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Abstract 

Genomic	variation	affects	cellular	networks	by	altering	diverse	molecular	layers	such	as	

RNA	levels,	protein	abundance,	and	post‐translational	protein	modifications.	However,	it	

remains	unclear	how	these	different	layers	are	affected	by	genetic	polymorphisms	and	

give	rise	to	complex	physiological	phenotypes.	To	address	these	questions,	we	generated	

high‐quality	 transcriptome,	 proteome,	 and	 phosphoproteome	 data	 for	 a	 panel	 of	 112	

genetically	 diverse	 yeast	 strains.	While	 genetic	 effects	 on	 transcript	 abundances	were	

generally	 transmitted	 to	 the	 protein	 level,	 we	 found	 a	 significant	 uncoupling	 of	 the	

transcript‐protein	 relationship	 for	 certain	 protein	 classes,	 such	 as	 subunits	 of	 protein	

complexes.	The	additional	phosphoproteomics	data	suggests	that	the	same	genetic	locus	

often	affects	distinct	sets	of	genes	within	each	of	these	layers.	In	particular,	QTLs	tended	

to	 affect	 upstream	 regulatory	 proteins	 at	 the	 phosphorylation	 layer,	 whereas	

downstream	 pathway	 targets	 were	 typically	 affected	 at	 the	 transcript	 and	 protein	

abundance	layers.	Underscoring	the	importance	of	regulatory	protein	phosphorylation	in	

linking	 genetic	 to	 phenotypic	 variation	 is	 the	 finding	 that	 the	 number	 of	 protein	

phosphosites	associated	with	a	given	genetic	locus	was	more	predictive	for	its	influence	

on	cellular	growth	traits	than	the	number	of	transcripts	or	proteins.		

This	study	shows	how	multi‐layered	molecular	networks	mediate	the	effects	of	genomic	

variants	to	more	complex	physiological	traits	and	highlights	the	important	role	of	protein	

phosphorylation	in	mediating	these	effects.	
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Introduction 

Genetic	 polymorphisms	 are	 important	modifiers	 of	many	 physiological	 traits,	 such	 as	

body	height	or	disease	susceptibility.	Differences	in	these	traits	are	caused	by	alterations	

of	the	underlying	molecular	networks1.	There	are	various	ways	how	genetic	variants	can	

influence	 these	 molecular	 networks.	 For	 instance,	 genetic	 variants	 might	 either	 act	

indirectly	 through	 multiple	 layers,	 e.g.	 by	 first	 changing	 mRNA	 levels,	 which	 then	

influence	protein	levels,	or	directly	on	individual	 layers,	e.g.	by	changing	protein	levels	

through	 altered	 protein	 stability2.	 Changes	 in	 the	 sequence	 of	 an	 mRNA	 can	 affect	

translation	 rates,	 hence	 altering	 protein	 abundance,	 while	 the	 concentration	 of	 its	

corresponding	mRNA	stays	constant	(reviewed	in	3).	The	net	activity	of	proteins	can	be	

modulated	by	changing	the	protein	levels	and/or	by	changing	their	specific	activities,	e.g.	

by	 increasing	 or	 decreasing	 regulatory	 phosphorylation.	 Varying	 concentrations	 of	 a	

kinase	can	affect	phosphorylation	levels	of	its	targets,	which,	in	turn,	might	lead	to	their		

degradation4,	activation	or	inhibition5,	or	changes	in	their	subcellular	localization6.	The	

local	concentration	of	a	specific	phosphorylated	protein	(e.g.,	a	transcription	factor)	might	

in	turn	affect	transcription	of	yet	other	genes.	Thus,	the	crosstalk	between	the	different	

molecular	 layers	 is	 characterized	 by	 a	 great	 diversity	 of	 mechanisms,	 including	

biosynthetic‐	and	signalling	processes2.		

High‐throughput	 molecular	 profiling	 (‘omics’)	 technologies	 have	 enabled	 the	

investigation	 of	 the	 impact	 of	 genetic	 variation	 on	 individual	 molecular	 layers	 on	 a	

genomic	scale.	Such	data	can	be	used	to	identify	genetic	variants	that	explain	some	of	the	

variation	in	the	measured	traits,	termed	quantitative	trait	loci	(QTLs).	For	example,	with	

current	RNA	sequencing	(RNA‐seq)	technologies	it	is	possible	to	detect	expression	QTLs	

(eQTLs)	for	virtually	all	transcripts	present	in	a	cell7.	Likewise,	mass	spectrometry	has	

been	 used	 to	 identify	 QTLs	 for	 hundreds	 of	 proteins	 (pQTLs)8–11	 and	metabolic	 traits	

(mQTLs;	reviewed	in	12).	A	shortcoming	of	many	existing	studies	is	that	either	only	one	

molecular	layer	was	measured,	typically	transcripts,	or,	if	multiple	layers	were	measured,	

transcripts	 and	 proteins	 were	 not	 isolated	 from	 the	 same	 cultures,	 reducing	

comparability	due	to	potential	differences	in	environmental	effects.	Furthermore,	post‐

translational	protein	modifications	(PTMs),	such	as	phosphorylation,	have	been	largely	

neglected	and	no	systematic	phosphorylation	QTL	(phQTL)	studies	have	been	performed	

to	date.		

A	 comprehensive	 view	of	 the	 effects	 of	 genetic	perturbations	on	 integrated	molecular	

networks	 requires	 accurate	 quantitative	 measurements	 at	 different	 molecular	 layers	

from	 the	 same	 samples14.	 Therefore,	 we	 designed	 a	 multi‐omics	 QTL	 study	 in	

.CC-BY-NC 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 16, 2019. ; https://doi.org/10.1101/703140doi: bioRxiv preprint 

https://doi.org/10.1101/703140
http://creativecommons.org/licenses/by-nc/4.0/


Großbach,	Gillet,	Clément‐Ziza,	et	al.	

Page	4	

recombinant	 offspring	 of	 a	 cross	 of	 two	 budding	 yeast	 strains,	 with	 four	 key	

distinguishing	 features:	 (i)	 we	 quantified	 transcripts,	 proteins,	 and	 protein	

phosphorylation	 levels	at	a	genomic	scale;	(ii)	by	using	the	SWATH‐MS	technology	we	

could	reproducibly	quantify	a	large	number	of	proteins	across	virtually	all	samples;	(iii)	

RNA,	protein,	and	phosphoprotein	samples	were	obtained	from	the	same	yeast	cultures,	

which	greatly	facilitated	the	integration	of	the	data;	and	(iv)	the	data	integration	scheme	

that	 we	 developed	 for	 this	 study	 enabled	 us	 to	 investigate	 interdependencies	 of	 the	

molecular	patterns	between	the	layers.	This	setup	enabled	us,	for	the	first	time,	to	map	

the	 response	 of	 cellular	 signalling	 networks	 to	 genomic	 variation,	 to	 dissect	 the	

interaction	of	transcript‐	and	protein	abundance	changes,	and	to	investigate	the	relevance	

of	phQTLs	for	complex	cellular	traits.	
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Figure	1	 |	Experimental	design	and	study	overview.	Yeast	segregants	derived	from	

two	parental	 strains,	 BY	 and	RM,	were	 grown	 and	 characterized	with	 different	 omics	

approaches.	 Their	 transcriptome,	 proteome,	 and	 phosphoproteome	 were	 directly	

quantified	in	samples	obtained	from	the	same	culture	flask.	Residual	traits	representing	

the	disparities	between	transcript	and	protein	levels	(i.e.,	measuring	post‐transcriptional	

regulation,	 light	 green),	 and	 those	 between	 protein	 and	 phosphopeptide	 levels	 (i.e.,	

measuring	phosphorylation	status,	pink)	were	computed.	QTL	analyses	were	performed	

to	determine	the	effect	of	genetic	variation	on	each	of	these	molecular	layers.	
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Results  

Multi‐omics profiling of a yeast panel 

The	BYxRM	Saccharomyces	 cerevisiae	 yeast	 segregant	 panel	 used	 in	 this	 study	 results	

from	a	cross	of	a	laboratory	strain	(BY4716)	isogenic	to	the	reference	strain	S288C,	and	a	

derivative	of	a	wild	isolate	from	a	vineyard	(RM11‐1a).	This	cross	was	previously	used	to	

study	the	genetic	contribution	to	molecular	traits	–	including	RNA	and	protein	levels	–	

and	 to	 test	novel	 systems	genetics	approaches15–17.	We	grew	the	 two	parental	haploid	

yeast	strains	and	110	of	their	recombinant	offspring	under	tightly	controlled	conditions,	

with	multiple	 replicates	 for	 some	 of	 the	 strains	 (Fig.	 1,	 Supplementary	 Data	 S1).	 The	

transcriptomes	of	150	cultures	were	sequenced	at	high	coverage	(38‐186x)	allowing	for	

the	quantification	of	5,429	transcripts	in	all	samples	(Supplementary	Data	S2).	The	RNA‐

seq	 data	was	 also	used	 to	 infer	 the	 genotypes	 of	 the	 strains,	 using	 a	 strategy	 that	we	

developed	previously18	(Supplementary	Figure	S1,	Supplementary	Data	S3),	significantly	

improving	 the	 localization	 of	 recombination	 sites	 compared	 to	 previous	 studies19.	 In	

samples	obtained	from	the	same	yeast	cultures,	we	used	SWATH‐mass	spectrometry	(MS)	

to	measure	the	abundances	of	1,862	proteins	with	less	than	1.8%	missing	values	across	

all	samples	(Fig.	2a,	Supplementary	Data	S4).	This	represents	a	four‐fold	increase	in	the	

number	of	quantified	proteins	compared	to	previous	studies	in	the	same	cross8,11,16,17.	We	

also	quantified	the	phosphorylation	state	of	the	proteins	by	SWATH‐MS;	after	stringent	

filtering,	we	obtained	abundances	of	2,116	phosphopeptides	from	988	proteins	with	less	

than	2.4%	missing	values	across	all	samples	(Supplementary	Data	S5).		
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Figure	 2	 |	 Genetic	 control	 of	 molecular	 phenotypes.	 a,	 Overlap	 of	 quantified	

transcriptome,	 proteome,	 and	 phosphoproteome.	 b,	 Broad‐sense	 heritability	 of	 traits	

belonging	 to	 the	 402	 genes	 for	 which	 measurements	 at	 each	 molecular	 level	 were	

available.	Broad‐sense	heritability	was	estimated	by	 comparing	 the	 variation	between	

replicates	 from	 the	 same	 strain	 (which	 is	 non‐genetic)	 to	 the	 total	 variation	 between	

strains.	When	the	intra‐strain	variation	is	small	compared	to	the	inter‐strain	variation,	it	

can	 be	 concluded	 that	 the	 genetic	 contribution	 to	 trait	 variation	 is	 large	 under	 the	

experimental	conditions	tested20.	c,	Proportion	of	molecular	traits	affected	by	at	least	one	

QTL	are	shown	separately	for	each	molecular	layer.	Shaded	areas	indicate	the	proportion	

of	traits	for	which	a	local	QTL	was	found.		

	

As	 expected,	 we	 observed	 that	 in	 most	 cases,	 protein	 abundances	 were	 positively	

correlated	with	their	transcript	levels	(average	r=0.23),	and	most	phosphopeptides	were	

positively	 correlated	 with	 their	 proteins	 of	 origin	 (average	 r=0.29)	 (Supplementary	

Figure	S2).	However,	each	layer	can	also	be	affected	independently	of	the	genetic	effects	

on	the	other	layers.	In	order	to	identify	direct	effects	that	act	on	a	molecular	layer,	we	
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computationally	 generated	 traits	 from	which	 effects	 acting	 on	 other	molecular	 layers	

were	removed	as	previously	proposed8.	First,	we	estimated	 the	contribution	of	mRNA	

changes	 to	 protein‐level	 changes	 by	 regressing	 the	 concentration	 of	 a	 given	 protein	

against	the	concentration	of	its	encoding	mRNA	across	all	strains.	Deviations	from	this	

regression	(residuals)	can	either	result	from	noise	in	the	data,	or	from	pQTL	effects	that	

are	independent	of	transcript‐level	changes.	We	used	the	residuals	as	estimates	of	post‐

transcriptional	regulation,	resulting	in	1857	post‐transcriptional	(pt)	traits8.	Likewise,	we	

regressed	 phosphopeptide	 levels	 against	 levels	 of	 the	 proteins	 of	 origin	 and	 used	 the	

residuals	as	estimates	of	differential	phosphorylation,	resulting	in	879	phospho‐residual	

(phRes)	 traits.	The	QTLs	obtained	by	mapping	 these	residual	 traits	were	termed	post‐

transcriptional	QTL	(ptQTL)	and	phospho‐residual	QTL	(phResQTL),	respectively.		

QTLs have widespread effects on all quantified molecular layers 

In	 order	 to	 quantify	 the	 fraction	 of	 trait	 variation	 that	 can	 be	 attributed	 to	 genetic	

differences,	we	quantified	broad‐sense	heritability	by	leveraging	available	replicates	as	

proposed	 before20	 (Fig.	 2b).	 All	 five	 types	 of	 molecular	 traits	 outlined	 above	 had	

heritabilities	greater	than	expected	by	chance	(p<2.2E‐16,	Wilcoxon	rank	sum	test);	525	

(28%)	pt	traits	and	165	(18%)	phRes	traits	had	heritabilities	greater	than	50%,	indicating	

that	at	least	a	part	of	the	residual	variation	is	genetically	determined	and	not	just	technical	

and/or	biological	noise8.	

We	utilized	a	Random	Forest‐based	mapping	strategy	to	identify	QTLs.	This	approach	was	

previously	 shown	 to	 outperform	 traditional	 QTL	 mapping	 methods	 because	 of	 its	

capability	to	account	for	complex	(epistatic)	interactions	between	genetic	loci21.	In	total,	

we	detected	5,776	eQTLs,	2,078	pQTLs,	and	1,327	ptQTLs	at	a	false	discovery	rate	(FDR)	

below	10%	(Supplementary	Table	S1,	Supplementary	Figures	S3a‐e).	The	same	fraction	

of	transcripts	and	proteins	had	at	least	one	QTL	(77%	at	FDR<10%	in	both	cases;	Fig.	2c).	

This	large	proportion	of	proteins	with	at	least	one	pQTL	underlines	the	high	quality	of	the	

proteomics	data8.	We	also	detected	1,595	phQTLs	and	466	phResQTLs	affecting	1,266	

phosphopeptides	(60%)	and	389	phosphoresiduals	(44%),	respectively	(Supplementary	

Table	S1).		

To	 understand	 where	 these	 QTLs	 are	 located	 with	 respect	 to	 their	 target	 genes,	 we	

classified	QTLs	as	either	local	or	distant	based	on	their	linkage	disequilibrium	with	the	

genetic	marker	that	is	closest	to	the	affected	gene	(Methods).	The	fraction	of	molecular	

traits	with	a	local	QTL	was	in	a	similar	range	for	all	directly	measured	traits	(10‐20%),	

with	 transcripts	 being	 most	 strongly	 enriched	 for	 local	 QTLs	 (Fig.	 2c).	 The	 residual‐

derived	traits	(pt	and	phRes)	had	the	smallest	fraction	of	local	QTLs,	which	may	be	due	to	
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biological	reasons,	due	to	increased	noise	(as	discussed	above),	or	a	combination	of	the	

two.	Next,	we	asked	whether	local	eQTLs	and	pQTLs	could	be	attributed	to	changes	in	the	

sequence	of	the	respective	transcript,	which	might	influence	transcription	and	translation	

rates.	When	comparing	genes	with	local	QTLs	(i.e.,	local	eQTLs,	pQTLs,	and	ptQTLs)	with	

genes	that	are	only	affected	by	distant	QTLs,	we	found	that	the	former	had	an	increased	

number	of	polymorphisms	in	non‐coding	regions	(e.g.,	5'	untranslated	regions	(UTRs)	or	

3’	UTRs;	Fig.	3a).	The	existence	of	local	ptQTLs	(129	local	ptQTLs	for	6.9%	of	all	pt	traits)	

and	 the	 fact	 that	ptQTLs	were	 enriched	 for	polymorphisms	outside	 of	 coding	 regions,	

suggest	 that	 variants	 in	 non‐coding	 parts	 of	 the	 genome	 can	 influence	 protein	 levels	

independently	 of	 their	 coding	 transcripts8,	 for	 example	 through	 polymorphisms	 in	

ribosomal	binding	sites	affecting	translation	initiation	or	variants	altering	mRNA	capping	

and	looping.	

Regions	in	the	genome	that	affect	significantly	more	traits	than	expected	by	chance	are	

referred	 to	 as	QTL	 hotspots22.	 Since	 these	 loci	 affect	 large	 numbers	 of	 traits,	 they	 are	

assumed	to	act	through	master	regulators	such	as	transcription	factors	or	kinases7,23.	We	

tested	for	regulatory	hotspots	as	proposed	before15	(Methods)	and	detected	between	9	

and	15	significant	hotspots	for	each	molecular	layer,	with	the	largest	number	of	hotspots	

being	detected	for	the	eQTL	layer	(Fig.	3b,	Supplementary	Table	S2).	Previous	work	found	

that	most	distant	eQTLs	act	from	within	hotspots7.	Our	data	shows	that	this	is	the	case	for	

QTLs	 of	 all	 five	 types	 of	molecular	 traits	 considered	 here	 (Supplementary	 Figure	 S4).	

Many	of	the	detected	hotspots	have	been	reported	as	eQTL	hotspots	for	this	yeast	cross	

before.	For	 some	of	 them	a	causal	 gene	has	been	validated,	e.g.,	HAP1	 (chrXII:2),	 IRA2	

(chrXV:1),	 and	 MKT1	 (chrXIV:1)15,22.	 While	 most	 of	 the	 hotspots	 affected	 multiple	

molecular	 layers	 simultaneously,	 we	 also	 observed	 hotspots	 that	 predominantly	

impacted	 the	 transcriptome	 (e.g.,	 chrV:2),	 the	 proteome	 (e.g.,	 chrXII:1)	 or	 the	

phosphoproteome	(e.g.,	chrVIII:1).	Thus,	the	molecular	mechanism	of	a	QTL	may	have	a	

strong	influence	on	which	molecular	layer	is	primarily	affected.	

Transmission of genetic effects from the transcriptome to the proteome  

The	 deep	 coverage	 of	 the	 transcriptome	 and	 proteome	 in	 this	 study	 enabled	 us	 to	

investigate	to	what	extent	transcript	level	changes	are	transmitted	to	their	corresponding	

proteins.	 First,	 we	 observed	 that	 local	 eQTLs	 and	 local	 pQTLs	 were	 significantly	

overlapping	(p<2.2E‐16,	OR=11,	one‐sided	Fisher's	exact	test),	which	is	expected	in	the	

absence	 of	 major	 post‐transcriptional	 or	 post‐translational	 regulation.	 In	 order	 to	

estimate	QTL	effect	sizes,	we	split	the	population	of	yeast	segregants	based	on	the	alleles	

at	a	linked	locus	and	computed	the	log	fold	change	of	the	transcript	and	protein	levels	
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between	 the	 two	 sub‐populations.	 When	 comparing	 transcript	 fold	 changes	 with	 the	

respective	protein	fold	changes,	we	found	that	they	were	strongly	correlated	(eQTLs	with	

FDR<10%,	r=0.73,	Fig.	3c).	Previous	work	suggested	that	local	and	distant	eQTLs	affect	

the	proteome	in	different	ways	(8,13,	Supplementary	Text	S1).	Using	our	data,	a	regression	

of	transcript	and	protein	fold	changes	had	a	slope	close	to	1	for	both	 local	and	distant	

eQTLs	(Supplementary	Figure	S5),	implying	that	changes	in	transcript	levels	tend	to	cause	

similar	changes	in	protein	levels	regardless	of	the	eQTL	being	local	or	distant.	In	addition,	

for	most	 eQTL	 hotspots,	 transcript	 variation	was	 propagated	 to	 protein	 levels,	 as	 for	

example	at	the	HAP1	 locus	(chrXII:2).	Effects	of	this	hotspot	on	protein	concentrations	

were	highly	correlated	with	those	at	the	transcript	level	(Pearson’s	correlation	coefficient	

r=0.94	for	the	289	eQTLs	at	FDR<10%).	

Despite	widespread	concordance	between	eQTL	effects	on	transcripts	and	proteins,	we	

also	detected	many	eQTLs	exhibiting	effects	on	the	protein	level	that	were	different	from	

those	on	the	transcript	level.	We	classified	targets	of	eQTLs	into	three	groups	based	on	

the	difference	of	allelic	effects	at	the	transcript	and	protein	levels	(Methods	and	Fig.	3c).	

The	first	group	contained	genes	for	which	the	effects	of	an	eQTL	on	the	transcript	and	

protein	levels	of	its	target	gene	were	similar	(‘similar’).	The	second	group	contained	genes	

for	which	the	effects	of	an	eQTL	were	repressed	or	even	entirely	buffered	on	the	protein	

level	(‘buffered’).	The	third	group	contained	genes	for	which	proteins	showed	enhanced	

responses	compared	to	their	corresponding	transcript	(‘enhanced’).	As	a	fourth	group,	

we	added	genes	that	were	affected	on	their	protein	level	by	ptQTLs,	without	a	significant	

effect	 on	 the	 corresponding	 transcript	 level	 (‘protein	 only’).	 Gene	 Ontology	 (GO)	

enrichment	revealed	that	genes	with	eQTLs	that	affected	their	protein	level	to	a	similar	

extent	as	the	transcript	levels	were	enriched	for	genes	related	to	protein	import	into	the	

mitochondrial	matrix	(Supplementary	Table	S3).	Genes	with	buffered	eQTL	effects	were	

strongly	enriched	for	terms	related	to	cytoplasmic	translation,	including	the	large	subunit	

of	 the	 ribosome,	 and	 proteins	 localizing	 to	 the	 nucleolus	 (Supplementary	 Table	 S4).	

Although	 buffering	 of	 ribosomal	 proteins	 has	 been	 observed	 before8,	 it	 could	 not	 be	

excluded	that	this	was	due	to	technical	issues	in	protein	quantification.	However,	this	is	

unlikely	the	case	here:	first,	because	ribosomal	proteins	are	relatively	highly	expressed	

and	hence	easily	quantifiable	by	mass	spectrometry,	and	second,	because	these	proteins	

were	affected	by	other	pQTLs	at	a	similar	rate	as	the	rest	of	the	proteome	(73%	of	proteins	

with	buffered	eQTLs	had	at	least	one	pQTL).	

Genes	affected	by	enhanced	eQTLs	were	strongly	enriched	for	mitochondrial	ribosomes	

and	 other	 terms	 related	 to	mitochondrial	 translation	 (Supplementary	 Table	 S5).	 Like	

buffered	 proteins,	 proteins	 affected	 by	 ‘protein	 only’	 effects	 were	 also	 enriched	 for	
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functions	related	to	cytoplasmic	translation	(Supplementary	Table	S6).	This	unexpected	

functional	 similarity	 between	 buffered	 proteins	 and	 proteins	 subject	 to	 ‘protein	 only’	

effects	 raised	 the	 question	 whether	 the	 same	 proteins	 could	 be	 subject	 to	 both	

phenomena.	Indeed,	we	found	that	genes	affected	by	a	buffered	eQTL	were	more	likely	to	

also	be	affected	by	a	 ‘protein	only’	QTL	(219	genes;	p<7E‐4,	Fisher’s	exact	 test).	Thus,	

specific	groups	of	proteins	seem	to	require	extensive	post‐transcriptional	fine‐tuning	of	

their	 cellular	 concentrations,	 decoupling	 protein	 levels	 from	 transcript	 levels	

(Supplementary	Figure	S6).		

This	notion	was	further	supported	by	detailed	investigation	of	individual	hotspots	with	

heterogeneous	eQTL	and	pQTL	effects.	For	example,	the	effects	of	the	IRA2	hotspot	(XV:1)	

on	transcript	levels	of	cytoplasmic	ribosomal	genes	was	not	transmitted	to	protein	levels,	

but	the	same	locus	affected	protein	levels	of	genes	related	to	mitochondrial	respiration	

without	changing	their	transcript	levels	(Supplementary	Figure	S7).	While	the	effects	of	

the	MKT1	hotspot	(XIV:1)	on	the	protein	levels	of	cytosolic	ribosomes	were	buffered,	the	

effects	of	the	same	locus	on	the	protein	levels	of	mitochondrial	ribosomes	were	enhanced.	

Thus,	our	analysis	reveals	complex	post‐transcriptional	QTL	effects,	especially	for	genes	

involved	in	translation,	with	marked	differences	between	cytoplasmic	and	mitochondrial	

translation.	
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Figure	3	 |	Genomic	effects	on	 transcript	and	protein	 levels.	a,	Average	number	of	

SNPs	in	and	around	genes	affected	by	local	QTLs	at	the	respective	molecular	layer.	The	

horizontal	 dashed	 black	 line	 shows	 the	 average	 number	 of	 SNPs	 across	 all	 annotated	

genes	in	the	respective	regions	(Methods).	b,	Number	of	traits	affected	by	each	locus	at	

FDR<10%	for	each	molecular	 layer.	Regions	with	more	QTLs	 than	expected	by	chance	

(QTL	hotspots)	are	shown	in	color.	c,	Effects	of	QTLs	on	transcript	and	protein	levels.	Each	

dot	represents	an	association	of	a	QTL	with	a	gene.	The	relationship	between	effect	size	

and	direction	on	the	transcript	and	protein	levels	are	color‐coded	based	on	the	four	effect	

classes	described	in	the	main	text.	Axes	show	the	log2‐transformed	fold	changes	of	BY	

versus	RM	alleles.	d,	Effects	of	the	hotspot	chrXIV:1	on	the	Gcn1‐Gcn20	protein	complex	

(y‐axis	 shows	 log2‐transformed	 read	 counts	 and	protein	 abundances).	 Trait	 levels	 for	

each	strain	are	shown	separately	for	each	allele	as	dots	for	each	gene/protein.	GCN20	is	

affected	at	the	transcript	and	protein	levels	while	the	transcript	levels	of	GCN1	did	not	

change	significantly.		
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Protein complex stoichiometry controls QTL effects 

The	buffering	of	cytoplasmic	ribosomal	proteins	is	a	well‐described	phenomenon:	excess	

proteins	 not	 incorporated	 into	 ribosomes	 get	 degraded24.	 Recently,	 buffering	 of	

components	of	other	protein	complexes	was	 reported25–27,	 suggesting	 that	 the	need	 to	

maintain	protein	complex	stoichiometry	drives	post‐transcriptional	protein	abundance	

regulation.	 Indeed,	 we	 observed	 extensive	 co‐regulation	 of	 genes	 whose	 products	

participate	in	common	complexes	on	multiple	molecular	layers:	both	transcript	levels	and	

protein	levels	of	protein	complex	members	were	correlated	across	the	strains	(average	

Pearson’s	 correlation	 on	 RNA	 and	 protein	 levels:	 r=0.8	 and	 r=0.46,	 respectively).	

Furthermore,	pairs	of	genes	of	the	same	complex	were	affected	by	the	same	eQTL	or	pQTL	

at	a	significantly	higher	rate	than	pairs	of	genes	from	different	complexes.	Whereas	this	

phenomenon	was	particularly	strong	for	ribosomal	proteins,	we	still	observed	significant	

enrichment	 after	 excluding	 ribosomal	 proteins	 from	 the	 analysis	 (eQTLs:	 p<7E‐13,	

OR=3.45,	Fisher's	exact	test;	pQTLs:	p<7E‐9,	OR=3.06).	Moreover,	proteins	in	the	same	

complex	were	even	more	frequently	affected	by	the	same	ptQTL	(p<2.2E‐16,	OR=6.18),	

indicating	that	their	levels	are	co‐regulated	independently	of	their	RNA	levels.	Indeed,	we	

observed	that	most	proteins	from	complexes	correlated	better	with	other	proteins	in	the	

same	 complex	 than	 with	 their	 own	 transcript	 (75%,	 Supplementary	 Figure	 S8),	

confirming	 that	 the	 stoichiometry	 of	 complexes	 is	 a	 major	 driver	 controlling	 protein	

levels.	 One	 example	 for	 this	 is	 the	 Gcn1p‐Gcn20p	 complex,	 which	 plays	 a	 role	 in	

translation	 initiation.	Whereas	 both	 proteins	 were	 affected	 by	 a	 common	 pQTL,	 only	

GCN20	transcripts,	but	not	GCN1	transcripts	were	affected	by	the	respective	eQTL	(Fig.	

3d,	28).	Hence,	the	protein	level	effect	on	Gcn1p	is	likely	an	indirect	response	to	the	Gcn20p	

change,	thereby	re‐establishing	stoichiometric	ratios.		

Taken	together,	our	data	supports	protein	complex	stoichiometry	as	an	important	post‐

transcriptional	 effector	 of	 protein	 abundance	 that	 substantially	 contributes	 to	 ptQTL	

effects.	

Protein phosphorylation is often regulated separately from protein levels 

To	investigate	effects	acting	directly	on	the	phosphorylation	state	of	proteins,	we	focused	

on	the	phRes	traits	for	which	the	phosphorylation	effects	were	corrected	for	abundance	

changes	of	the	proteins	of	origin.	After	this	correction	we	still	detected	466	phResQTLs	

(44%	 of	 all	 phRes	 traits),	 including	multiple	 phResQTL	 hotspots	 (Fig.	 3b).	 A	 striking	

example	of	a	phResQTL	hotspot	is	the	HAP1	locus,	affecting	22.1%	of	all	phosphoproteins,	
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but	only	6.5%	and	5.2%	of	the	corresponding	transcripts	and	proteins	of	the	402	genes	

whose	products	were	detected	on	all	three	molecular	layers	(Fig.	4a).		

Next,	we	asked	whether	genomic	variation	could	result	in	coordinated	effects	on	different	

phosphosites	on	the	same	protein.	Indeed,	phRes	traits	of	the	same	protein	(i.e.,	different	

phosphosites	 on	 the	 same	 protein)	 had	 a	 higher	 chance	 to	 be	 targeted	 by	 the	 same	

phResQTL	than	random	pairs	of	phosphosites	(p<3E‐8,	one‐sided	Fisher's	exact	test;	Fig.	

4b).	This	is	consistent	with	the	notion	that	multiple	phosphosites	on	the	same	protein	are	

often	targeted	by	a	common	kinase	or	phosphatase29.	

	

	

	

Figure	4	|	Analysis	of	phResQTLs.	a,	Overlap	of	different	QTL	types	in	the	HAP1	locus	

(chrXII:2)	for	the	402	genes	whose	products	were	detected	on	the	transcript,	protein,	and	

phosphopeptide	 level.	b,	 Proportion	of	pairs	 of	phosphosites	 on	different	 or	 the	 same	

protein	that	share	a	phResQTL.	c,	Distance	of	phosphosites	affected	by	a	local	phResQTL	

or	exclusively	by	distant	phResQTLs	to	the	nearest	missense	mutation	in	the	protein	of	

origin.		
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Local	 phResQTLs	 might	 be	 caused	 by	 genetic	 variants	 directly	 affecting	 the	

phosphorylation	state	of	a	protein,	for	example	through	the	modification	of	residues	close	

to	a	kinase	or	phosphatase	binding	site.	In	support	of	that	notion,	we	found	that	proteins	

that	were	affected	by	at	 least	one	 local	phResQTL	had	more	missense	polymorphisms	

than	proteins	that	only	had	distant	phResQTLs	(p<1.3E‐07,	one‐sided	Wilcoxon	rank	sum	

test;	Supplementary	Figure	S9).	 In	addition,	phosphosites	with	a	 local	phResQTL	were	

closer	 to	 a	missense	 variant	 than	 those	with	 a	 distant	 phResQTL	 (p<2.4E‐05,	 Fig.	 4c).	

Further,	 if	 two	phosphosites	 on	 the	 same	protein	were	both	affected	by	 two	different	

phResQTLs	–	one	local	and	the	other	distant	–	the	phosphosite	with	the	local	phResQTL	

was	on	average	closer	to	a	polymorphism	than	the	distant	one	(p=0.005,	one‐sided	paired	

Wilcoxon	rank	sum	test;	Supplementary	Figure	S10).	In	summary,	these	results	suggest	

that	many	local	phResQTLs	are	caused	by	missense	polymorphisms,	changing	recognition	

motifs	or	3D	structures	of	affected	proteins,	and	thereby	affecting	binding	of	kinases	and	

phosphatases	to	such	phosphosites.	

Phospho‐QTLs are strongly associated with cellular fitness effects 

In	order	to	better	understand	the	mechanisms	by	which	genetic	variation	affects	cellular	

fitness	we	integrated	our	molecular	QTL	data	with	growth	traits	in	46	different	conditions	

measured	 earlier	 for	 the	 same	 yeast	 cross,	 including	 differing	 temperatures	 and	 pHs,	

multiple	carbon	sources,	and	exposure	to	metal	ions	and	small	molecules20.	We	found	that	

QTL	hotspots	affecting	molecular	traits	were	more	likely	than	other	genomic	regions	to	

also	affect	growth	rates	(Supplementary	Figure	S11a,b,	Supplementary	Table	S7),	which	

underlines	the	contribution	of	hotspots	to	complex	growth	trait	variation.	Importantly,	

the	number	of	 growth	 traits	 linked	 to	a	hotspot	was	best	predicted	by	 the	number	of	

phosphorylation	traits	targeted	by	the	same	hotspot,	whereas	all	other	molecular	layers	

were	 less	 predictive	 (Supplementary	 Figure	 S11c).	 This	 unique	 role	 of	 a	 post‐

translational	 response	 to	 genetic	 variability	 warranted	 a	 closer	 inspection	 of	 state	

changes	in	regulatory	networks.	To	study	QTL	effects	on	the	‘regulome’,	we	integrated	the	

five	 types	 of	 molecular	 traits	 with	 regulatory	 network	 information.	 We	 found	 that	

phResQTL	targets	were	often	functionally	related	to	the	putative	causal	genes	underlying	

a	given	hotspot	and/or	targets	of	kinases	that	were	affected	by	the	same	locus.	The	IRA2	

hotspot22	is	an	example	for	such	a	case.	This	hotspot	affected	36	growth	traits	and	had	

targets	 among	 all	 five	 types	molecular	 traits	 (Supplementary	 Table	 S2,	 Fig.	 3b).	 Ira2	

inhibits	the	Ras/Pka	pathway	by	promoting	the	GDP‐bound	form	of	Ras2,	which	is	crucial	

for	 the	 adaptation	 of	 cellular	 metabolism	 to	 conditions	 with	 different	 nutrient	
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availabilities	30.	Earlier	work	has	shown	that	polymorphisms	in	the	IRA2	coding	sequence	

affect	 the	activity	of	 the	Ras/Pka	pathway	and	 that	 the	RM	allele	of	 IRA2	 inhibits	 this	

pathway	 more	 efficiently22.	 Several	 targets	 of	 phQTLs	 in	 the	 IRA2	 hotspot	 were	

functionally	 connected	 to	 IRA2	 including	 a	 local	 phQTL	 targeting	 Ira2	 itself,	 a	 phQTL	

targeting	Cdc25,	which	promotes	the	GTP‐bound	form	of	Ras2,	and	a	phQTL	targeting	the	

Ras2	protein31.	 In	 addition,	we	detected	phQTLs	 for	numerous	downstream	 targets	of	

Ras/Pka	signaling	at	the	IRA2	hotspot	(Supplementary	Table	S8).	Hence,	our	data	reveals	

widespread	 modifications	 of	 key	 signaling	 molecules	 in	 the	 Ras/Pka	 pathway	 upon	

genetic	variation	and	contributes	to	a	better	understanding	of	the	molecular	mechanisms	

through	which	this	QTL	hotspot	acts.		

Another	example	illustrating	the	effect	of	genetic	variants	on	cellular	signaling	is	the	HAP1	

hotspot	 on	 Chromosome	 12	 (chrXII:2)15,17,	 which	 was	 previously	 shown	 to	 affect	 19	

growth	traits20.	Hap1	has	been	shown	to	be	involved	in	the	regulation	of	respiration	in	

response	to	oxygen	and	iron	deprivation32.	Again,	our	analysis	revealed	that	this	locus	has	

much	 more	 prominent	 effects	 on	 the	 phospho‐layer	 than	 on	 transcript	 or	 protein	

abundances	(Figure	4a).	The	integration	of	our	multi‐layered	QTL	data	with	previously	

published	kinase‐substrate	networks	 suggested	a	new	mode	of	 effect	 for	 this	hotspot:	

both	the	expression	and	phosphorylation	of	Psk2,	a	protein	kinase	and	known	regulator	

of	carbohydrate	metabolism33,	were	significantly	regulated	by	the	HAP1	hotspot.	Proteins	

whose	 phosphorylation	 was	 affected	 by	 the	HAP1	 locus	 were	 enriched	 in	 previously	

reported	targets	of	the	kinase	Psk234.	This	enrichment	of	phosphorylated	Psk2	substrates	

strongly	 implies	 a	 directed	 signaling	 cascade,	 from	 the	 HAP1	 locus	 via	 altered	 Psk2	

activity	to	the	Psk2	substrates.	

The	 added	 value	 of	 integrating	 protein	 phosphorylation	 with	 transcript	 and	 protein	

abundances	was	even	more	apparent	from	a	hotspot	on	Chromosome	8	(chrVIII:1)	with	

the	 pheromone	 response	 gene	 GPA1	 harboring	 the	 causal	 mutation23.	 The	 hotspot	

harbored	only	69	eQTLs,	8	pQTLs,	and	1	ptQTL,	but	41	phQTLs	(Supplementary	Table	S2,	

Fig.	 3b).	Many	 of	 the	 hotspot	 eQTL	 targets	 (41%)	 could	 be	 found	 downstream	 of	 the	

mating	pheromone	response	pathway,	which	supports	GPA1	as	a	causal	gene.	However,	

several	targets	of	this	hotspot,	especially	those	on	the	phospho	level	such	as	Rck2	and	

Rsc9,	were	involved	in	the	osmotic	stress	response,	which	is	unrelated	to	GPA1	35–37.	This	

suggests	that	the	polymorphisms	in	GPA1	do	not	fully	explain	the	effects	of	this	hotspot,	

prompting	us	to	look	for	other	potential	key	effectors	of	the	hotspot.	The	genetic	marker	

with	 the	most	phQTL	 targets	within	the	hotspot	 is	 located	within	 the	coding	region	of	

STE20.	Ste20	is	the	key	activator	of	multiple	mitogen‐activated	protein	kinase	(MAPK)	

pathways,	 including	 the	 mating	 pheromone	 response,	 but	 also	 invasive	 growth	
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regulation,	regulation	of	sterol	uptake,	and,	importantly,	osmotic	stress	response	35(Fig.	

5).	 Indeed,	 for	up	 to	60%	of	 the	 target	 genes	of	 this	hotspot	we	 found	a	 link	 to	Ste20	

and/or	Gpa1	(Supplementary	Tables	S9	and	S10).	Further,	most	of	the	phosphopeptides	

and	phRes	 traits	 targeted	by	 the	hotspot	corresponded	to	proteins	phosphorylated	by	

components	of	MAPK	pathways	downstream	of	Ste20	(51%;	Fig.	5,	Supplementary	Tables	

S9	 and	 S10).	 GO	 enrichment	 analysis	 of	 targets	 of	 the	 hotspot	 at	 the	 transcript	 layer	

revealed	 an	 enrichment	 for	 biological	 processes	 under	 the	 influence	 of	 STE20	

(Supplementary	Table	S11).	Taken	together,	these	results	suggest	that	the	effects	of	the	

chrVIII:1	 hotspot	 are	 due	 to	 the	 combined	 effects	 of	 the	 polymorphisms	 in	GPA1	 and	

STE20.	Furthermore,	we	provide	new	potential	components	of	the	MAPK	pathways	that	

are	regulated	by	this	hotspot	but	were	not	previously	identified	as	downstream	targets	of	

Ste20	(Supplementary	Table	S12).		

The	examples	of	these	hotspots	illustrate	how	phQTL	mapping	provides	information	on	

signaling	networks	that	is	orthogonal	to	transcript	and	protein	abundance	data:	genetic	

variants	often	affect	the	phosphorylation	states	of	gene	products	that	are	distinct	from	

the	 genes	 affected	 by	 abundance	 changes	 (i.e.	 eQTL	 and	 pQTL	 targets).	 Furthermore,	

those	protein	activity	changes	often	act	upstream	of	QTL	abundance	effects.	Overall,	we	

show	that	by	quantifying	the	effects	of	sequence	polymorphisms	on	multi‐layer	molecular	

networks	our	integrated	approach	can	provide	clues	toward	reconstructing	the	molecular	

architecture	underlying	complex	traits	and	the	chain	of	causality	through	multiple	layers	

of	regulation.	
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Figure	5:	Multi‐layer	effects	of	the	hotspot	around	GPA1	and	STE20	on	Chromosome	8.	

Gpa1	and	Ste20	play	key	roles	in	the	mating	response	pathway	(left,	through	transcription	

factor	 complex	 Ste12/Ste12)	 and	 filamentous	 growth	 regulation	 pathway	 (middle,	

through	 transcription	 factor	 complex	 Tec1/Ste12).	 Ste20	 additionally	 regulates	 the	

osmotic	 stress	 response	 pathway	 (right,	 through	 transcription	 factors	 Msn2/Msn4).	

Depicted	 are	 genes	 that	 are	 known	 to	 have	 a	 direct	 or	 indirect	 connection	with	GPA1	

and/or	STE20.	Genes	 that	we	 found	 to	be	affected	by	 the	GPA1/STE20	hotspot	on	any	

molecular	layer	are	indicated	with	arrows	in	the	respective	color	of	each	layer.	The	arrow	

orientation	indicates	the	fold	change	direction.	References	for	each	known	connection	are	

given	in	Supplementary	Table	S9.		
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Discussion 

In	 this	 study,	 we	 present	 the	 first	 dataset	 that	 concurrently	 quantifies	 the	 effects	 of	

natural	 genomic	 variation	 on	 the	 transcript	 (eQTL),	 protein	 (pQTL),	 and	 protein	

phosphorylation	(phQTL)	layers.	Whereas	previous	 ‘omics’	QTL	studies	have	primarily	

focused	on	the	abundance	of	biomolecules,	our	study	integrates	abundance	with	the	states	

of	biomolecules.	Hence,	the	conceptual	advance	of	our	study	is	the	possibility	to	discover	

the	 consequences	 of	 genomic	 variation,	 for	 example	 the	 phosphorylation‐mediated	

activation	of	a	signaling	pathway	component,	through	the	different	layers	of	a	molecular	

network.	 The	 three	 hotspots	 containing	 IRA2,	 HAP1,	 and	 GPA1/STE20	 exemplify	 this	

notion.	

Quantifying	transcript	and	protein	levels	along	with	the	state	of	the	proteins	indicated	by	

phosphorylation	from	the	same	yeast	culture	maximized	the	comparability	of	the	data,	

thus	 facilitating	 data	 integration.	 This	 three‐layer	 molecular	 profiling	 enabled	 the	

following	 findings:	 (i)	RNA	 effects	 are	 generally	 transmitted	 to	 protein	 levels	 in	 a	 1:1	

relationship.	(ii)	There	are,	however,	numerous	exceptions	and	specific	classes	of	genes	

are	 subject	 to	 enhanced	 (e.g.,	 mitochondrial	 ribosomes)	 and	 buffered	 (e.g.,	 cytosolic	

ribosomes	and	nucleolus)	protein‐level	effects.	(iii)	The	maintenance	of	protein	complex	

stoichiometry	plays	a	major	role	 in	 the	post‐transcriptional	effects	of	genetic	variants.	

(iv)	A	substantial	fraction	of	phosphopeptides	(44%)	were	under	the	direct	control	of	at	

least	 one	 QTL,	 independently	 of	 the	 abundance	 of	 its	 protein	 of	 origin.	 Further,	 we	

observed	 multiple	 cases	 in	 which	 protein	 abundance	 effects	 were	 buffered	

(i.e.,	repressed)	at	the	level	of	phosphopeptides.	(v)	QTLs	affect	multiple	phosphosites	on	

the	 same	protein	more	often	 than	expected	by	 chance.	 (vi)	Protein	phosphorylation	 is	

much	more	often	affected	by	 local	missense	variants	 than	protein	 levels	and,	thus,	 the	

structural	 destabilization	 of	 proteins	 through	 segregating	 variants	 seems	 to	 be	 a	 rare	

event	 and	 is	 presumably	 under	 strong	 negative	 selection.	 (vii)	Variants	 affecting	

phosphorylation	 are	 typically	 in	 close	 proximity	 to	 the	 affected	 residue.	 (viii)	The	

characterization	 of	 phosphorylation	 events	 in	 addition	 to	 transcript	 and	 protein	

abundances	 enabled	 the	 separation	 of	 upstream	 and	 downstream	 effects	 of	 genetic	

variants	on	signaling	pathways.	Importantly,	the	same	QTL	can	affect	distinct	sets	of	genes	

at	different	molecular	layers.	(ix)	QTL	hotspots	were	rarely	explained	by	variants	directly	

affecting	the	transcript	encoded	at	that	location;	instead,	our	data	suggests	that	altered	

protein	phosphorylation	 contributes	 significantly	 to	 the	 causal	mechanisms	of	 several	

QTL	hotspots	by	the	activation	of	pleiotropic	downstream	effects.	
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This	study	captures	some	of	the	enormous	complexity	in	how	genetic	variants	influence	

signal	 transmission	 between	 different	 molecular	 layers,	 despite	 all	 the	 data	 being	

obtained	 from	 steady‐state	 standard	 growth	 conditions.	 Clearly,	 mapping	

phosphorylation	 states	 will	 be	 even	 more	 critical	 when	 aiming	 to	 understand	 the	

interaction	between	genetic	variants	and	environmental	cues.	 In	addition,	 future	work	

should	 address	 additional	 aspects	 of	 molecular	 state	 changes,	 including	 other	 PTMs,	

changes	in	protein	folding,	protein	complex	formation,	and	protein‐ligand	interactions.	

Our	 findings	have	 implications	 for	 future	work	on	complex	human	diseases.	First,	our	

study	shows	that,	at	least	in	yeast,	quantifying	phosphoproteomes	at	large	scale	and	with	

high	 precision	 and	 reproducibility	 is	 feasible	 with	 state‐of‐the‐art	 proteomics	

technologies.	 Thus,	 genome‐wide	 association	 studies	 (GWAS)	 on	 phosphoproteome	

changes	in	human	cells	might	be	possible	soon	as	well.	Second,	our	findings	imply	that	

mapping	 phospho‐traits	 and	 molecular	 states	 in	 general	 will	 greatly	 contribute	 to	

understanding	 the	mechanisms	 through	which	 GWAS	 loci	 act.	 Third,	 phosphorylation	

states	 are	more	 likely	 to	 harbor	 information	 about	physiological	 processes	 than	mere	

abundances	of	transcripts	or	proteins	(Supplementary	Figure	S11c).	Lastly,	our	results	

suggest	that	causal	cis‐variants	are	often	nearby	the	altered	phosphosite,	which	can	help	

prioritizing	candidate	variants.	

In	conclusion,	our	study	sets	the	stage	for	a	more	mechanistic	understanding	of	genomic	

effects	on	multi‐layered	cellular	networks	and	physiological	traits.	
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Materials and methods 

Sample preparation 

All	media	were	prepared	in	a	single	batch	to	limit	experimental	variability.	The	BYxRM	

yeast	strain	collection,	which	we	obtained	from	Rachel	Brem,	was	originally	derived	from	

a	cross	between	the	two	parental	strains,	BY4716,	an	S288C	derivative	(MATα	lys2Δ0),	

and	RM11‐1a	(MATa	leu2Δ0	ura3Δ0	ho::KAN)	15.	A	subset	of	129	strains	were	picked	in	

random	 series	 of	 16	 (see	 Supplementary	 Data	 S1),	 pre‐cultured	 in	 in‐house	 made	

synthetic	dextrose	medium	(S.D.,	containing	per		liter:		1.7		g		yeast		nitrogen	base	without	

amino	 acids	 (Chemie	 Brunschwig),	 5	 g	 ammonium	 sulfate,	 2%	 glucose	 (w/v),	 0.03	 g	

isoleucine,	0.15	g	valine,	0.04	g	adenine,	0.02	g	arginine,	0.02	g	histidine,	0.1	g	leucine,		

0.03	 	g	 	 lysine,	 	0.02	 	g	 	methionine,	 	0.05	 	g	 	phenylalanine,	 	0.2	 	g	 	threonine,	 	0.04	 	g		

tryptophan,		0.03		g		tyrosine,		0.02		g		uracil,		0.1		g		glutamic		acid		and		0.1		g		aspartic		

acid),	and	then	grown	in	115	ml	fresh	S.D.	medium	at	30ºC	until	a	maximal	optical	density	

at	600	nm	(OD600)	of	0.8	(+/‐	0.1).	In	total,	180	cell	cultures	were	successfully	grown	to	

OD600	of	0.8	and	then	subdivided	as	follows	for	the	transcript	and	proteomic	analyses	

respectively.	Of	the	115	ml	of	cultures,	15	ml	were	collected,	centrifuged	at	2000	g	for	3	

min	 at	 4°C,	 transferred	 into	 an	 Eppendorf	 and	 snap	 frozen	 in	 liquid	 nitrogen	 for	

transcriptomic	analysis.	The	 remaining	100	ml	were	processed	 for	proteomic	analysis	

essentially	as	described	in	34.	 In	short,	6.66	ml	of	100%	trichloroacetic	acid	(TCA)	was	

added	to	the	100	ml	culture	media	to	a	final	concentration	of	6.25%	and	the	cells	were	

harvested	by	centrifugation	at	1500	g	for	5	min	at	4	°C	and	washed	three	times	with	cold	

acetone.	The	cell	pellets	were	transferred	into	2‐ml	Eppendorf	tubes	and	frozen	in	liquid	

nitrogen.	

RNA sequencing 

RNA	extraction	

Total	RNA	was	isolated	from	deep	frozen	aliquots	of	yeast	pellets	using	the	RiboPure™	

RNA	 Purification	 Kit,	 yeast	 (Ambion),	 which	 includes	 a	 DNase	 treatment	 to	 eliminate	

contamination.	RNA	quality	was	assessed	using	RNA	ScreenTape	assay	(Agilent).	All	RNAs	

were	of	very	high	quality	(Supplementary	Data	S1,	median	RIN	9.8,	minimal	RIN	9.1).			

RNA‐seq	library	preparation	
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cDNA	libraries	were	prepared	from	poly(A)	selected	RNA	applying	the	Illumina	TruSeq	

protocol	for	mRNA	using	a	total	of	1	μg	RNA	per	sample	and	14	PCR	cycles.	

Sequencing	

The	cDNA	libraries	were	sequenced	on	a	HiSeq2000	with	20	samples	per	lane	(8	million	

reads	per	sample).	The	generated	reads	were	stranded,	single‐end,	and	had	a	length	of	

100	bp.	

RNA‐seq based genotyping 

The	 BYxRM	 yeast	 cross	 has	 been	 widely	 used	 for	 QTL	 mapping.	 Microarray‐based	

genotype	information	of	the	segregants	is	available19.	However,	deep	sequencing	enables	

a	more	accurate	genotyping	of	recombinant	lines.	To	this	end	we	have	exploited	published	

resequencing	data	of	 the	parental	 strains20	 together	with	 the	RNA‐seq	data	 generated	

here	to	infer	the	genotype	of	the	segregants	of	the	BYxRM	cross	using	a	method	that	we	

previously	developed18.		

Resequencing data of the parental strains 

Sequence	 variation	 information	 of	 the	 parental	 strains	 was	 obtained	 from	

http://genomics‐pubs.princeton.edu/YeastCross_BYxRM/;	 only	 calls	 with	 a	 MQ≥30	

where	considered,	which	represents	42,769	polymorphic	sites.		

Genotype inferring from RNA‐seq data  

RNA‐seq	data	were	mapped	to	the	S.cerevisiae	reference	genome	(SaCer3)	using	TopHat	

2	(Ref.	38)	with	the	following	options:	--min-intron-length 10 --min-segment-

intron 10 --b2-very-sensitive --max-multihits 1 --library-type 

fr-secondstrand.	 Read	 group	 information	was	 added,	 and	 BAM	 files	 were	 sorted	

using	Picard	utilities	(http://broadinstitute.github.io/picard/).		

RNA‐seq	data	were	further	processed	using	the	GATK	pipeline	(version	3.4‐46‐gbc02625)	

following	the	best	practice	guide39.	First	reads	containing	exon‐exon	junction	were	split	

using	 the	 following	 options:	 -T SplitNCigarReads -rf 

ReassignOneMappingQuality -RMQF 255 -RMQT 60 -U 

ALLOW_N_CIGAR_READS,	then	the	variants	were	called	using	the	UnifiedGenotyper	at	

the	42,769	polymorphic	sites	identified	in	the	resequencing	data	of	the	parental	strains.	

Genotype	 calls	 where	 the	 GATK	 genotype	 score	 was	 below	 40	 (GQ≤40)	 or	 that	 were	

covered	with	less	than	5	reads	(DP≤4)	were	considered	as	missing	values.			

Filtering and missing value imputing 

For	 every	 polymorphic	 site	 between	 the	 parental	 strains,	 we	 compared	 the	

polymorphisms	 in	 the	 segregants	 and	 the	 parental	 strains	 to	 infer	 which	 allele	 was	
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inherited.		We	further	excluded	polymorphisms	(i)	that	could	not	be	called	(or	correctly	

called)	in	the	parental	strains	based	on	RNA‐seq	data,	(ii)	that	could	be	called	in	less	than	

70%	 of	 the	 segregants,	 and	 (iii)	 with	 a	 lower	 allele	 frequency	 of	 less	 than	 20%.	 As	

previously	discussed18,	genotypes	called	differing	from	the	two	direct	flanking	markers	in	

more	 than	 one	 segregant	 (93	 cases)	 probably	 denote	 erroneous	 genotype	 calls;	 the	

corresponding	polymorphisms	were	excluded	from	the	analysis.	This	resulted	in	25,590	

polymorphisms	that	were	considered	as	genetic	markers.		

Finally	missing	genotype	values	were	inferred	from	the	two	neighboring	polymorphisms	

if	those	were	each	within	20	kb	of	the	polymorphism	of	interest,	and	were	inherited	from	

the	same	parental	strain18	(Supplementary	Data	S3).	

Assembling a set of markers for linkage analyses 

Adjacent	markers	with	the	same	segregation	pattern	across	all	segregants	were	collapsed	

into	one	unique	marker,	resulting	in	a	set	of	3,593	unique	mapping	genotypic	markers	

(Supplementary	Data	S13).	Thus,	each	marker	represents	a	genomic	interval	in	which	all	

polymorphisms	are	in	full	linkage	disequilibrium	in	the	cross.		

Gene expression quantification and normalization  

In	previous	work,	we	have	shown	that	accounting	for	individual	genome	variations	for	

RNA‐seq	alignment	improved	gene	expression	quantification	and	deflated	the	number	of	

falsely	 detected	 local	 eQTLs18.	 Therefore	 we	 used	 the	 strategy	 we	 had	 previously	

developed	to	map	RNA‐seq	reads.	It	consists	of	generating	a	strain‐specific	genome,	for	

each	segregant,	against	which	the	corresponding	reads	are	aligned.			

First,	 we	 generated	 both	 strain‐specific	 genome	 sequences	 and	 strain‐specific	

annotations	 from	 the	 reference	 genome	 sequence	 (SaCer3),	 the	 reference	 genome	

annotation	and	the	genomic	variations	information	(VCF	files)	previously	created	using	

RNA‐seq	 data.	 Then	 RNA‐seq	 reads	were	 aligned	 to	 the	 corresponding	 strain	 specific	

genomes	using	STAR	(ver	2.5.0a,	40)	with	the	 following	options:	--alignIntronMin 

10 --quantMode GeneCounts.	 The	 gene‐specific	 read	 counts	 (strand	 specific)	

generated	by	STAR	were	used	to	quantify	gene	expression.		

RNA‐seq	coverage	was	computed	by	dividing	the	sum	of	the	length	of	all	reads	by	the	sum	

of	the	length	the	coding	regions	of	the	quantified	transcripts	per	sample.	

Raw	read	counts	were	normalized	using	rlog	method	of	DESeq2	41.	Normalized	data	were	

further	corrected	for	effects	due	to	culture	batches	using	the	non‐parametric	empirical	

Bayes	framework	ComBat42	(Supplementary	Data	S2).	Normalized	and	batch	corrected	

read	counts	were	corrected	for	gene	length	as	follows	for	gene	i	in	sample	j:	
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,	where	li	is	the	length	of	the	coding	region	of	gene	i,	excluding	intronic	regions.	

Proteomics  

Sample preparation and phospho enrichment 

Cell	pellets	were	resuspended	in	lysis	buffer	containing	8	M	urea,	0.1	M	NH4HCO3,	and	5	

mM	 EDTA	 and	 cells	 were	 disrupted	 by	 glass	 bead	 beating	 (5	 times	 for	 5	min	 at	 4°C,	

allowing	the	samples	to	cool	down	between	cycles).	The	total	protein	amount	from	the	

pooled	 supernatants	was	determined	by	BCA	Protein	Assay	Kit	 (Thermo,	USA).	 Three	

milligrams	of	extracted	yeast	proteins	were	reduced	with	5	mM	TCEP	at	37	°C	for	30	min	

and	alkylated	with	12	mM	iodoacetamide	at	room	temperature	in	the	dark	for	30	min.	

The	samples	were	then	diluted	with	0.1	M	NH4HCO3	to	a	final	concentration	of	1	M	urea	

and	 the	 proteins	 were	 digested	 with	 sequencing‐grade	 porcine	 trypsin	 (Promega,	

Switzerland)	at	a	final	enzyme:substrate	ratio	of	1:100	(w/w).	Digestion	was	stopped	by	

adding	formic	acid	to	a	final	concentration	of	1%.	Peptide	mixtures	were	desalted	using	

3cc	reverse	phase	cartridges	(Sep‐Pak	tC18,	Waters,	USA)	and	according	to	the	following	

procedure:	washing	of	 column	with	one	volume	of	100%	methanol,	washing	with	one	

volume	of	50%	acetonitrile,	washing	with	3	volumes	of	0.1%	formic	acid,	loading	acidified	

sample,	 reloading	 flow‐through,	washing	column	with	sample	with	3	volumes	of	0.1%	

formic	acid,	and	eluting	sample	with	two	volumes	of	50%	acetonitrile	in	0.1%	formic	acid.	

Peptides	were	dried	using	a	vacuum	centrifuge	and	resolubilized	in	100	µl	of	0.1%	formic	

acid.	Retention	time	standard	peptides	(iRT‐Kit,	Biognosys,	Switzerland)	were	spiked	into	

the	 samples	 before	 they	were	 analyzed	by	LC‐MS	 for	 total	 protein	 abundances	 (“non‐

enriched	samples”).	The	remaining	95	µl	were	supplemented	with	300	µl	of	an	overnight	

re‐crystalized	and	cleared	up	phthalic	acid	solution	prepared	by	carefully	dissolving	5	g	

of	phthalic	acid	in	50	ml	of	80%	acetonitrile	before	adding	1.75	ml	of	trifluoroacetic	acid.	

The	samples	were	 then	enriched	 for	phosphopeptides	by	 incubating	 for	1	hour	under	

rotation	with	1.25	mg	of	TiO2	resin	(GLscience,	Japan)	pre‐equilibrated	twice	with	500	µl	

of	methanol,	and	twice	with	500	µl	of	phthalic	acid	solution.	Peptides	bound	to	the	TiO2	

resin	were	then	washed	twice	with	500	µl	phthalic	acid	solution,	then	twice	with	80%	

acetonitrile	 with	 0.1%	 formic	 acid,	 and	 finally	 twice	 with	 0.1%	 formic	 acid.	 The	

phosphopeptides	were	 eluted	 from	 the	 beads	 twice	with	 150	 µl	 of	 0.3	M	 ammonium	

hydroxide	at	pH	10.5	and	immediately	acidified	again	with	50ul	of	5%	trifluoroacetic	acid	

to	 reach	 about	 pH	 2.0.	 The	 enriched	 phosphopeptides	 were	 desalted	 on	 microspin	

columns	(The	Nest	Group,	USA)	with	the	protocol	described	above,	dried	using	a	vacuum	
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centrifuge,	and	resolubilized	in	10	µl	of	0.1%	formic	acid.	Again,	retention	time	standard	

peptides	(iRT‐Kit,	Biognosys,	Switzerland)	were	spiked	into	the	samples	before	they	were	

analyzed	by	LC‐MS	for	total	peptide	abundances	(“phosphopeptides	samples”).		

LC‐MS data acquisition 

The	peptide	concentration	in	all	samples	was	measured	on	a	NanoDrop	at	OD280	and	

normalized	to	allow	injection	~1	µg	of	material	into	the	mass	spectrometer.	The	samples	

were	 randomized	 and	 then	 either	 injected	 individually	 for	 SWATH‐MS	 acquisition	 or	

pooled	 and	 injected	 in	 technical	 duplicates	 for	 shotgun	 acquisition.	 The	 LC‐MS	

acquisitions	were	performed	on	an	AB	Sciex	5600	TripleTOF	coupled	to	a	NanoLC2Dplus	

HPLC	system.	The	liquid	chromatographic	separation	and	mass	spectrometric	acquisition	

parameters	 were	 essentially	 as	 described	 earlier43.	 The	 peptide	 separation	 was	

performed	on	a	75	µm	diameter	PicoTip/PicoFrit	emitter	packed	with	20	cm	of	Magic	C18	

AQ	3	resin	using	a	2‐35%	buffer	B	at	300	nl/min	(buffer	A:	2%	acetonitrile,	0.1%	formic	

acid;	buffer	B:	98%	acetonitrile,	0.1%	formic	acid).	For	shotgun	experiments,	the	mass	

spectrometer	was	operated	with	a	“top	20”	method,	with	a	500‐ms	survey	scan	followed	

by	a	maximum	of	20	MS/MS	events	of	150	ms	each.	The	MS/MS	selection	was	set	 for	

precursors	 exceeding	 200	 counts	 per	 second	 and	 charge	 states	 greater	 than	 2.	 The	

selected	 precursors	 were	 then	 added	 to	 a	 dynamic	 exclusion	 list	 for	 20	 s.	 Ions	 were	

isolated	using	a	quadrupole	 resolution	of	0.7	amu	and	 fragmented	 in	 the	 collision	cell	

using	the	collision	energy	equation		

ܧܥ ൌ 0.0625 ∗
݉

ݖ
െ 3.5	

with	a	collision	energy	spread	of	15	eV.	For	SWATH‐MS	acquisition,	a	100‐ms	survey	scan	

was	followed	by	a	series	of	32	consecutive	MS/MS	events	of	100	ms	each	with	25	amu	

precursor	isolation	with	1	amu	overlap.	The	sequential	precursor	isolation	window	set‐

up	was	as	follows:	400–425,	424–450,	449–475,…,	1174–1200	m/z.	The	collision	energy	

for	 each	window	was	 determined	 based	on	 the	 collision	 energy	 for	 a	 putative	 doubly	

charged	ion	centered	in	the	respective	window	using	the	same	equation	as	above	with	a	

collision	energy	spread	of	15	eV.	

All	the	MS	data	files	were	visually	inspected	and	curated	at	this	stage	for	low	total	 ion	

chromatogram	 intensities,	and	 the	corresponding	samples	re‐injected,	 if	possible.	This	

resulted	in	a	final	set	of	179	SWATH	data	files	for	non‐enriched	and	179	SWATH	data	files	

for	 phospho‐enriched	 samples	 (Supplementary	 Data	 S1)	 that	 were	 used	 for	 data	

extraction.	 Similarly,	 40	 DDA	 files	 for	 non‐enriched	 and	 30	 DDA	 files	 for	 phospho‐

enriched	samples	were	selected	for	database	searching	and	library	generation.		
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LC‐MS database searching 

The	 shotgun	 data	 was	 searched	 with	 Sorcerer‐Sequest	 (TurboSequest	 v4.0.3rev11	

running	on	a	Sage‐N	Sorcerer	v4.0.4)	and	Mascot	(version	2.3.0)	against	the	SGD	database	

(release	03	Feb.	2011,	containing	6,750	yeast	protein	entries,	concatenated	with	6,750	

corresponding	 “tryptic	 peptide	 pseudo‐reverse”	 decoy	 protein	 sequences).	 For	 the	

search,	we	allowed	for	semi‐tryptic	peptides	and	up	to	two	missed	cleavages	per	peptide.	

For	the	non‐enriched	samples,	we	used	carbamidomethylation	as	a	fixed	modification	on	

cysteine	residues	and	oxidation	as	variable	modification	on	methionine	residues.	For	the	

phospho‐enriched	 samples,	 we	 additionally	 allowed	 for	 phosphoralytion	 as	 variable	

modification	on	serine,	threonine,	and	tyrosine	residues.	The	Sequest	and	Mascot	search	

results	were	converted	to	pep.xml	and	then	combined	using	iProphet	(included	in	TPP	

version	 4.5.2)	 both	 for	 the	 non‐enriched	 and	 for	 the	 phospho‐enriched	 samples.	 Both	

search	 results	 were	 filtered	 at	 1%	 FDR	 by	 decoy	 counting	 at	 the	 peptide	 spectrum	

matches	 (PSM)	 level,	 resulting	 in	 a	 total	 of	 698,652	 identified	 spectra,	 26,893	 unique	

peptides,	and	4,310	proteins	for	the	non‐enriched	sample	set;	in	the	phospho‐enriched	

sample	 set	 there	 were	 a	 total	 of	 224,551	 identified	 spectra,	 16,515	 unique	 peptides	

(thereof	14,466	unique	phosphopeptides),	and	2,333	proteins	(thereof	1,911	phospho‐

proteins).	Those	data	were	compiled	into	two	spectra	libraries	(one	‘non‐enriched’	and	

one	‘phospho‐enriched’)	using	SpectraST	(included	in	TPP	4.5.2)	essentially	as	described	

earlier44,	 including	 the	 specific	 splitting	 of	 the	 consensus	 spectra	when	MS/MS	 scans	

identifying	the	same	peptide	sequence	were	recorded	more	than	2	minutes	apart,	also	

described	earlier44.	Those	‘split	peptide	assays’	were	given	different	protein	entry	names	

labeled	 Subgroup_0_ProteinX	 to	 Subgroup_N_ProteinX,	 respectively.	 The	 fragment	 ion	

coordinates	for	the	peptides	contained	the	top	6	most	intense	(singly	or	doubly	charged)	

y	or	b	fragment	ions	for	each	spectrum,	excluding	those	in	the	SWATH	precursor	isolation	

window	for	the	corresponding	peptide.	The	non‐enriched	assay	library	comprised	assays	

for	19,473	peptides	(thereof	18,074	proteotypic	peptides	matching	a	total	of	3,119	unique	

proteins).	 	 The	 phospho‐enriched	 assay	 library	 comprised	 assays	 for	 14,339	 peptides	

(thereof	12,969	phosphopeptide	sequences)	or	assays	 for	13,786	proteotypic	peptides	

(thereof	 12,678	 proteotypic	 phosphopeptides,	 matching	 a	 total	 of	 1,676	 unique	

phosphoproteins).		

The	 SWATH‐MS	data	 extraction	was	performed	using	 the	 iPortal	workflow	manager45	

calling	OpenSWATH	(openMS	v.	1.10)	46	and	pyProphet	47.	The	precursors	were	then	re‐

aligned	 across	 runs	using	TRIC	 48.	 The	 two	 resulting	 SWATH	 identification	 result	 files	

contained	 a	 total	 of	 18,273	 	 identified	 peptides	 (thereof	 16,922	 proteotypic	 peptides	

matching	 a	 total	 of	 2,940	 proteins)	 for	 the	 non‐enriched	 datasets;	 in	 the	 phospho‐
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enriched	 datasets	 there	 were	 13,748	 	 identified	 peptides	 (thereof	 12,412	

phosphopeptides)	 or	 13,218	 proteotypic	 peptides	 (thereof	 12,139	 proteotypic	

phosphopeptides	matching	a	total	of	2,247	 	unique	phosphoproteins).	After	alignment,	

we	used	a	set	of	in‐house	scripts	to	compare	the	chromatographic	elution	profiles	of	the	

various	 isobaric	 phosphopeptide	 isoforms	matching	 a	 same	 delocalized	 peptide	 form	

(peptide	 sequence	 +	 number	 of	 phosphorylations)	 within	 each	 single	 run	 and	 to	

eventually	group	those	co‐eluting	phosphopeptide	assays	into	the	proper	corresponding	

number	 of	 phospho‐peak	 clusters	 (labeled	 _cluster0	 to	 _clusterN,	 respectively).	 The	

phospho‐peak	clusters	were	then	consistently	re‐numbered	across	runs	and	those	were	

used	 as	 input	 to	mapDIA49	 to	 select	 for	 the	 best	 suitable	 transitions	 and	 peptides	 for	

quantification.	This	resulted	in	the	final	peptide	and	protein	quantification	matrices	for	

the	non‐enriched	and	phospho‐enriched	datasets	that	were	used	for	further	processing.		

Preprocessing of proteome data 

First,	features	detected	after	7000	s	and	those	corresponding	to	decoys,	reverse	proteins,	

or	 not	 unique	 peptides	 were	 removed.	 We	 also	 removed	 fragments	 with	 oxidized	

methionine	and	their	corresponding	non‐oxidized	fragments.	Next,	native	retention	times	

were	 converted	 to	 iRTs51.	 Fragments	 corresponding	 to	 peptides,	whose	 sequence	was	

existing	only	 in	the	reference	proteome	(i.e.	BY1416	background)	and	not	 in	RM11‐1a	

background	were	 excluded	 from	 subsequent	 analysis.	 Normalization	 of	 the	 fragment‐

level	 data	 and	 aggregation	 into	 peptides	 and	 protein‐level	 data	 was	 performed	 using	

mapDIA49	with	the	following	options:		NORMALIZATION = RT 10, MIN_CORREL = 

0.3, MIN_FRAG_PER_PEP = 2, MIN_PEP_PER_PROT = 1	and	a	maximum	of	

20%	missing	data	for	each	fragment.	Finally,	abundance	data	were	further	corrected	for	

effects	 due	 to	 culture	 batches	 and	 proteomics	 measurement	 batches	 using	 the	 non‐

parametric	empirical	Bayes	framework	ComBat42.	

Preprocessing of phospho‐proteome data 

First	fragments	detected	after	6000	sec,	corresponding	to	non‐phosphorylated	peptides	

(0P),	 corresponding	 to	 non‐unique	 proteins,	 and	 oxidized	were	 removed.	 As	 for	 non‐

phosphorylated	 proteomics	 data,	 native	 retention	 times	 were	 replaced	 by	 iRT51	 and	

fragments	 corresponding	 to	 peptides,	 which	 sequence	 was	 not	 existing	 in	 RM11‐1a	

background	were	excluded	from	subsequent	analysis.	To	normalize	the	 fragment	 level	

data	 and	 to	 aggregate	 them	 at	 the	 phosphopeptide	 cluster	 level	 we	 used	 mapDIA49.	

Fragments	 derived	 from	 phosphopeptides	 belonging	 to	 the	 same	 phosphopeptides	

cluster	 were	 aggregated	 together.	 The	 following	 mapDIA	 options	 were	 used:		

NORMALIZATION = RT 10, MIN_CORREL = 0.3, MIN_FRAG_PER_PEP = 2 
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and	a	maximum	proportion	of	missing	data	of	 20%	 for	 each	 fragment	as	 for	 the	non‐

phospho	proteomics	data.	Data	were	corrected	for	culture	batch	and	well	as	phospho‐

proteomics	measurements	batch	effects	using	ComBat42.	

Derivation of the post‐transcriptional traits (protein abundance regressed to RNA 

levels) and phosphorylation levels (phosphopeptide abundance regressed to protein 

abundance) 

In	order	(i)	to	separate	the	changes	in	protein	abundance	due	to	RNA	changes	from	the	

post‐transcriptional	specific	regulation,	and	(ii)	to	distinguish	changes	in	phosphopeptide	

abundance	due	to	protein	abundance	changes	from	modification	of	the	phosphorylation	

levels,	we	have	generated	regressed	traits	(as	already	proposed	in	8).	The	same	procedure	

has	 been	applied	 for	both	 traits	 and	will	 be	detailed	below	using	 the	phosphopeptide	

abundance	example.		

First,	for	each	pair	of	corresponding	traits	(i.e.	a	phosphopeptide	and	its	protein	of	origin)	

relative	abundances	across	sample	were	normalized	using	a	modified	transformation	to	

standard	score	(i.e.	centering	and	scaling).	To	compute	mean	and	standard	deviation	for	

this	normalization,	only	the	values	corresponding	to	the	samples,	in	which	measurements	

were	 available	 for	 both	 phosphopeptides	 and	 protein	were	 used.	 Then,	 for	 each	 pair,	

normalized	phosphopeptide	data	were	regressed	on	protein	data	using	a	robust	linear	

regression	using	 a	MM‐estimate52,	 initialized	by	an	 S‐estimate	using	Hubber’s	weights	

function	and	using	an	M‐estimator	as	final	estimate	using	a	Tukey's	biweight	function	as	

implemented	MM‐estimation	 option	 in	 the	 rlm	 function	 of	 the	MASS	R	package53.	 The	

residuals	of	these	regression	were	then	used	to	as	trait	in	the	subsequences	analyses.		

QTL mapping 

We	employed	a	previously	developed	QTL	detection	method	based	on	Random	Forest	

(RF),	that	was	further	modified	to	improve	its	performance	18,21.	

To	correct	for	population	substructure	we	include	population	structure	as	a	covariate	in	

the	model,	 as	 we	 previously	 proposed21,	 but	 in	 a	 slightly	 different	manner.	 First,	 the	

genotype	matrix	was	normalized	as	described	in	54	(see	equations	(1)	to	(3)	there).	Then	

we	 carried	 out	 a	 singular	 value	 decomposition	 on	 the	 normalized	 genotype	 matrix	

followed	 by	 an	 eigenvector	 decomposition.	 We	 then	 selected	 those	 eigenvectors	

corresponding	to	the	top	seven	eigenvalues	as	covariates	for	the	QTL	mapping	(additional	

predictors	for	growing	the	Random	Forests).	These	first	seven	vectors	explained	more	

than	25%	of	the	genotype	variance	(Supplementary	Data	S14).		
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We	 adapted	 the	 approach	 described	 in	 18	 by	 using	 a	 different	 score	 describing	 the	

importance	of	each	predictor	in	the	Random	Forest	(variable	importance	measure,	VIM).	

While	previous	work	relied	on	the	selection	frequency	as	the	VIM,	i.e.	the	number	of	times	

a	 predictor	 was	 used	 in	 a	 forest,	 to	 quantify	 the	 importance	 of	 each	 predictor,	 we	

combined	 two	 previously	 published	 VIMs,	 RSS	 and	 PI55,	 to	 compute	 an	 informative	

combined	 score	 serving	as	 the	VIM	 in	our	 study.	While	 the	RSS	describes	 the	 average	

reduction	in	the	sum	of	the	squared	residuals	after	splitting	a	node	with	a	predictor,	the	

PI	refers	to	the	relative	reduction	in	predictive	accuracy	after	permuting	the	information	

for	the	respective	predictor.	

RSS	 and	PI	 are	 combined	 in	 the	 following	way	 to	 generate	 a	more	 robust	 score	Si	 for	

predictor	i:	

௜ܵ ൌ maxሺ0, ܴܵ ௜ܵሻ ∗ max	ሺ0, 	௜ሻܫܲ

We	averaged	replicates	for	the	same	strain	to	avoid	the	detection	of	false	positive	QTL.	

Consecutive	markers	linked	to	the	same	trait	and/or	markers	in	high	LD	(Pearson’s	r	>	

0.8)	linked	to	the	same	trait	were	counted	as	a	single	linkage	as	we	previously	described18.		

QTL hotspot detection 

To	formally	identify	hotspots	in	our	dataset,	the	genome	was	divided	into	40‐kb	bins	(293	

bins,	 bins	 at	 chromosome	 extremities	 could	 be	 bigger).	 As	 proposed	 before15,	 if	 the	

linkages	were	randomly	distributed	across	the	genome,	the	number	of	linkages	in	each	

bin	would	be	expected	to	follow	a	Poisson	distribution	with	the	mean	of	Ν௟௜௡௞௔௚௘ Ν௕௜௡⁄ 	.	

We	 use	 this	 distribution	 to	 estimate	 the	 highest	 number	 of	 linkages	 that	 a	 bin	 could	

contain	at	a	probability	lower	than	0.01.	These	numbers	were	30	for	eQTL,	13	for	pQTL,	

9	for	ptQTL,	11	for	phQTL,	and	4	for	phResQTL.	Bins	with	a	sufficient	number	of	QTLs	at	

a	given	molecular	layer	were	considered	as	QTL‐hotspots.	Consecutive	bins	on	the	same	

chromosome	with	enough	QTLs	were	combined	to	single	hotspots.	

Integration of growth QTL 

QTL	affecting	growth	under	various	conditions	were	taken	from	20.	If	the	reported	peak	

position	of	the	growth	QTL	was	within	50	kb	of	the	middle	of	the	positions	of	the	loci	that	

affected	the	most	traits	on	each	of	the	molecular	 layers,	we	considered	them	to	be	the	

same	QTL.	

Identification of local QTL 

QTLs	were	considered	to	be	local	to	their	target	if	the	QTL	contained	at	least	one	genetic	

marker	that	had	a	correlation	of	0.8	or	higher	with	one	of	the	markers	that	are	directly	

up‐	or	downstream	of	the	target	gene	(Pearson’s	r).	For	eQTL,	the	target	gene	corresponds	
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to	 the	 gene,	 whose	 expression	 is	 investigated;	 for	 pQTL	 it	 corresponds	 to	 the	 gene	

encoding	 the	 protein,	 whose	 abundance	 is	 studied;	 for	 phQTL	 and	 phResQTL	 it	

corresponds	to	the	gene	encoding	the	protein	of	which	the	phosphopeptide	is	part	of.		

GO enrichment 

Gene	Ontology	(GO)	enrichment	analyses	were	performed	using	topGO.	We	performed	

Fisher’s	exact	tests	with	the	“weight01”	algorithm	and	a	minimal	nodesize	of	10	56.	We	

used	annotations	from	SacCer3.	

Broad‐sense heritability estimation 

Broad‐sense	heritability	estimates	were	computed	based	on	replicate	measurements	of	

some	 strains,	 as	 described	 elsewhere20.	 We	 used	 six	 different	 segregants	 with	 three	

replicates	each,	as	well	as	the	parents	with	six	(BY)	and	eight	(RM)	replicates	each.	 In	

short,	 the	 'lmer'	 function	 from	the	 lme4	R	package	was	used	to	create	a	 linear	mixed‐

effects	model	with	the	phenotype	as	 the	response	and	the	segregant	 labels	as	 random	

effects57.	The	variance	components	σ²G	(the	variance	due	to	genetic	effects,	i.e.,	different	

segregants),	and	σ2E,	(the	error	variance),	were	extracted,	and	broad‐sense	heritability	

was	calculated	as	H²	=	σ²G	/	(σ²G+σ²E).	Standard	errors	were	calculated	using	the	delete‐

one	jackknife	procedure,	as	proposed	previously20.	Random	distributions	of	heritability	

estimates	 for	each	molecular	 layer	were	generated	by	permuting	 the	strain	 labels	and	

compared	 to	 the	 real	 distributions	 using	 a	Mann‐Whitney	 test.	 In	 order	 to	 be	 able	 to	

compare	heritability	estimates	between	the	different	molecular	levels,	we	restricted	the	

analysis	to	the	set	of	402	proteins	where	we	had	measurements	for	expression,	protein,	

and	(at	least	one)	phosphopeptide.		

Polymorphisms in and around genes 

To	investigate	the	cause	of	local	QTL,	we	counted	polymorphisms	in	the	upstream	region,	

downstream	region,	3’	and	5’	UTRs,	coding	sequence	and	amino	acid	sequence	of	each	

coding	gene	between	the	BY	and	RM	genomes.	We	considered	all	SNPs	reported	by	Bloom	

et	 al.	 20.	We	 excluded	 all	 genes	with	 insertions	 and	 deletions	 from	 this	 analysis.	 UTR‐

annotations	were	downloaded	from	www.yeastgenome.org	in	October	2017.	If	the	UTR	

was	reported	multiple	times	with	differing	lengths,	we	used	the	largest	annotation.	The	

up‐	and	downstream	regions	of	a	gene	spanned	2kb	each	and	began	at	the	outer	borders	

of	the	UTRs	relative	to	the	gene	of	interest.	The	number	of	coding	polymorphisms	was	

defined	as	the	number	of	amino	acid	changes	in	a	protein	between	BY	and	RM.	Multiple	

SNPs	in	the	same	codon	were	only	counted	once.		
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Figure	3c	shows	only	genes	with	available	UTR	annotations	and	available	measurements	

on	the	protein	level.	Genes	with	indels	are	not	included.	

For	each	phosphosite	we	identified	the	closest	polymorphism	in	the	amino	acid	sequence	

space	by	computing	the	absolute	difference	of	the	position	of	the	modified	serine	and	all	

polymorphic	amino	acids	within	the	protein	and	using	the	minimum	of	those	distances.	

Note	 that	 phosphopeptides	 were	 only	 included	 in	 this	 study	 if	 they	 didn’t	 have	 any	

polymorphisms.	

Annotation of protein complexes 

We	 used	 previously	 published	 annotations	 for	 protein	 complexes	

(ftp://ftp.ebi.ac.uk/pub/databases/intact/complex/current/complextab/saccharomyce

s_cerevisiae.tsv,	 58).	 The	 annotated	 complex	 members	 included	 proteins	 and	 small	

molecules	such	as	ions.	We	only	considered	those	proteins	as	members	of	complexes	that	

shared	a	complex	with	at	least	one	other	protein.	

To	investigate	the	influence	of	the	stoichiometry	of	protein	complexes	on	protein	levels,	

we	computed	the	correlation	between	levels	of	proteins	of	the	same	complex.	Here	we	

only	considered	genes	(i)	for	which	protein	and	transcript	levels	were	available,	and	(ii)	

which	were	annotated	for	complexes	that	did	not	have	any	overlap	with	other	complexes.	

Nucleolar	 and	 ribosomal	 proteins	were	 excluded	 from	 this	 analysis,	 since	we	 already	

showed	that	they	were	enriched	in	genes	with	buffered	protein	levels	(‘buffered’	in	Figure	

3b).	Taking	them	into	account	might	have	biased	the	results	from	the	analysis	of	complex	

protein	pairs.	 In	 total	we	 considered	286	unique	pairs	 of	 proteins	 that	 each	 shared	 a	

complex.	These	pairs	corresponded	to	188	genes.	

	We	then	used	Fisher’s	exact	tests	to	determine	if	pairs	of	genes	that	share	a	complex	were	

affected	by	the	same	QTL	at	a	significantly	different	frequency	than	pairs	of	genes	that	do	

not	share	a	complex.	Traits	were	considered	to	be	affected	by	the	same	QTL	if	any	marker	

was	significant	for	both	traits.	

Classification of QTL based on their effects on the transcriptome and proteome 

To	analyze	how	QTL	affect	the	proteome,	we	classified	eQTL	into	three	distinct	classes:	

(i)	eQTL	with	 ‘similar’	effects	on	the	 transcriptome	and	proteome,	(ii)	 ‘buffered’	eQTL,	

and	(iii)	‘enhanced’	eQTL.	We	computed	the	effect	E	of	a	QTL	at	locus	i	on	a	molecular	trait	

j	as	a	log2	fold	change	by	subtracting	the	average	of	the	log2‐transformed	trait	values	t	of	

all	strains	with	the	RM‐allele	at	this	locus	from	the	average	trait	value	for	all	strains	with	

BY‐allele.		

௜௝ܧ ൌ ௝̅,ீ೔ୀ஻௒ݐ െ	ݐ௝̅,ீ೔ୀோெ		
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The	eQTLs	were	classified	based	on	the	difference	of	their	effects	on	the	target	transcript	

and	the	encoded	protein:	

௜݌݁∆ ൌ
௜௘ܧ
|௜௘ܧ|

ሺܧ௜௘ െ 	௜௣ሻܧ

where	ܧ௜௘and	ܧ௜௣	are	the	effects	of	eQTL	i	on	the	mRNA	and	protein	levels,	respectively.	

If	the	absolute	difference	|∆݁݌௜|	was	below	0.15	the	eQTL	effect	was	classified	as	‘similar’.	

If	∆݁݌௜was	 above	 +0.15,	 it	was	 classified	 as	 ‘buffered’	 and	 if	 the	 effect	 difference	was	

below	‐0.15	(i.e.	∆݁݌௜ ൏ െ0.15)	it	was	classified	as	‘enhanced’.	

ptQTL	at	FDR<10%	that	didn’t	overlap	with	an	eQTL	for	the	same	gene	were	added	as	a	

fourth	class	(‘protein	only’).	

The	 effects	 of	 local	 and	 distant	 eQTL	 on	 the	 proteome	was	 compared,	 by	 generating	

simple	 least	squares	regression	models	for	local	and	distant	eQTL	separately.	Here	we	

considered	the	log2	fold	change	on	the	protein	level	as	the	dependent	variable	and	the	

log2	 fold	 change	 on	 the	 transcript	 level	 as	 the	 independent	 variable.	 Models	 were	

generated	with	the	lm	function	of	the	stats	package	in	R59.	

Enrichment of targets of kinases and phosphatases among HAP1‐targets 

We	 tested	 the	 phosphoproteins	 targeted	 by	 the	 HAP1‐locus	 for	 enrichments	 in	 the	

previously	annotated	targets	of	a	large	number	of	kinases	and	phosphatases34.	Here	we	

only	 considered	 target	 proteins	 that	 were	 reported	 to	 be	 phosphorylated	 or	

dephosphorylated	at	serine	residues.	We	also	considered	proteins	that	were	measured	in	

34	but	not	found	to	be	regulated	by	any	genetic	perturbation.	Among	the	315	proteins	that	

were	measured	in	both	studies,	a	total	of	45	proteins	had	at	least	one	phResQTL	at	the	

HAP1‐locus.	 We	 used	 one‐sided	 Fisher’s	 exact	 tests	 to	 assess	 the	 significance	 of	 the	

enrichments	 of	 targets	 of	 a	 kinase	 or	 phosphatase	 among	 the	 genes	 that	 were	 also	

targeted	by	the	HAP1‐locus.	

Data accessibility 

All	 raw	 MS	 data	 files	 and	 search	 results	 thereof	 have	 been	 deposited	 to	 the	

ProteomeXchange	 Consortium	 via	 the	 PRIDE	 partner	 repository	 with	 the	 dataset	

identifier	PXD010893.		

Raw	RNA‐seq	reads	for	all	150	samples	that	were	included	in	the	eQTL‐mapping	were	

uploaded	to	ArrayExpress	under	the	accession	E‐MTAB‐8146.	
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