlights a 

variety of complementary approaches to qualify antibodies using information at the level of 
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pixels, cells, and tissues and yielded a 16-plex antibody panel capable of detecting lymphocytes, 

macrophages, and immune checkpoint regulators for use in ‘immune profiling’ tissue sections. 

Using t-CyCIF, we qualified antibodies in reactive tonsil tissue (TONSIL-1), which has a highly 

stereotyped arrangements of diverse immune cell types, and then demonstrated the panel’s utility 

in characterizing common and rare immune populations in three lung cancer tissue specimens: a 

lung adenocarcinoma that had metastasized to a lymph node (LUNG-1-LN), a lung squamous 

cell carcinoma that had metastasized to the brain (LUNG-2-BR), and a primary lung squamous 

cell carcinoma (LUNG-3-PR). We also provide t-CyCIF imaging data from 8 FFPE sections 

used to validate antibodies; in these samples, antibodies were used in different permutations and 

order, making the data useful for examining relationships between antigenicity, fluorescence 

signal, and cycle number. 

 

In this data descriptor, we share the images from Du, Lin, Rashid et al., (Nature Protocols 2019, 

in press)23. The dataset includes immunofluorescence images from formalin fixed paraffin 

embedded (FFPE) tissue sections mounted onto glass slides. In each section, there are between 

~61,800 to ~483,000 individual cells with fluorescence intensity and spatial information 

provided for 27 antibodies that were acquired in a multiplexed fashion. These antibodies include 

the highly validated 16-plex panel as well as antibodies against several additional markers of 

interest such as markers of tumor cell lineage and cell proliferation. We also include quantitative, 

single-cell measurements of 60+ features including fluorescence intensity measurements for each 

target epitope/protein, cellular morphology measurements such as area, eccentricity, and solidity, 

and spatial information such as the centroid position of a cell and its nearest neighbors.  

 

The resulting single-cell data can be analyzed using quantitative and qualitative approaches both 

in the context of the original spatial arrangement of the tissue and as sets of derived feature 

vectors, one for each cell. Spatial views enable the analysis of geographic patterns and 

interactions between different cells types, such as the immune microenvironment surrounding 

tumor tissue. Such data can be used to develop new methods for visualizing large complex 

images and to develop and refine data analysis approaches such as image segmentation, intensity 

gating (to discriminate ‘positive’ and ‘negative’ cell populations), and spatial clustering.  As 

multiple research centers begin to assemble high-dimensional and multi-parametric atlases of 
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human cancers and pre-cancers, there is an increasing need for cross-center validation of analysis 

methodologies. Publicly available datasets such as ours will provide a freely accessible resource 

for such efforts. 

 

METHODS 

Tissue Samples 

Five formalin-fixed paraffin-embedded (FFPE) human tissue samples were retrieved from the 

archives of the Department of Pathology at Brigham and Women’s Hospital with IRB approval 

as part of a discarded tissue protocol. The diagnoses were confirmed by a board-certified 

pathologist (S.S.) (Table 1). Sections were cut from FFPE blocks at a thickness of 5 µm and 

mounted onto Superfrost Plus microscope slides prior to use. 

 

Datasets 

Data from tissue samples was acquired in two batches. The first batch (DATASET-1) contains 

data from LUNG-1-LN, LUNG-2-BR, LUNG-3-PR, and TONSIL-1. The second batch 

(DATASET-2) contains data from eight sections of TONSIL-2. Data associated with each of 

these sections are labeled TONSIL-2.1, TONSIL-2.2, etc. in the data records.  

 

Tissue-Based Cyclic Immunofluorescence 

Each section of tissue was imaged with a panel of 26-28 antibodies using t-CyCIF as previously 

described9. This method consists of iterative cycles of antibody incubation, imaging, and 

fluorophore inactivation (Figure 1). 

 

Slide Preparation 

An automated program on the Leica Bond RX (Leica Biosystems) was used to prepare slides for 

t-CyCIF. The slides were treated as follows: baked at 60 ºC for 30 min, dewaxed at 72 ºC with 

Bond Dewax Solution (Cat. AR9222, Leica Biosystems), and treated with Epitope Retrieval 1 

(ER1) Solution at 100 ºC for 20 min for antigen retrieval. Odyssey Blocking Buffer (Cat. 927–

40150, LI-COR) was applied to the slides at room temperature (RT) for 30 min and then 

incubated with three secondary antibodies at RT for 60 min, followed by Hoechst 33342 (Cat. 

H3570, Life Technologies) solution (2 ug/ml) at RT for 30 min.  
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Blocking 

After slide preparation, non-specific, reactive epitopes were blocked by incubating slides 

overnight at 4 ºC in the dark with secondary antibodies raised against the host species of the 

unconjugated, primary antibodies used in the first cycle of t-CyCIF.  

 

Antibody Staining 

Slides were initially imaged to measure nonspecific binding from secondary antibodies, 

photobleached, and then imaged again to measure autofluorescence. In the first cycle of antibody 

incubation, the slides were incubated overnight with primary antibodies from different species 

and then with secondary antibodies for two hours at RT in the dark. We washed slides with 1X 

PBS, stained them with Hoechst solution, and then imaged them. This process was repeated for 

11-12 cycles using antibodies directly conjugated to fluorophores. All antibodies used in this 

study are listed in Table 2 with an assigned unique identifier. The antibodies used for each cycle 

of imaging for all samples in DATASET-1 are detailed in Table 3, and antibodies for all samples 

in DATASET-2 are detailed in Table 4. 

 

Mounting and De-Coverslipping 

Prior to each cycle of imaging, slides were wet-mounted using 200 µl of 10% glycerol in PBS 

and 24 x 50mm glass cover slips (Cat # 48393-081, VWR). Following imaging, slides were de-

coverslipped by placing vertically in a slide rack completely submerged in a container of 1X 

PBS for 15 minutes and slowly pulling the slides back up, allowing the glass coverslip to remain 

in the PBS. 

 

Image Acquisition 

Images from each cycle of t-CyCIF were acquired using the RareCyte CyteFinder Slide 

Scanning Fluorescence Microscope. The four following filter sets were used: 1) The ‘DAPI 

channel’ for imaging Hoechst with a peak excitation of 390 nm and half-width of 18 nm and a 

peak emission of 435 nm and half-width of 48 nm, 2) the ‘488 channel’ with a 475-nm/28-nm 

excitation filter and a 525-nm/48-nm emission filter, 3) the ‘555 channel’ with a 542-nm/27-nm 

excitation filter and a 597-nm/45-nm emission filter, and 4) the ‘647 channel’ with a 632-nm/22-
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nm excitation filter and a 679-nm/34-nm emission filter. Each tissue section was imaged twice, a 

large region with a 10X/0.3 NA objective and a smaller region with a 40X/0.6NA objective. The 

10X images have a field of view of 1.6 x 1.4 mm and a nominal resolution of 1.06 µm. The 40X 

images have a field of view of 0.42 x 0.35 mm and a nominal resolution of 0.53 µm. For both 

images, a 5% overlap was collected between fields of view to facilitate image stitching. In 

DATASET-2, the first cycle of antibodies were imaged twice, once with a high exposure time 

and once with a low exposure time. 

 

Photobleaching 

Following slide preparation using the Leica Bond RX and subsequent to each cycle of imaging, 

fluorophores were inactivated by submerging slides in a solution of 4.5% H2O2 and 20mM 

NaOH in 1X PBS and incubating them under a light emitting diode (LED) for 2 hours at RT. 

 

Image Processing 

Background and Shading Correction 

The BaSiC algorithm24 plugin for ImageJ was used to computationally derive flat-field and dark-

field profiles from the original image for each cycle. The flat-field is used to correct for irregular 

illumination of the sample, and the dark-field is used to correct for camera sensor offset and 

internal noise. Lambda values of 0.1 and 0.01were used for flat-field and dark-field, respectively. 

For each cycle, the raw image was subtracted by the dark-field profile and divided by the flat-

field profile to correct the shading on each individual image field. 

 

Stitching and Registration 

Ashlar (version v1.6.0) was used to stitch the fields from the first imaging cycle into a mosaic 

and co-register the fields from successive cycles of imaging. Ashlar stitches fields together by 

calculating the phase correlation between neighboring images to correct for local state 

positioning error, and applying a statistical model of microscope stage behavior to correct for 

large-scale error. It uses a similar phase correlation approach to then register fileds from 

successive cycles to the first cycle of stitched images. The output is an OME-TIFF file that 

contains a seamless many-channel mosaic depicting the entire sample across all image cycles. 
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Segmentation 

The OME-TIFF output from ASHLAR was used to segment single cells in the images using the 

ilastik software program25 and MATLAB(version 2018a). The OME-TIFF was cropped into 

6000 x 6000 pixel regions to increase processing speed. From each cropped region, ~20 random 

250 x 250 pixel regions were selected and used as training data on the ilastik program to generate 

a probability of each pixel in the cropped region belonging to three classes: nuclear area, 

cytoplasmic area, or area not occupied by a cell (background). Color/intensity features including 

gaussian smoothing, edge features including the Laplacian of gaussian, gaussian of gradient 

magnitude, and difference of gaussians, and texture features including structure tensor 

eigenvalues and hessian of gaussian eigenvalues with a σ0 = 0.30, σ1 = 0.70, σ2 = 1.00, σ3 = 1.60, 

σ4 = 3.50, and σ5 = 5.03 were used for pixel classification. MATLAB was then used to perform a 

watershed segmentation on the probabilities to identify objects, or cells, and a segmentation 

mask was generated for each cropped region.  

 

Single-Cell Feature Extraction 

The histology topography cytometry analysis toolbox (histoCAT)26 was used to extract features 

of the cells segmented in each image. Single cell features included fluorescence intensity 

measurements of each antibody, morphological features such as cell area and circularity, as well 

as spatial features such as the centroid position of the cell. Moreover, cells in spatial proximity to 

one another were identified and indexed to enable neighborhood analysis and cell phenotype 

interactions. The output was a data table for each cropped region. For each sample, the data 

tables from all the cropped regions were concatenated into a master image level data table with 

each cell assigned a global unique identifier and centroid position. A complete list and 

description of each feature in the master data tables is provided in Table 5.  

 

Code availability 

All code used to process and generate the data in this study can be found alongside the data (Data 

Citation 1: Synapse https://doi.org/10.7303/syn17865732)27. Source code for ASHLAR is 

available on GitHub (https://github.com/jmuhlich/ashlar). The newest histoCAT version can also 

be found GitHub (https://github.com/BodenmillerGroup/histoCAT). 
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DATA RECORDS 

We have made all the data for this manuscript available in the Synapse repository hosted by Sage 

Bionetworks (Data Citation 1: Synapse https://doi.org/10.7303/syn17865732)27. We organized 

the data as described in Figure 2. For each tissue sample, we share image data acquired at two 

magnifications. For each 40X magnification dataset, we share: 

i. raw rcpnl files,  

ii. illumination profiles calculated by the BaSiC algorithm,  

iii. an OME-TIFF file output from the ASHLAR algorithm, 

iv. individual TIFF images for each marker, 

v. probability masks for segmentation from ilastik software, 

vi. labeled nuclear segmentation mask, and 

vii. data table of 60+ features extracted for each cell. 

 

The “rcpnl” folder contains the raw image files in an rcpnl file format generated by the RareCyte 

CyteFinder for each cycle of imaging. The “illumprofs” folder contains TIFF files for the dark-

field profile and the flat-field profile for each cycle of imaging. Each TIFF file in this folder is a 

stack of four TIFF images corresponding to the four wavelengths imaged every cycle. The 

“ometiff” folder contains one OME-TIFF file that is a stitched, registered mosaic of all channels 

from all cycles of imaging. The OME-TIFF file contains mosaics at multiple resolutions. The 

“singletiff” folder contains a single TIFF mosaic for each marker. This folder separates the 

OME-TIFF into separate channels to facilitate opening in older software that is incompatible 

with the OME-TIFF format. The “segmentation” folder contains subfolders with intermediate 

data outputs from the segmentation process. The “cropped” subfolder contains 6000 x 6000 pixel 

regions from the OME-TIFF file. The “training” subfolder contains 250 x 250 pixel regions used 

as training data for segmentation. The “ilastikprob” subfolder contains a TIFF image for the 

probability of each pixel in the cropped regions belonging to each class used in ilastik training. 

This image is in a stack with the DAPI image from the first cycle of imaging for easy 

comparison of the accuracy of the probability mask. The “ilastikseg” folder contains a TIFF 

image of the nuclear segmentation mask. Each object, or cell, in the mask is labeled with a 

unique index number. The “features” folder contains a csv data table for each cropped region 
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with 60+ feature measurements for each cell as well as a master data table with data from each 

cropped region combined. 

 

We provide all scripts used in data generation. A description of the scripts and supporting 

documents is provided in Table 6. 

 

Additionally, a subset of the imaging data can be found and viewed on cycif.org (Data Citation 

2: CyCIF.org https://www.cycif.org/featured-paper/du-and-lin-2019/figures/). In this interactive 

image browser, we indicate some distinct regions of the tonsil and lung cancer images and 

provide descriptive narrations about a subset of the combinations of immune markers expressed 

in these samples.  

 

TECHNICAL VALIDATION 

Staining Quality 

We performed a detailed validation of the panel of antibodies used to generate the datasets 

described in Du, Lin, Rashid et al., 201923 One or more trained pathologists visually reviewed 

the staining patterns for each antibody to assess specificity to cell type, appropriate localization 

within the cell (nucleus v. cytoplasm v. membrane), co-staining with other markers, and 

localization to the expected geographic regions within the tissue. For example, the cytokeratin 

antibody, known to detect intermediate filament proteins in epithelial cells, was expressed in 

striated patterns surrounding the nuclei of cells morphologically consistent with epithelial origin, 

whereas the FOXP3 antibody, targeting a transcription factor in T cells, was concentrated in the 

nuclear area of small cells morphologically consistent with lymphocytes (Figure 3a). The 

antibodies detecting cell lineage markers such as FOXP3, which delineates a regulatory T-cell 

population, were further corroborated by assessing appropriate co-expression of other markers. 

For example, we found that FOXP3 was co-expressed with CD4, CD3D, and CD45, thereby 

increasing our confidence in the staining quality (Figure 3a). As another example, CD20, a B-

cell antigen, was observed to have higher levels of signal within germinal centers of tonsil tissue 

which are well-established B cell rich compartments within tonsil rather than the mantle region 

where we found an abundance of cells expressing the T-cell antigen CD3D (Figure 3b). See Du, 

Lin, Rashid et al., 201923 for additional quality measurements including the comparison of t-
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CyCIF antibody staining to the staining observed with clinical grade antibodies that were used in 

immunohistochemistry (IHC) staining, pixel-by-pixel correlations of multiple antibody clones 

against the same target, and various high-dimensional cell clustering methods.  

 

Cell Segmentation 

We evaluated the quality of segmentation of single cells within the tissue images using a two-

step system. We only performed segmentation on the 40X magnification images because the 

lower resolution of the 10X magnification images did not give sufficient resolution. First, we 

overlaid the segmentation masks over the DAPI signal to evaluate the accuracy of segmentation 

qualitatively (Figure 4a); based on these data, we then adjusted and optimized the segmentation. 

Second, three users evaluated a random sample of 500 cells from the tonsil and each of the lung 

tissues to quantify the accuracy and rate of fusions (under-segmentation) and fission/splitting 

(over-segmentation) among mis-segmented cells (Figure 4b-c, Online-only Table 1). The cell 

segmentation of all samples had a low error rate (~0.1) across cells of various morphologies 

(large tumor cells, smaller round immune cells, skinny elongated fibroblasts, etc.). 

 

Single-Cell Feature Extraction 

To assess the integrity of the single-cell features extracted from the images, we applied an 

unsupervised, k-means clustering method to the data from the three lung cancer resection 

samples and the reactive tonsil sample. This yielded four cardinal cell types (clusters) using three 

lineage markers (Figure 5a). For each sample, the cells clustered into an epithelial group marked 

by keratin expression, a stromal group marked by αSMA expression, and a lymphocyte group 

marked by CD45 expression. A fourth group was marked by low expression of all three markers. 

We then isolated the cells in the lymphocyte group and further clustered them using other 

lymphocyte markers (Figure 5b-c). The clustering revealed similar immune cell populations to 

those observed by visual review of the images and as quantified using other computational 

methods in Du, Lin, Rashid et al., 201923. Using alternative segmentation, feature extraction, and 

computational approaches, we retained reproducible immune cell populations, giving us 

confidence in the robustness of this dataset. However, it is highly probable that image 

segmentation can be further improved with the development of new algorithms.   

 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 17, 2019. ; https://doi.org/10.1101/704114doi: bioRxiv preprint 

https://doi.org/10.1101/704114
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

 
 12 

USAGE NOTES 

More information on the t-CyCIF method used to generate this data can be found at: 

www.cycif.org and a detailed protocol can be found in Lin et al., 20189 and Du, Lin, Rashid et 

al., 201923. 

 

A narrative of the dataset is available for interactive web-browsing here: 

https://www.cycif.org/featured-paper/du-and-lin-2019/figures/ 

 

FIGURE LEGENDS 
Figure 1. Overview of data generation. (a) Multiplexed, immunofluorescence images were 

acquired using the tissue-based cyclic immunofluorescence (t-CyCIF) method and (b) processed 

with a series of algorithms and toolboxes including BaSiC, ASHLAR, ilastik, and histoCAT to 

obtain single-cell features. 

 

Figure 2. Database structure. All shared data are stored in the SYNAPSE repository. 

https://doi.org/10.7303/syn17865732 

 

Figure 3. Antibody staining quality. (a) Immunofluorescence image from LUNG-3 showing 

epithelial tumor cells marked by Keratin (white) and a regulatory T cell marked by FOXP3 

(cyan), CD4 (yellow), CD3D (red), and CD45 (green) (scale bar: 25 µm; inset scale bar: 10 µm). 

(b) A region of TONSIL-1 showing CD20 (green) and CD3D (red) expression. Area inside 

yellow dashed circle denotes germinal center (GC), and area outside denotes the mantle (M) 

region (scale bar: 100 µm). (c) Probability density function of fluorescence signal intensity of 

every pixel in the germinal center (n = 1,446,450 pixels) and mantle (n = 4,369,358 pixels) for 

CD20 and CD3D within the region shown in (a). 

 

Figure 4. Assessment of segmentation. (a) Representative images of DAPI staining and 

corresponding segmentation mask in TONSIL-1 and LUNG-3-PR. (b) Examples of fusion 

(under-segmentation) and (c) fission/splitting (over-segmentation). 
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Figure 5. Heatmaps of cell populations from lung cancer and tonsil tissues using k-means 

clustering demonstrates distinct cell immune populations with expected patterns of biomarker 

expression. (a) Heatmap of the expression of Keratin, αSMA, and CD45 in all cells that were 

collected from LUNG-1- LN, LUNG-2-BR, LUNG-3-PR, and TONSIL-1 using k-means 

clustering. Each row is a cluster. The black vertical lines indicate the lymphocyte cluster with 

high CD45 expression from each tissue. (b. and c.) Heatmaps showing the expression of seven 

lymphocyte markers (CD45, CD3D, CD8A, CD4, CD20, PD1, FOXP3) from the cells within the 

CD45 high cluster from panel (a). (b) Each row represents a cluster or (c) each row represents 

protein marker expression data from a single cell. Note that data was log transformed and 

normalized between –1 to 1 as indicated by the color bar. (d) Plot showing fit of each cell within 

the cluster, with x-axis denoting the Euclidean distance from the centroid of the cluster and y-

axis denoting the frequency of cells. 
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Online-only Table 1: Segmentation Accuracy

Mean SD Mean SD Mean SD Mean SD
True Positive 0.872 0.013 0.89 0.017 0.899 0.013 0.863 0.012
Fusion 0.086 0.027 0.074 0.017 0.053 0.019 0.038 0.020
Fission 0.042 0.017 0.036 0.003 0.047 0.008 0.099 0.025

LUNG-2-BRLUNG-1-LN TONSIL-1LUNG-3-PR
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