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Abstract 

A progressive decline of skeletal muscle strength with aging is a primary cause of mobility 

loss and frailty in older persons, but the molecular mechanisms of such decline are not fully 

understood. Here, using quantitative discovery proteomic data from skeletal muscle 

specimens collected from 58 healthy persons aged 20 to 87 years show that ribosomal 

proteins and proteins related to energetic metabolism, including those related to the TCA 

cycle, mitochondria respiration, and glycolysis were underrepresented in older persons. 

Proteins with important roles in innate and adaptive immunity, involved in proteostasis and 

regulation of alternative splicing were all overrepresented in muscle from older persons. 

Changes with aging of alternative splicing were confirmed by RNA-seq. Overall, older 

muscle has a profound deficit of energetic metabolism, a pro-inflammatory environment and 

increased proteostasis. Upregulation of the splicing machinery maybe an attempt to 

compensate for these changes and this could be tested in future studies. 
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Introduction 

One of the most striking phenotypes of aging is the decline of skeletal muscle strength, 

which occurs in all aging individuals and contributes to the impairment of lower extremity 

performance and loss of mobility 1-3. The magnitude of decline in strength is higher than that 

expected from the loss of muscle mass, suggesting that the contractile capacity of each unit 

of muscle mass is progressively lower with aging. The reasons for such a decline of 

contractile capacity are unclear, and several hypotheses have been proposed 4. Studies 

conducted in humans by 31P magnetic resonance spectroscopy as well as “ex vivo” 

respirometry have shown that skeletal muscle oxidative capacity declines with aging and 

such decline affects mobility performance 5-8. Ample evidence from animal models, and more 

limited evidence from human studies also suggest that aging causes progressive muscle 

denervation, with enlargement of the motor units and degeneration of the neuromuscular 

junction, but whether these changes account for the change of contractile performance of 

human muscle with aging has not been studied 9-13. 

Currently, no treatment is available to prevent or delay the decline of muscle strength and 

function with aging. Thus, understanding the mechanisms driving the decline in muscle 

contractile capacity with aging is essential to identify new targets of intervention. Previous 

studies attempted to address this question by performing cross-sectional untargeted 

proteomic analysis in skeletal muscle biopsy specimens from young and old individuals. 

However, these studies were limited in size, focused on cancer cachexia, analyzed single 

fibers, did not account for levels of physical activity or did not explore the effect of aging over 

its continuous range and, therefore, could not distinguish changes due to aging from those 

due to disease or sedentary state 14-18. To overcome these earlier limitations, we have 

performed a quantitative mass spectrometry-based proteome analysis (tandem mass tag, 

TMT) of skeletal muscle biopsies obtained from individuals distributed over a wide age 

range, who were extremely healthy based on strict objective clinical criteria. We 

characterized proteins that were overrepresented and underrepresented in older individuals 
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and using these data we made inferences about molecular pathways affected by aging in 

skeletal muscle.  

Results and Discussion 

Quantitative Skeletal Muscle Proteome Analysis of Healthy Aging 

Skeletal muscle biopsies were collected from 60 healthy participants of the Genetic and 

Epigenetic Study of Aging Laboratory Testing (GESTALT) aged 20 to 87 years who were 

defined as ‘healthy’ based on very strict evaluation criteria at the National Institute on Aging 

Clinical Unit in Baltimore 19. Exclusion criteria included any diseases that required chronic 

treatment with the exclusion of mild hypertension fully controlled with one drug only, any 

physical or cognitive impairment, and any abnormal values in pre-defined list of blood clinical 

tests (see methods for details). Participants who consented for a muscle biopsy were 

homogeneously distributed across the age strata 20-34 (n=13), 35-49 (n=11), 50-64 (n=12), 

65-79 (n=12) and 80+ (n=10), and biopsies were analyzed by tandem shotgun mass 

spectrometry-based quantitative proteomics method (Figure 1A, Table S1). Using 

multiplexed isobaric labelling tags (TMT) and a customized analytical strategy 20 21 we 

identified 400,000 tryptic peptides from 6.7 million spectra (396 multiplexed MS runs from 12 

TMT 6plex experiments), which allowed the quantification of 5,891 proteins (Table S2).  

To control for batch variability and avoid bias, we included a reference sample in all 12 TMT 

sets. A loading normalization was implemented that assumed that the sums of all intensities 

from all the proteins across the samples in a single TMT experiment were equal and that the 

sample loading effects, peptide bias effects and the residual error were normally distributed 

across a constant variance across samples (Figure S1A). To test the effectiveness of these 

approaches, we examined TMT batch effects in several analyses, allowing for experiment-

specific random effects. We then averaged the expression values from each TMT across the 

sample groups and found that the ranks between TMTs were highly correlated (Figure 1B-C, 
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Figure S1B). Together, these findings indicate that the protein quantification across the 12 

TMT experiments was robust.  

Of the initial 5,891 proteins detected,  we excluded from the analysis 1,511 proteins that 

were not quantifiable in at least 3 participants per age strata (at least 15 participants total) 

and performed the analysis in the remaining 4,380 proteins detected in more than 15 donors 

(3 per age strata), which were quantified from 46,834 unique peptides and 2.7 million 

spectra (Figure 1D). We used Partial Least Squares (PLS) analysis to explore the overall 

clustering of the 4,380 proteins across age groups (Figure 1E). The age groups (color-

coded) were well separated along at least one axis in the three-dimensional clustering 

classification (Figure S1C). As expected, most of the proteins identified were classified as 

“muscle proteins”, and the top 10 most abundant muscle proteins accounted for 45% of the 

total spectral abundance. Low-abundant mitochondrial proteins, such as cardiac 

phospholamban (PLN), were also quantified.  

Focus on the Aging Biological Mechanisms  

The relationship of age with the skeletal muscle proteins was estimated by linear mixed 

regression models that included sex, race, level of physical activity, type I/type II muscle 

fiber ratio, body mass index (BMI) and TMT batch effect as covariates (method section). Of 

note, the age beta-coefficients (aging effect size) are small because they express the 

difference in protein “per year” of age. For example, the difference in protein between two 

individuals that differ by 20 years would be 20 times the size of the beta coefficient. We 

adjusted for physical activity because it both tends to decline with age and strongly affects 

biological processes in muscle cells 22-24. Previous studies demonstrated that gender and 

race strongly affect body composition and muscle mass 25. Skeletal muscle tissue includes 

different myofiber types: type I fibers (slow-twitch), type IIa fibers (fast-oxidative), and IIb 

fibers (fast glycolytic muscle fibers containing four different myosin isoforms), each 

supported by different energetic metabolism and with different protein composition. An 
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analysis for a proxy measure of “muscle fiber ratio” 26 was estimated by calculating the ratio 

of myosin 7 (MYH7), the slow-twitch fiber isoform, and the sum of fast-twitch fiber isoforms 

(MYH1, MYH2 and MYH4) (Figure S2A1-A4); as expected, the fiber ratio of slow/fast was 

higher with older age (Figure S2A5). The slight change of slow/fast fiber ratio was significant 

and outweighed the wide variability among individuals (p=0.005); BMI was adjusted because 

obese persons tend to have muscle fat infiltration and lower muscle quality and muscle-fat 

interaction may affect muscle composition and function 4,27. Gender may also have an 

impact on protein expression in skeletal muscle, as males and females are known to have 

differences in muscle mass; however, because of the limited sample size, we did not stratify 

the analysis by gender. This analysis should be done in future larger studies. 

Proteins were then deemed significantly underrepresented or overrepresented in older age 

based on p-values for age-coefficients in the regression equation, calculated from 

Satterthwaite's t-tests (Figure 2A; Figure S2B). There were 1265 proteins significantly 

associated with age (p <0.05, with BH correction <0.1, 917 proteins), suggesting that 

approximately 29% of the skeletal muscle proteome changed with aging after 20 years of 

age (Table S3). Of these, 29% (361) were significantly underrepresented and 71% (904) 

were overrepresented with older age. The age-associated analysis across the experimental 

dataset and across multiple comparisons was highly robust (Figure S2C).  

Notably, the proteins most strongly associated with older age (Figure 2A, right) were LSM14 

homolog A (LSm14A, β=0.023, p=0.0109), tissue metalloproteinase inhibitor 3 (TIMP-3, 

β=0.0219, p=0.00026) and serum amyloid P-component (APCS, β=0.0164, p=1.26E-11). 

Protein LSm14A is implicated in processing the assembly of processing bodies, involved in 

mRNA turnover, and can also bind to viral nucleic acids and initiate IFN-β production, 

contributing to innate immunity 28. TIMP3 regulates the adipogenic differentiation of 

fibro/adipogenic progenitors (FAPs) in skeletal muscle, and its overrepresentation may 

explain the tendency for fat infiltration in aging muscle 29. Consistent with this hypothesis, 

Perilipin 1 (PLIN1, β=0.014, p=0.0003), a lipid droplet-coating protein, and adipogenesis 
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regulatory factor (ADIRF, β=0.01173, p=1.78E-05), a protein that is only expressed in 

adipose tissue, were among the most overrepresented proteins in old muscle. APCS is 

indicative of systemic amyloid, and its overrepresentation in aging muscle has never been 

previously described.  

The most underrepresented proteins (age β<-0.01 and p<0.05) with old age (Figure 2A, left) 

were HLA class II histocompatibility antigen (HLA-DRB1, p=0.024), dedicator of cytokinesis 

protein 4 (DOCK4, p=0.025), myosin-binding protein H (MYBPH, p=0.0005), and Microfibril-

associated glycoprotein 4 (MFAP4, p=0.000002). Although HLA-DRB1 is the most altered 

protein, it is present only in 53% of the donors. MYBPH maintains the structural integrity of 

the muscle and its decreased expression has been associated with muscle weakness in 

age-related disorders 30. 

To explore differences of protein expression profiles across the lifespan, we generated a 

heatmap of the 1,265 age-associated proteins and looked for clusters of proteins showing 

parallel changes with age (Figure 2B). Hierarchical clustering of protein expression 

suggested that the strongest difference was between young (20-34) and old (80+). There 

were small differences before the age of 50, but afterwards there was on average three log 

fold protein expression differences, and even more substantial differences after the age of 

64. The separation of protein expression between three age groups (20-49, 50-64, and 65+) 

was confirmed by PLS analysis (Figure 2C). These findings are consistent with data showing 

that the age-associated decline of muscle strength is already detectable after the fourth 

decade of life and substantially accelerates after the age of 70 31. 

Next, we grouped all quantified proteins according to biological mechanisms associated with 

aging in skeletal muscle (Figure 2D.1). We also included a category for all contractile and 

architectural muscle proteins (named hereafter “muscle proteins”). Though the highest 

abundance proteins detected correspond to muscle proteins, the largest category were 

mitochondria proteins (15%). Each of the other categories represented <9% of total proteins. 
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Protein classes differed between those underrepresented and overrepresented with older 

age are summarized in (Figure 2D.2 and 2D.3) and are described in detail in subsequent 

sections. Specifically, proteins implicated in muscle contraction, muscle architecture, 

mitochondria metabolism, as well as ribosome function decreased with older age. By 

contrast, proteins related to genomic maintenance, transcriptional regulators, splicing, 

neuromuscular junction, proteostasis, senescence and immune function increased with age. 

Other smaller subcategories of proteins were also differentially abundant (Figure 2D.3).  

Contractile, Architectural and Neuromuscular Junction Proteins (NMJ) 

Since many proteins decreasing with age were contractile proteins, we classified these 

further by function. The top 95 proteins in this class are involved in the architectural and 

functional stabilization of the sarcomere, including sarcospan (SSPN, β=0.002, p=0.016) 

(Figure 2E), a dystrophin-associated protein complex important for muscle regeneration, 

actin-binding LIM domain and actin-binding protein 1 (LIMA1, β=0.003, p=0.009), a 

cytoskeleton-binding protein that stabilizes actin filaments, and plectin (PLEC, β=0.0007, 

p=0.036), a large cytoskeleton protein that preserves interactions within the acto-myosin 

complex. Increases in delta sarcoglycan (SGCD, β=0.0019, p=0.00004, and gamma 

sarcoglycan (SGCG, β=0.0016, p=0.0062) were consistent with mouse studies showing that 

dystrophin, sarcoglycan subcomplex γ- and δ-sarcoglycan were overexpressed with aging, 

perhaps a compensatory mechanism to avoid damage in the sarcomere during contraction 

or as biomarkers of continuous repair 32. Interestingly, MAPT (tau, mostly expressed in 

neurons and involved in the assembly and stabilization of microtubules), was also 

significantly underrepresented in older muscle (Figure 2E). A crucial component of muscle 

function is the neuromuscular junction (NMJ), and since the abundance of all NMJ related 

proteins increased with age we examined the agrin signaling pathway of NMJ. Agrin (AGRN) 

and acetylcholine esterase (ACHE) increased with age but not significantly (Figure S2D). By 

contrast, the levels of Syne-1 which anchors both synaptic and non-synaptic myonuclei for 

proper neuron innervation and respiration increased with age (SYNE1 β=0.002, p=0.005) as 
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did beta-2-syntrophin, which is believed to be involved in acetylcholine receptor clustering 

(SNTB2, β=0.0029, p=0.0003). 

Decline of Mitochondrial Proteins with Age 

Because of the striking difference in abundance of mitochondrial and energy metabolism 

proteins with age, we studied these proteins by protein annotations using Uniprot keywords, 

GO ontology terms and extensive manual curation based on the most recent literature. The 

coverage of mitochondrial proteins quantified by our analysis compared to those described 

in the literature ranged from 92% for TCA proteins to 52% for proteins located in outer 

mitochondrial membrane [possibly due to incomplete tissue disruption 33,34] (Figure 3A). The 

coverage of the bioenergetics and mitochondrial proteome in our dataset is similar to that 

reported by other authors 15,33. Of the mitochondrial proteins identified, the abundance of 

25% of them (173 proteins) changed with age, mostly (70%) declining with age. Notably, 

however, outer membrane proteins were more abundant (Figure 3B); for example, NADH-

cytochrome b5 reductase 3 (CYB5R3), an NADH‐dehydrogenase located in the outer 

membrane of ER and mitochondria, whose overexpression is known to mimic many effects 

of caloric restriction, was significantly overrepresented in older age (Figure S3A) 35,36. The 

permanence of mitochondrial protein debris in aging muscle has been previously reported - 

attributed to defective autophagy, and through to cause activation of the inflammasome and 

a proinflammatory state 37. 

Of the enzymatic mitochondrial proteins, 99 were respiratory chain proteins (Complex I-V 

and assembly complex proteins), and most of them declined with aging (28 proteins p<0.05; 

Figure 3C). Surprisingly, succinate dehydrogenase complex assembly factor 2 (SDHAF2), 

required for covalent FAD insertion into complex II, the electron transport chain, and the TCA 

cycle, were significantly overrepresented with older age (Figure 3C inset). The reason for 

this exception is unclear and if replicated in other analysis requires further work.  
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We then analyzed proteins from complex I to V and found that 16 proteins were significantly 

lower at older age (Figure 3C, Figure S3B). Among 41 proteins involved in energy 

production, most were underrepresented at older ages. Of 22 proteins quantified for TCA 

cycle, only malate dehydrogenase (MDH1), isocitrate dehydrogenase (IDH1), fumarate 

hydratase (FH) and succinate--CoA ligase (SUCLG1) (Figure S3C) were significantly lower 

at older ages. The decreasing levels of IDH-1 with age is unsurprising, as previous studies 

have shown a decrease in abundance of IDH-1 in older C.elegans 38. IDH1 converts 

isocitrate to α-ketoglutarate by reducing NADP to NADPH in the process. In addition, to 

IDH1, NADP+ is also reduced to NADPH via the mitochondrial NAD(P)-malic enzyme (ME2) 

39 and predominantly through NNT (NAD(P) transhydrogenase) and the pentose phosphate 

pathway. In our study, NNT (β=-0.003, p=0.001) significantly decreased with aging. 

Interestingly, the decrease in expression levels of both NNT and IDH1 with age, suggests a 

decreased capacity of the mitochondria to maintain proton gradients and results in oxidative 

damage. Further, NADK (NAD+ Kinase), which is highly regulated by the redox state of the 

cell and regulates NADP synthesis in vivo decreased with age (NADK2, β=-0.001, p=0.052). 

The changes in the NADP/NADPH levels influence cellular metabolism, calcium signaling 

and anti-inflammatory processes and regeneration of glutathione 40. 

NAD+ declines with age in several tissues and its metabolism has been implicated in the 

aging process and age-related pathologies including loss of skeletal muscle mass 41,42. NAD+ 

is synthesized in vivo predominantly via the salvage pathway and the de novo and Preiss-

Handler pathways 43,44. We specifically examined age differences in abundance of proteins 

from these pathways. We found that NAM-N-methyl transferase (NNMT, β=0.007, p=0.016), 

nicotinamide ribose kinases (NMRK1, β=-0.003, p=0.002), poly-ADP-ribose polymerases 

(PARP1, β=0.002, p=0.003) and CD73 (NT5E, β=0.004, p=0.056) were significantly 

increased with at older ages, while only NMRK1 decreased with age (Figure 3D). NAMPT, 

which converts NAM to NMN, was not significantly different with age while NMRK1, which 

converts NR to NMN, was significantly lower in the muscle of older participants. These 
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findings may explain the mechanism by which NMN tends to be lower in tissue from older 

compared to younger persons. Two additional mechanisms that may exacerbate the decline 

in NMN and NAD+ with aging, namely the increased expression levels of CD73 that converts 

NMN to NR and the increase in expression levels of PARP1, which converts NAD+ into NAM 

and ADP-ribose.  

Changes of Proteins Involved in Genomic Maintenance and Cellular Senescence 

Most genomic maintenance proteins increased in abundance with age, especially those 

involved in DNA damage recognition and repair, such as double-strand break repair protein 

(MRE11), X-ray repair cross-complementing protein 5 (XRCC5), and structural maintenance 

of chromosomes protein 1A (SMC1A) (Figure S4A). Prelamin-A/C (LMNA), Lamin-B1 

(LMNB1) and Lamin-B2 (LMNB2), members of the LMN family of protein components of 

nuclear lamina that help maintain nuclear and genome architecture, were all 

overrepresented with older age (Figure S4B). Sirtuin 2 (SIRT2, β=-0.0013, p=0.032), 

implicated in genomic stability, metabolism and aging, was also found to be lower in older 

skeletal muscle (Figure S4C). 

Forty proteins that in the literature have been implicated in cellular senescence were 

significantly overrepresented with age. These included extracellular superoxide dismutase 

(SOD3, β=0.005, p=0.000009) and Transgelin-2 (TAGLN2, β=0.005, p=0.0002), a potential 

oncogenic factor and senescence-associated protein, The proteins decreased with age were 

GOT1, MAP2K3 (β=-0.003 and -0.0021, respectively), and casein kinase II subunit alpha 

(CSNK2A1, β=-0.0016, p=0.014). Interestingly, in addition to regulating cell cycle, CSNK2A1 

plays a central role in many other biological mechanisms, including apoptosis, which is 

suppressed in senescent cells (Figure S4D). These observations suggest that senescent 

cells from different possible origins (e.g., myocytes, adipocytes or fibroblasts) may 

accumulate in old muscle. 
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Implications of Proteins that Modulate Transcription and Splicing 

Of all the 69 age-associated transcription regulatory proteins quantified, only 8 were 

underrepresented with older age, including kelch-like protein 31 (KLHL31, β=-0.0017, 

p=0.003), which is implicated in the maintenance of skeletal muscle structure, increases with 

muscle growth and prevents congenital myopathy in mice 45. By contrast, myocyte-specific 

enhancer factor 2D (MEF2D, β=0.003, p=0.018), essential for myogenesis and muscle 

regeneration and regulator of KLHL31 production, increased with age 46. Contrary to earlier 

reports, CTCF (β=0.009, p=0.026), a transcriptional activator and repressor protein that fine-

tunes chromatin architecture, also increased with age (Figure 4A). 

A major unexpected finding of our analysis was the strong increase in major spliceosome 

complex proteins with aging (Figure S5A). The spliceosome comprises five small nuclear 

RNAs (snRNAs), U1, U2, U4, U5, and U6, that form functional complexes with proteins to 

regulate alternative splicing, a process by which different exons of one pre-mRNA are 

variably combined to generate different proteins 47. We found differential expression of many 

proteins widely distributed across the five spliceosome complexes and other spliceosome-

associated protein factors essential for mRNA maturation and gene expression (Figure 4B). 

In particular, of the ~300 proteins and spliceosome-associated factors described 48 49, we 

quantified 99 and 57 of them, respectively, were overrepresented in older muscle (Figure 

4C). Overall, spliceosomal proteins increased by ~15% between the ages of 20 and 87 

years (Figure 4D). Spliceosome components are actively rearranged during assembly, 

catalysis, disassembly and recycling, each step involving recruitment and recycling of 

several proteins 50. To understand whether aging affects preferentially one of these 

biological steps, we categorized the spliceosomal complexes and snRNPs into E complex, A 

complex, and B complex (assembly complex, 37 proteins), Bact complex and C complex 

(catalysis complex, 7 proteins) and snRNPs (recycling, SART1 protein) (Figure 4E), but we 

found no evidence of proteins from a specific complex being more overrepresented with 

aging than proteins from other complexes (Figure S5B). LSm RNA-binding protein (LSM14A) 
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was the most overrepresented assembly protein, displaying a 20-fold increase with age. The 

overrepresentation of spliceosomal proteins, such as the pre-mRNA-processing-splicing 

factor 8 (PRPF8) (Figure 4E, inset), the key catalytic core and the largest and most 

conserved protein in the spliceosome, suggests that pre-RNA processing may be 

upregulated in older skeletal muscle.  

A systematic change in the splicing machinery with older age was previously suggested by 

transcriptomic analyses skeletal muscle biopsies 51 and human peripheral blood leukocytes 

52 of young and old individuals. In both studies, processing of mRNAs was the feature that 

best discriminated younger and older persons, suggesting that modulation of alternative 

splicing is one of the signatures of aging 53. Although the mechanisms and consequences of 

the rise in splicing factors with aging are unknown, they may indicate either a dysregulation 

of the splicing apparatus or a shift toward increased splicing and/or altered splice isoform 

diversity with aging 54. 

Age-Associated Alternative Splicing and Splicing Events  

The marked rise in overrepresentation of splicing machinery proteins with aging prompted 

questions about its functional consequences. Emerging literature suggest that change in 

expression of splicing factors is a major determinant for selection of specific splicing variants 

and changes in splicing variants contributes to some aging phenotypes, including age-

related diseases 55 56. We analyzed potential differences in mRNA splicing with age (see 

methods) using RNA-seq data that were available for most of the same specimens used for 

the proteomic study (n=53). Specifically, we studied a set of variations of the exon-intron 

structure, known as transcriptional events, namely Alternative First exon (AF), Skipped Exon 

(SE), Alternative Last exon (AL), Alternative 3’ splice-site (A3), Alternative 5’ splice-site (A5), 

Retained Intron (RI) and Mutually Exclusive Exons (MX) 57. Donor-specific splicing index 

(PSI, which measures each isoform as a % of total isoforms) was calculated for each AS 

event in each sample and a linear mixed regression model was used to identify age-
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associated PSIs for each splicing event. Analysis of 144,830 transcripts from RNA-seq 

datasets showed that around 3.7% of the skeletal muscle transcripts (5,459 transcripts, 

corresponding to 6,255 events) showed relative abundance changes with aging (Figure 5A; 

Table S4). Next, we calculated the frequency and distribution of splicing events with aging as 

well as the directionality of such changes and found that 2,714 events were significantly less 

frequent at older ages and 3,545 events significantly more frequent at older ages (Figure 5B; 

Table S5). The overall number of events increased slightly with older age but AS events, at 

least for the 6,255 AS events quantified, increased significantly with age (r2=0.33, p=6.001e-

06) (Figure 5C). 

We then investigated whether any specific class of skeletal muscle AS events was enriched 

in our age-association analysis compared to the list of splicing events described for human 

skeletal muscle in the Ensembl human transcriptome (Figure 5D). The rates of observed 

skeletal muscle events are very similar to those reported in the Ensembl transcriptome 

(Figure 5D) except for ME, A3, SE and AF. The largest difference was in the skipped exon 

(SE) class of events, where a higher percentage of transcripts were exon-skipped compared 

to Ensembl events, with 27% of all the skeletal muscle AS events of the exon skipping type. 

A previous study reported 35% of the erythroid genes show evidence of AF exons, indicating 

that alternative promoters and AF are widespread in the human genome and play a major 

role in regulating expression of select isoforms in a tissue-specific manner 58. This finding is 

in line with our result of 36% AF in our skeletal muscle data. 

We next examined whether AS events occurred in proteins connected with pathways that 

are known to be dysregulated with aging; interestingly, among the top fold enriched (FE) 

gene ontology (GO) biological processes  associated with age, splicing changes were more 

frequent on those that negatively regulated IκB kinase/NF-κB signaling (FE=2.86, p=3.18E-

04), and those that regulated mitophagy (autophagy of mitochondria; FE=3.71, p=2.23E-04) 

and fatty acid beta oxidation (FE=3.21, p=1.72E-04). The GO biological process with positive 

age-associated splicing events were mitochondrial morphogenesis (FE=5.15, p=8.98E-03), 
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response to mitochondrial depolarization (FE=4.93, p=2.46E-04), and endoplasmic reticulum 

calcium ion homeostasis (FE=4.48, p=2.31E-04). These data suggest that the upregulation 

of alternative splicing in skeletal muscle with aging may be reactive to change that occur with 

aging either by rising an inflammatory response or by activating damage-response 

mechanisms at a time when energy becomes scarce.  

Among the 5,459 transcripts (from 3,791 genes) that were alternatively spliced with age, 

4967 transcripts were protein-coding. We compared these genes with the age-associated 

proteins and found that 8.9% of the age-associated alternatively spliced transcripts (385) 

were reflected in protein changes (Figure 5E). This comparison of age-associated proteins 

and alternatively splicing mRNAs suggests that 30% (385) of the age-associated proteins 

undergo alternative splicing. Among this group, 64 proteins are involved in cellular 

organization or biogenesis (GO:007180), and proteins like tubulin (TUBB2B, TUBB), profilin 

2 (PFN2) and actin-related protein 2/3 complex subunit 4 (ARPC4) are involved in the 

cytoskeletal regulation by Rho GTPase pathway. A further PANTHER database 

classification of these proteins shows an enrichment in categories like RNA/DNA binding, 

cytoskeletal, translational and ribosomal proteins (Figure 5E protein categories). Overall, 

these findings suggest that a large percentage of proteins that change with aging also 

undergo splicing variations, and this is especially true for mitochondrial proteins. The 

physiological reasons for these changes remain unknown.  

Depletion of Ribosomal Proteins with Age 

Similarly, to previous studies, we found that a large number of ribosomal proteins were 

differentially expressed with older age (Figure 2, Figure S6A) 59,60. In particular, all the 60S 

and 40S ribosomal proteins were globally reduced in older muscle; exceptions included 60S 

ribosomal proteins L12 and L3 (RPL12, β=0.0008, p=0.024, RPL3, β=0.003, p=0.016), as 

well as H/ACA ribonucleoprotein complex subunit 4 (DKC1, β=0.002, p=0.034) and nucleolar 

protein 58 (NOP58, β=0.003, p=0.00007), which were overrepresented in old muscle. 
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RPL12, RPL3, and DKC1 play a role in viral mRNA translation, while NOP58 is important for 

ribosomal biogenesis (Figure S6A-C). Changes in ribosome proteins may signal a decline in 

protein synthesis with aging, which may lead to slow recycling and progressive damage 

accumulation in contractile proteins.  

Differential Regulation of Proteins Related to Proteostasis in Aging 

Cells rely on a complex proteostatic machinery to handle protein quality control, assembly, 

folding and elimination. These activities are essential for the recycling of damaged proteins 

or entire organelles and provide critical protection against damage during conditions of 

metabolic or oxidative stress. Extensive literature supports the decline of proteostasis with 

aging in animal models and in humans 61 62. Of the 239 detected proteins that has been 

related to proteostasis in the literature, 31% were altered with age (p<0.05, 24 

underrepresented and 50 overrepresented with older age) (Figure 6A). Most proteins 

underrepresented with age were chaperones, including DnaJ homolog subfamily A 

(DNAJA1), also named heat shock protein (Hsp) 40 (β=-0.0021, p=0.003), Hsp27 (β=-0.004, 

p=0.0001), Hsp70 protein 8 (HSPA8, β=-0.002, p=2.34E-07) (Figure S7) as well as Hsp27 

protein 1 (HSPB1) and protein 7 (HSPB7), Hsp10 protein 1 (HSPE1) and Hsp60 protein 1 

(HSPD1). Excluding HSPD1, the decline of these proteins with aging was previously 

described 62-64. Other differentially expressed proteostasis-related proteins, including PDIA6, 

NPM1, ANP32E, and DNAJC2, are also regulatory chaperones (Figure 6B).  

The loss of chaperone function during aging may be compensated by an increase in 

autophagic activity (Figure 6C), as misfolded proteins must be removed and degraded 

through an alternative mechanism. Indeed, most proteostasis proteins overrepresented with 

aging were related to autophagy except HSPA8 and Eukaryotic translation initiation factor 4 

gamma 1 (EIF4G1). For example, TDP-43, a DNA/RNA-binding protein that tends to form 

aggregates in tissues such as skeletal muscle and brain and is both removed by autophagy 

and involved in autophagy maintenance, increased significantly with aging (TARDBP, 
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β=0.002, p=0.0002) (Figure 6D). On the contrary, calreticulin (CALR), a quality control 

chaperone induced under ER stress that stimulated autophagy, was significantly higher in 

muscle of older participants (β=0.001, p=0.022) (Figure 6D) 65. Of note, calreticulin is used 

by macrophages to tag cells to be removed by programmed cell phagocytosis 66. Consistent 

with this finding, CALR is considered a main biomarker of age-related diseases and frailty 67. 

Pro-inflammatory and Anti-Inflammatory Immune Proteins of Aging Muscle 

Of the 32 immune-related age-associated proteins that were quantified (Figure 7A), three 

broad themes emerged from the aging muscle immune proteome (Figure 7B-D). First, many 

proteins previously linked to macrophage function (such as CD14, LGALS3, CAPG, INPPL1 

and MAST2) were dysregulated in aging muscle, with skewing towards a pro-inflammatory 

phenotype. For example, the overrepresentation with aging of proteins such as Monocyte 

differentiation antigen CD14 (CD14, β=0.003, p=0.009), Interferon-induced, double-stranded 

RNA-activated protein kinase (E2AK2, β=0.0008 p=0.046) and ASC (PYCARD) (β=0.006, 

p=0.025) can be viewed as being pro-inflammatory via their proposed role in lipid sensing 

and NF-κB activation (Figure 7B.1) 68,69. Interestingly, we also identified proteins that were 

concurrently downregulated, such as Microtubule-associated serine/threonine-protein kinase 

2 (MAST2, β=-0.002, p=0.023) and Phosphatidylinositol 3,4,5-trisphosphate 5-phosphatase 

2 (INPPL1, β=-0.0009, p=0.036), that could accentuate the inflammatory phenotype by 

attenuating the negative regulation of NF-κB (Figure 7B.2) 70,71. Thus, increased expression 

of NF-κB activators and decreased expression of NF-κB attenuators may synergize to 

elevate chronic inflammation in aging muscle. We also noted increased expression of High 

mobility group protein B2 (HMGB2, β=0.004, p=0.001), a well-known ‘alarmin’ 72 that is 

released from dying cells or within neutrophil extracellular traps (NETs), that may further 

exacerbate the inflammatory milieu. Cumulatively, our observations are consistent with the 

emergence and/or enrichment of pro-inflammatory macrophages in aging human muscle. 
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Second, we found evidence of an anti-inflammatory activity that could potentially offset the 

pro-inflammatory milieu of aging muscle (Figure 7C). This was most evident in strong age-

associated up-regulation of annexin A1 (ANXA1, β=0.008, p=0.00001), a protein that has 

been linked to resolution of inflammation 73. Elevated levels of adiponectin (ADIPOQ, 

β=0.002, p=0.008), a chemokine produced exclusively by adipocytes, likely reflected 

increased adipogenic activity in aging muscle. However, it is interesting to note that ADIPOQ 

has also been proposed to inhibit endothelial NF-κB activation 74,75 and may, thereby, have 

context-dependent anti-inflammatory functions. Finally, erbin (ERBIN, β=0.002, p=0.019), a 

nuclear lamina-associated protein that was overrepresented with age in our studies, has 

been implicated in reducing NF-κB activation by some stimuli 76, with associated reduction in 

pro-inflammatory gene expression.  

Third, coordinate up-regulation of several members of the alternate complement pathway, 

such as CFAH (β=0.003, p=0.028, and CFAD (β=0.003, p=0.039) and modulators of 

complement activity such as CD antigen CD55 (DAF and CD55, β=0.006, p=0.00007) 

indicate ongoing innate immune activity in aging muscle (Figure 7D). Whether this trend 

reflects increased presence of dying cells and cell debris or below-threshold autoimmune 

activity remains to be determined. The latter could be mediated, for example, by 

Immunoglobulin heavy constant gamma 4 (IGHG4, β=0.008, p=0.019) which we found to be 

increased with age. This antibody isotype has been implicated in the generation of 

autoantibodies against muscle-specific kinases that are prevalent in certain forms of 

myasthenia gravis 77. The possible connection between the aging muscle and chronic 

neurodegenerative disorders in which destruction of self-tissue by complement has been 

ascribed a causative role 78 is an intriguing area for future investigation.    

Conclusions 

The biological mechanisms that mediate the deleterious effect of aging on skeletal muscle 

are still controversial, as some evidence suggested that the decline of mitochondrial content, 
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volume and energetic efficiency plays a primary role, while other evidence showed show no 

significant change for the same parameters with aging, especially if the level of physical 

activity was considered 79. To investigate systematically the changes in expressed proteins 

that might drive the decline in skeletal muscle function, we conducted an in-depth 

quantitative measurement of age-related changes in protein abundance in human skeletal 

muscle. While we did not use model systems or in vivo experiments, because of the careful 

design of the study, the selection of an extraordinary healthy population, the depth of protein 

detection and rigorous analysis made it possible to produce a descriptive quantitative 

dataset to show aging-associated molecular changes. We used a MS-based isobaric relative 

quantitative approach for proteome analysis that provides broad coverage of the proteins of 

human skeletal muscle in very healthy individuals over a wide age range and we adjusted 

our analysis for potential confounders. The biological function of most of the protein reported 

in this study was gathered by an extensive review of the literature and instead of relying only 

on annotation of Uniprot or GO database, we manually curated the functional classification 

used in the analysis. We present evidence that our approach is robust and sensitive to true 

biological variability. We confirmed the altered expression of proteins implicated in pathways 

differentially active in human skeletal muscle with aging, including more highly abundant 

mitochondrial proteins and less abundant inflammatory proteins. We also identified subsets 

of proteins increasing with age that were not previously described, namely proteins 

implicated in alternative splicing and autophagy. Our work provides a rich resource to study 

the effect of aging on the human skeletal muscle proteome and sets the stage for future 

research on the mechanisms driving the age-associated decline in muscle function. 

Methods 

Study design and participants 

Muscle biopsies analyzed in this study were collected from participants from the Genetic and 

Epigenetic Study of Aging and Laboratory Testing (GESTALT). Participants were enrolled in 
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GESTALT if they were free of major diseases, except for controlled hypertension or a history 

of cancer that had been clinically silent for at least 10 years, were not chronically on 

medications (except one antihypertensive drug), had no physical or cognitive impairments, 

had a BMI less than 30 kg/m2, and did not train professionally. Inclusion criteria were 

gathered from information on medical history, physical exams, and blood test interpreted by 

a trained nurse practitioner 80. Participants were evaluated at the Clinical Research Unit of 

the National Institute on Aging Intramural Research Program. Data and muscle specimens 

from 60 participants were available for this study. However, two participants were excluded 

because the muscle specimen provided was too small to obtain reliable proteomic data. 

Therefore, data from 58 participants dispersed over a wide age-range (20-34 y, n=13; 35-49 

y, n=11; 50-64 y, n=12; 65-79 y, n=12; 80+ y, n=10) were used for this study. 

Anthropometric parameters were objectively assessed. The level of physical activity was 

determined using an interview-administered standardized questionnaire originally developed 

for the Health, Aging and Body Composition Study 81 and modeled after the Leisure-Time 

Physical Activity questionnaire 82. Total participation time in moderate to vigorous physical 

activity per week was calculated by multiplying frequency by amount of time performed for 

each activity, summing all of the activities, then dividing by two to derive minutes of 

moderate to vigorous physical activity per week, the following categories were used: <30 

minutes per week of high intensity physical activity was considered “not active” and coded as 

0; high-intensity physical activity ≥30 and <75 minutes was considered “moderately active” 

and coded as 1, high-intensity physical activity ≥75 and <150 minutes was considered 

“active” and coded as 2, and high-intensity physical activity ≥150 minutes was considered to 

“highly active” and coded as 3. An ordinal variable from 0 to 3 was used in the analysis. The 

GESTALT protocol is approved by the Intramural Research Program of the US National 

Institute on Aging and the Institutional Review Board of the National Institute of 

Environmental Health Sciences. All participants provided written, informed consent at every 

visit. 
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Muscle biopsies 

The depth of the subcutaneous fat (uncompressed and compressed) was determined using 

MRI images of the middle thigh performed on the previous day. A region above the vastus 

lateralis muscle was marked at the mid-point of a line drawn between the great trochanter 

and the mid‐patella upper margin. The skin was prepped with povidone–iodine (Betadine®) 

and ethyl alcohol, and the outside areas covered with sterile drapes. The biopsy site was 

anesthetized intradermally using a 27-gauge needle and then subcutaneously using a 23-

gauge x 1 1/2 -inch needle, follow by an 18-gauge spinal needle, with ~15 mL of 1% 

lidocaine with sodium bicarbonate. The operator was careful that the anesthetic was 

infiltrated in the subcutaneous tissue and above the muscle fascia but not the muscle fibers 

not to distort the tissue structure and induce a gene expression response. A 6‐mm 

Bergstrom biopsy needle was inserted through the skin and fascia incision into the muscle, 

and muscle tissue samples were obtained using a standard method. Biopsy specimens cut 

into small sections were snap frozen in liquid nitrogen and subsequently stored at −80 °C 

until used for analyses.  

Sample preparation and protein extraction 

On average 8 mg of muscle tissue was pulverized in liquid nitrogen and mixed with the lysis 

buffer containing protease inhibitor cocktail (8 M Urea, 2M Thiourea, 4% CHAPS, 1% Triton 

X-100, 50 mM Tris, pH 8.5 (Sigma)). Protein concentration was determined using 

commercially available 2-D quant kit (GE Healthcare Life Sciences). Sample quality was 

confirmed using NuPAGE® protein gels stained with fluorescent SyproRuby protein stain 

(Thermo Fisher). 

In order to remove detergents and lipids 300 μg of muscle tissue lysate were precipitated 

using standard methanol/chloroform extraction protocol 83. Proteins were resuspended in 

concentrated urea buffer (8 M Urea, 2 M Thiourea, 150 mM NaCl (Sigma)), reduced with 50 

mM DTT for 1 hour at 36°C and alkylated with 100 mM iodoacetamide for 1 hour at 36°C in 
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the dark. The concentrated urea was diluted 12 times with 50 mM ammonium bicarbonate 

buffer and proteins were digested for 18 hours at 36°C using trypsin/LysC mixture 

(Promega) in 1:50 (w/w) enzyme to protein ratio. Protein digests were desalted on 10 x 4.0 

mm C18 cartridge (Restek, cat# 917450210) using Agilent 1260 Bio-inert HPLC system with 

the fraction collector. Purified peptides were speed vacuum-dried and stored at -80°C until 

further processing. 

Tandem Mass Tags (TMT) labeling was used to perform quantitative proteomics. Each TMT 

labeling reaction contains 6 labels to be multiplexed in a single MS run. Donor IDs were 

blinded, and samples were randomized to prevent TMT bias. Each TMT 6-plex set included 

one donor from each of the 5 age groups and one reference sample. 5 muscle samples 100 

μg each corresponding to 5 different age groups and one separately prepared master 

reference sample were labeled with 6-plex tandem mass spectrometry tags using a standard 

TMT labeling protocol (Thermo Fisher). 200 femtomole of bacterial beta-galactosidase digest 

(SCIEX) was spiked into each sample prior to TMT labeling to control for labeling efficiency 

and overall instrument performance. Labeled peptides from 6 different TMT channels were 

combined into one experiment and fractionated. 

High-pH RPLC fractionation and concatenation strategy 

High-pH RPLC fractionation was performed on Agilent 1260 bio-inert HPLC system using 

3.9 mm X 5 mm XBridge BEH Shield RP18 XP VanGuard cartridge and 4.6 mm X 250 mm 

XBridge Peptide BEH C18 column (Waters). Solvent composition was as follows: 10 mM 

ammonium formate (pH 10) as mobile phase (A) and 10 mM ammonium formate and 90% 

ACN (pH 10) as mobile-phase B 84. 

TMT labeled peptides prepared from the skeletal muscle tissues were separated using a 

linear organic gradient that went from 5% to 50% B in 100 min. Initially, 99 fractions were 

collected during each LC run at 1 min interval each. Three individual high-pH fractions were 

concatenated into 33 combined fractions with the 33 min interval between each fraction 
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(fractions 1, 34, 67=combined fraction 1, fractions 2, 35, 68=combined fraction 2 and so on). 

Combined fractions were speed vacuum dried, desalted and stored at -80°C until final LC-

MS/MS analysis. 

LC-MS/MS analyses 

Purified peptide fractions from skeletal muscle tissues were analyzed using UltiMate 3000 

Nano LC Systems coupled to the Q Exactive HF mass spectrometer (Thermo Scientific, San 

Jose, CA). Each fraction was separated on a 35 cm capillary column (3 um C18 silica, 

Hamilton, HxSil cat# 79139) with 150 um ID on a linear organic gradient using 650 nl/min 

flow rate. Gradient went from 5 to 35% B in 205 min. Mobile phases A and B consisted of 

0.1% formic acid in water and 0.1% formic acid in acetonitrile, respectively. Tandem mass 

spectra were obtained using Q Exactive HF mass spectrometer with the heated capillary 

temperature +280°C and spray voltage set to 2.5 kV. Full MS1 spectra were acquired from 

300 to 1500 m/z at 120000 resolution and 50 ms maximum accumulation time with 

automatic gain control [AGC] set to 3x106. Dd-MS2 spectra were acquired using dynamic 

m/z range with fixed first mass of 100 m/z. MS/MS spectra were resolved to 30000 with 155 

ms of maximum accumulation time and AGC target set to 2x105. Twelve most abundant 

ions were selected for fragmentation using 30% normalized high collision energy. A dynamic 

exclusion time of 40 s was used to discriminate against the previously analyzed ions. 

Proteomics informatics 

The mgf files generated (using MSConvert, ProteoWizard 3.0.6002) from the raw data from 

each sample fraction was searched with Mascot 2.4.1 and X!Tandem CYCLONE 

(2010.12.01.1) using the SwissProt Human sequences from Uniprot (Version Year 2015, 

20,200 sequences, appended with 115 contaminants) database. The search engine was set 

with the following search parameters: TMT6plex lysine and n-terminus as fixed modifications 

and variable modifications of carbamidomethyl cysteine, deamidation of asparagine and 

glutamate, carbamylation of lysine and n-terminus and oxidized methionine. A peptide mass 
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tolerance of 20 ppm and 0.08 Da, respectively, and two missed cleavages were allowed for 

precursor and fragment ions in agreement with the known mass accuracy of the instrument. 

Mascot and X!Tandem search engine results were analyzed in Scaffold Q+ 4.4.6 (Proteome 

Software, Inc). The TMT channels’ isotopic purity was corrected according to the TMT 

kit.peptide and protein probability was calculated by PeptideProphet 85 and ProteinProphet 

probability model 86. The PeptideProphet model fits the peptide-spectrum matches into two 

distributions, one an extreme value distribution for the incorrect matches, and the other a 

normal distribution for correct matches. The protein was filtered at thresholds of 0.01% 

peptide FDR, 1% protein FDR and requiring a minimum of 1 unique peptide for protein 

identification. We allow single peptide hits for two reasons: first, any peptide that is 

quantifiable is detected across all samples (n=58); second, we identify proteins with more 

than one search engine, so the protein identification is confirmed at least twice, even for 

single-peptide hits. For these reasons the even single peptides are unlikely to be random 

hits. As for single peptide quantification, the spectrum-to-spectrum variability is no higher 

between spectra from the same peptide than between spectra from different peptides from 

the same protein. Therefore, it is unlikely that there is any differential ‘bias’ in reporter ions 

from peptide to peptide. More importantly, TMT is taken as relative, not absolute, 

quantification. So even if there were such a bias, it would be the same across samples, so 

the relative quantification would not be affected. Reporter ion quantitative values were 

extracted from Scaffold and decoy spectra, contaminant spectra and peptide spectra shared 

between more than one protein were removed. Typically, spectra are shared between 

proteins if the two proteins share most of their sequence, usually for protein isoforms. 

Reporter ions were retained for further analyses if they were exclusive to only one protein, 

and they were identified in all 6 channels across each TMT set. Since we have multiple age 

group across each TMT experiment, we analyzed the proteins for missing reporter ion 

intensity. 
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For this analysis the protein with missing reporter ion in some of the channels (not more than 

2 channels) for each TMT experiment was identified and missing value imputation was 

performed using multiple imputation with chained equations (MICE) R library by predictive 

mean matching. Mean imputation was performed <0.01% in one or two TMT channels in 

most of the TMT experiments, except TMTset1 (the missing reporter ion for channel 5 is 

0.03%). The reporter ion intensity from the proteins derived from the imputation method (on 

an average <10 proteins) were concatenated with reporter ion intensity identified in all 6 

channels and further analysis performed using adjudicated values. The log2 transformed 

reporter ion abundance was normalized by median subtraction from all reporter ion intensity 

spectra belonging to a protein across all channels 20,21. Relative protein abundance was 

estimated by median of all peptides for a protein combined. Protein sample loading effects 

from sample preparations were corrected by median polishing, i.e., subtracting the channel 

median from the relative abundance estimate across all channels to have a median zero as 

described elsewhere 20,21. Quantified proteins were clustered together if they shared 

common peptides and corresponding gene names were assigned to each protein for 

simplicity and data representation. Annotation of the proteins were performed by manual 

curation and combining information from Uniprot, GO and PANTHER database. Further 

bioinformatics analysis was performed using R programming language (3.4.0) and the free 

libraries available on Bioconductor. 

Linear mixed effect model and statistical analyses  

Linear mixed regression model was implemented to examine age effects and the data was 

adjusted for physical activity, gender, race, bmi, type I and type II myosin fiber ratio and TMT 

mass spectrometry experiments. Protein significance from the regression model was 

determined with p-values derived from lmerTest. Partial Least Square analysis (PLS) was 

used to derive models with classification that maximized the variance between age groups. 

PLS loadings were derived from linear model adjusted protein results. The regression model 

was performed using R 3.3.4 87 with lme4 v1.1. library. Heat maps and hierarchical cluster 
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analysis were performed using the non-linear minimization package in R 88. GraphPad 

PRISM 6.07 and R packages were used for statistical analysis and generation of figures. 

STRING analysis (10.5 version) was used for obtaining protein-protein interaction network. 

Enrichment analysis was performed by GeneSet Enrichment Analysis (GSEA) and 

PANTHER, the pathways were mapped and visualized by Cytoscape 3.0 89. One-way 

ANOVA, nonparametric, and chi-square tests (continuous and categorical variables) were 

used to test for sample differences between age groups. 

RNA extraction and purification 

Total RNA was prepared by lysing cell pellets (2x106) in 700 μl Qiazol and extracted using 

Qiagen miRNeasy mini kit according to the manufacturer’s recommendation (Qiagen Inc, 

CA, USA) from the same samples (n=54). Small ribosomal RNA was further depleted using 

Qiagen GeneRead rRNA Depletion Nano Kit. Total RNA quality and quantity was checked 

using RNA-6000 nano kits on the Agilent 2100-Bioanalyzer. 375 ng of high-quality RNA was 

used for first-strand and second-strand cDNA synthesis followed by single primer isothermal 

amplification (SPIA) using NuGEN Ovation RNA‑Seq System V2 kits according to 

manufacturer’s protocol. This kit amplified both polyA-tailed and non-polyA tailed RNA and 

removed ribosomal RNA. The amplified cDNA was sheared using Bioruptor (Diagenode) to 

an average size of 150-250 bases. The sequencing library was prepared using Illumina 

ChIP-Seq kits according to the manufacturer’s protocol (Illumina, San Diego, CA). In short, 

the ends of the fragments were repaired using T4 DNA polymerase, E. coli DNA Pol I large 

fragment (Klenow polymerase), and T4 polynucleotide kinase (PNK) and an A-overhang was 

added to the 3’ end. Adapters were ligated to the DNA fragments and size-selected (250-350 

bases) on a 4.5% agarose gel. An 18-cycle PCR amplification was performed followed by a 

second 4.5% agarose gel size selection before cluster generation in cbot2 and sequencing 

with Illumina Hiseq2500 sequencer using V4 reagents. Single-read sequencing was 

performed for 138 cycles and Real-Time Analysis (RTA) v1.18.66.3 generated the base-call 
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files (BCL files). BCL files were de-multiplexed and converted to standard FASTQ files using 

bcl2fastq program (v2.17.1.14) 

RNA-Seq quantification and splicing analysis 

The quality of the bases was checked using FASTQC program (v11.2) before and after 

adapter removal and last base trimming by cutadapt program (v1.9). The cleaned FASTQ 

files were aligned, quantified and annotated to the human hg19 genome using Salmon 90 

with the concept of quasi-mapping with two phase inference procedure for gene model 

annotations. The GC bias corrected, quantified transcript isoform abundance values (TPM) 

were used for further computation of relative abundance of the events or transcripts isoforms 

known as percent spliced-in (PSI) by SUPPA 57. Since the variability of low-expressed genes 

between biological replicates were reported, the transcript data were filtered for the 

transcripts which were expressed in at least three donors per each age group. Thus, we 

excluded ~23% of the transcripts from total transcript quantification for further splicing 

analysis. Events coordinates are extracted from the Ensembl annotation (GRCh37.75) and 

alternative splicing events were generated. PSI values of alternative splicing events for each 

transcript from each sample (n=53) were estimated and the PSI values showing a good 

agreement with the RNA seq data were kept for further analysis. The magnitude of the PSI 

change (differential splicing) across the age were calculated with a linear mixed model 

analysis performed on the PSI to estimate the age-related splicing changes of the transcript 

isoform. The PSI regression model was adjusted with the aging confounders as same as 

described above for protein regression model except fiber ratio. For transcript data we used 

RNA experiment batches as a random effect. The age beta coefficient for each alternative 

splicing event transcript PSI was reported as the magnitude to the splicing event-specific PSI 

change with age. Significance of the alternative splicing events was calculated by lmerTest 

and was reported if the observation had a p-value <0.05 at transcript level for age beta 

coefficient. 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 11, 2019. ; https://doi.org/10.1101/700468doi: bioRxiv preprint 

https://doi.org/10.1101/700468
http://creativecommons.org/licenses/by/4.0/


27 
 

Age-association of proteins and transcripts 

Proteins or transcripts either significantly upregulated or down regulated with age, present in 

50% of the samples or at least in three samples for each age group, and significant (p<0.05) 

were considered as age-associated. Age-association was measured by linear mixed model 

adjusted for confounders of aging phenotype either in protein analysis or in RNAseq analysis 

and were further filtered for significance calculation. Age beta coefficient for each protein or 

transcript were calculated from log2 normalized data on which a mixed linear regression 

model was applied. Thus, the age beta coefficient represents the mean log2 fold expression 

per year of age. LmerTest was used for calculating p-values from t-tests via Satterthwaite’s 

degrees of freedom method. Any protein or transcript was represented as age-associated if 

the p-value for the protein or transcript was <0.05. P-values for multiple comparisons were 

adjusted using Benjamini-Hochberg method in R and adjusted p-values were reported on 

supplemental tables. Age-associated proteins and age-associated alternatively spliced 

transcripts were further analyzed into two categories, either age-association beta coefficient 

(<0) was under represented with age--indicating a decrease in the abundance of the protein 

with a year of age or age-association beta coefficient (>0) was over represented with age--

indicating the abundance of the protein was increased with a year of age. For simplicity of 

reporting, we calculated the enrichment of these proteins/transcripts over the total age-

associated protein/transcripts and reported as underrepresented and overrepresented with 

age. 

Data availability 

The mass spectrometry proteomics data have been deposited to the ProteomeXchange 

Consortium via the PRIDE partner repository with the dataset identifier PXD011967. 

RNASeq data is deposited in GEO (GSE129643). 

Supplementary Information 

Document S1. Supplemental Experimental Procedures, Table S1 and Figure S1- S7 
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Table S1. Characteristics of Participants (Related to Figure1) 

Table S2. Complete Dataset of Skeletal Muscle Proteome Quantified by TMT6plex. 

Related to Figure1. Sheet1: Raw data of all the proteins quantified. Sheet2. Description of 

the column headers for the sheet1. 

Table S3 to Figure2. Dysregulated Proteins with Age. Sheet1. Age-associated proteins. 

Proteins which were significantly (p<0.05) dysregulated with age. Sheet2. Description of the 

column headers for the sheet1 

Table S4 to Figure 5. Sheet1. Age-associated splicing events (6255 events). Sheet2. 

Description of the column headers for the sheet1 

Table S5 to Figure 5. Sheet1. Age-associated negative splicing events. Sheet 2. Age 

associated positive splicing events. Sheet3. Description of the column headers for the 

sheet1 and sheet2 
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Figure 1 Quantitative Analysis of the Skeletal Muscle Proteome with Healthy Aging 

(A) Study design, TMT assessment, and bioinformatics platform for protein quantification 

and age-associated protein analysis. (B) Correlation among all TMTs after using COMBAT 

experimental bias correction. Note that the R-values are all >0.99. (C) Principal Component 

Analysis (PCA) of 12 TMT batches, each circle indicating a sample from a TMT batch, 5 

samples in each batch, overall 58 samples represented, and no substantial batch effect 

detectable. (D) Total number of proteins quantified from 12 TMT experiments from 58 

donors, according to age group. 4,036 proteins were detected in at least 3 samples in all age 

groups and were used for further statistical analysis. (E) Partial Least Square (PLS) analysis 

revealed variance in the component1, 2, and 3 for all donors. All 4,036 proteins were used 

for PLS analysis, where each circle is a donor and the age groups are color-coded. 
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Figure 2 Classification of Age-associated Proteins 

(A) Effect of age on protein expression levels. The x axis represents the size and sign of the 

beta coefficient of the specific protein regressed to age (adjusted for covariates) and the y 

axis represents the relative -log10 p-value. Each dot is a protein and all significant proteins 

are indicated in blue and red (age-associated 1,265 proteins, p<0.05). (B) The heatmap of 

the 1,265 significantly age-associated proteins reveals changing expression profiles across 

aging. (C) PLS analysis of age-associated proteins were classified into three age groups: 20-

49 (young), 50-64 years (middle age), and 65+ (old) years old. (D) Percent distribution of 

categories of all quantified proteins, percent distribution of the same categories among 

proteins that were significantly downregulated and upregulated with aging. Proteins which 

are not considered directly related to mechanisms of aging are annotated as others and their 

subclassification is shown in the bar plot. (E-F) Log2 protein abundance of contractile, 

architectural and NMJ proteins. Simple linear regression was shown for age (x axis) and 

protein (y axis) correlation, confounders were not adjusted, and raw p-values were shown. 

 

 

 

 

 

 

 

 

 

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 11, 2019. ; https://doi.org/10.1101/700468doi: bioRxiv preprint 

https://doi.org/10.1101/700468
http://creativecommons.org/licenses/by/4.0/


36 
 

Figure 3 Functional Decline of Mitochondrial Proteins with Age 

A) Percent coverage within categories of skeletal muscle proteins compared to the Uniprot 

database. The top section shows various energetics categories, while the z axis indicates 

the number of proteins identified for each protein category and in parenthesis the number of 

proteins reported in Uniprot for the same category. (B) Subcellular location of age-

associated mitochondrial proteins based on up- or downregulation. Of note, most of the 

mitochondrial proteins are downregulated. (C) Age-dependent decline of respiratory and 

electron transport chain proteins. All mitochondrial proteins in the respiratory and electron 

transport chain that are significantly associated with age are downregulated (p<0.05) except 

SDHAF2. The inset panel reports data on the proteins that are significantly upregulated with 

aging, SDHAF2 (mitochondrial) and the membrane protein CD73.  
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Figure 4 Implications of Proteins that Modulate Transcription and Splicing 

A) Log2 protein abundance of age-associated transcriptional regulation proteins. Simple 

linear regression was shown for age (x axis) and protein (y axis) correlation, unadjusted p-

values were shown. (B) Spliceosome major complex pathway protein expression abundance 

and dsysregulation. KEGG major spliceosome complex pathway representation and 

spliceosome complex proteins quantified (associated with splicing RNAs U1, U2, U4/U6, and 

U5) as plotted in the side square boxes. (C) The log2 abundance expression of 57 

spliceosome complex proteins associated with age (p<0.05) are depicted as magenta 

circles, while all other quantified proteins are black circles. All snRNPs and spliceosome 

regulatory proteins are upregulated with age. (D) The average of all age-associated 

spliceosome proteins within each age group reveals an upregulation of spliceosome proteins 

with age. (E) Effect of age (one-year difference) on the 57 proteins of the spliceosome major 

complex and color coded based on spliceosome domains. Inset (left) is a legend for the 

complex domains and inset (right) shows that PRPF8 protein is robustly overrepresented 

with age. 
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Figure 5 Age-associated Alternative Splicing 

(A) The number of participants with detected splicing variants is substantial, with >20% of 

the participants showing <5% splicing variants for the detected gene. Overall, 3.7% of all 

identified skeletal muscle transcripts (3,791 genes) show evidence of differential alternative 

splicing with aging. (B) Comparison of skeletal muscle age-associated splicing events 

(positive and negative). Negative events are downregulated with age and positive events are 

upregulated with age. The category of event is plotted on the X axis, and the Y axis shows 

the number of splicing events for each category. (C) Average Percent Spliced-in (PSI) from 

6,255 events for each donor is depicted as a red circle. Average PSI across 53 donors 

ranging in age from 20 to 84 suggests an increase in alternative splicing with aging. (D) 

Comparison between skeletal muscle splicing events detected in GESTALT (solid bars) and 

splicing events reported in the Ensemble transcript splice events (shaded bars). (E) 

Comparison of age-associated proteins and age-associated alternatively splicing genes 

suggesting 30% (385) of the age-associated proteins undergo alternative splicing. Analysis 

of PANTHER database shows classes of enriched genes from different protein categories, 

and the number of genes representing each class is shown with #.  
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Figure 6 Age-associated Proteostasis Proteins  

(A) Log2 protein abundance of all 74 age-associated proteostasis proteins across all 58 

donors. Rows represent proteostasis proteins and columns represents donors. The average 

expression of all age-associated proteostasis proteins from each donor is plotted at the top 

and bottom (gray circles) with loess curves. The top section shows downregulated clusters 

of proteins (average of 24 proteins) and the bottom shows upregulated clusters of proteins 

(average of 54 proteins). The protein rows are ordered based on hierarchical clustering and 

displayed by dendrograms. (B) Confounders-adjusted β age coefficient of age-associated 

proteins, showing age-differentially regulated proteostasis proteins, over representation of 

proteostasis category proteins and the log2 magnitude of protein change with each year of 

age. (C) The increase of autophagy protein sub category with age is shown. Except HSPA8 

and EIF4G1 all other autophagy proteins are positively correlated with age. Each bar plot 

shows each autophagy protein sub category and the average change over a year of age. 

The gene/proteins names are organized from lowest to highest log2 expression change per 

year of age. (D) Raw log2 abundance of autophagy proteins TDP and CALR were shown, 

simple linear regression method was used for age (x axis) and protein (y axis) correlation, of 

note unadjusted p-values were shown. 
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Figure 7 Age-associated Immune Proteins 

(A) Immune-related proteins are depicted; the x axis shows the genes that code for age-

differentially regulated proteins, while the y axis shows the log2 fold expression difference 

associated with age. The increase in innate immune signaling and lipid responses may 

indicate a reaction to adipocytes muscle infiltration, which in turn causes activation of innate 

immune signaling. (B-D) Examples of dysregulated proteins are shown from (B.1-B.4) pro-

inflammatory. (C) Anti-Inflammatory. (D) Complement pathway proteins. Inflammasome 

adaptor protein PYCARD is positively associated with age, and the abundance of this protein 

is a key mechanism by which IL-1β pathway activation is regulated. In B-D raw log2 protein 

abundance and unadjusted p-values are shown. 
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Table S1 (related to Figure 1) 

Age Group 
20-34 35-49 50-64 65-79 80+ P-value R2 
(n=13) (n=11) (n=12) (n=12) (n=10) -- -- 

Age (yr) 27.2 ± 3.3 41.3 ± 4.5 57.1 ± 4.7 70.3 ± 2.3 82.4 ± 2.4 -- -- 

Gender M8, F5 M7, F4 M7, F5 M8, F4 M6, F4 -- -- 

Education (yr) 16 ± 3 14 ±3 14 ± 2 16 ± 2 17 ± 2 0.3305 -- 
Race 9C, 2AA, 2A 5C, 6AA 8C, 4AA 10C,1AA,1A 9C,1AA 0.0958 -- 
*BMI, kg/m2 25.9 ± 2.8 26.4 ± 2.6 26.6 ± 3.2 26.4 ± 2.4 25.2 ± 3.9 0.3458 0.007 

Height (cm) 172 ± 11 177 ± 10 169 ± 4 172 ± 11 172 ± 6 0.3985 -- 

*Weight (kg) 76 ± 10 81 ± 9 77 ± 12 75 ± 13 73 ± 16 1.74E-05 0.34 

*Waist
Circumference (cm) 82 ± 7 87 ± 7 90 ± 11 92 ± 11 92 ± 13 6.32E-06 0.39 

*KEIS (left) ± 192 ± 31 208 ±55 200 ± 71 165 ± 62 130 ± 42 4.29E-07 0.40 

*KEIS (right) ± 194 ± 38 220 ± 65 194 ±78 169 ± 53 147 ± 57 2.41E-07 0.41 

†Physical Activity 1.8 ± 1.4 1.8 ± 1.3 2 ± 1.1 2.3 ± 1 1.5 ± 1.1 0.5145 -- 

Table S1 (related to Figure 1). Baseline Characteristics of the GESTALT Skeletal Muscle 
Participants. Participants are classified into 5 different age groups. Gender: M is Male, F is 

Female; the number of participants is indicated. Age is indicated in years as mean and standard 

deviation (SD ±) for each age group. Race: number of participants is shown on the left and race 

is shown in italics; C is Caucasian, AA is African American, and A is Asian. Body Mass Index 

(BMI) is expressed as mean and SD (±) for each group. P-value is calculated by 1-way ANOVA 

with Kruskal-Wallis test. Race is analyzed by Chi-square test. 

*P-value calculated from linear regression model, gender adjusted.

± Knee Extension Isokinetic Strength (KEIS) (300/sec; Nm). 

†Physical activity is calculated from self-report involvement in weight circuit, vigorous exercise, 

brisk walking and casual walking and summed as high-intensity physical activity hours per 

week. This is further categorized into 0 (not active),1 (moderately active), 2 (active), and 3 

(highly active) and expressed as mean of categorical variables (0,1,2,3) ± SD. 
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Figure S1 (related to Figure1)  

A. Normalized Relative Protein Expression from All Participants. Bar plot of log2 

normalized protein relative expression abundance from all 58 participants. Each circle is a 

protein. Median levels for all proteins (5891) from all samples are plotted, 25th and 75th 

percentiles are represented with first and third quartiles. Age groups are color-coded. This 
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analysis was followed by a median polish and median sweep normalization by subtracting the 

spectrum median log2 intensity from the observed log2 spectrum intensities. 

B. Spectral Count Correlation Across 12 TMT Experiments. The heatmap figure shows the 

protein correlation across all 12 TMT experiments. Since we have 12 TMT batches across all 

samples, we looked at the data robustness across all 12 TMTs. The proteins identified in each 

TMT are ranked based on spectral abundance, and the ranks between TMTs are correlated. 

Correlation coefficients between 12 TMT experiments are from 0.99 to 0.85, demonstrating that 

the relative abundance of proteins is robustly replicated across TMT sets.  

C. Skeletal Muscle Proteins Detected According to Abundance and Mass. The abundance 

of proteins quantified, the X axis is the mass distribution of the protein and the Y axis is the 

average spectral abundance of the proteins. Proteins are color-coded to visualize enrichments 

of muscle protein. 
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Figure S2 (related to Figure 2).  

A1-A5. Protein Biomarkers of Slow-Twitch and Fast-Twitch Fiber Types and Estimated 
Muscle Fiber Ratios. Log2-normalized fiber expression intensity from all the 58 donors are 

shown for fast fiber-twitch type proteins MYH4, MYH1, MYH2 and slow-twitch fiber type protein 

MYH7 (A1-A4). The estimated ratios of slow-twitch fiber to fast-twitch fiber (A5) suggest that 

slow-twitch fiber type expression increases with age. 

B. Statistical Significance of the Proteins and Robustness of Age-Association. p-value 

distribution for quantified proteins and their association with age. The p-values are calculated 

from t-tests use Satterthwaite's approximations of the F-statistics using lmerTest. To account for 

multiple comparisons, we performed a Benjamini-Hochberg (BH) correction, and we still found 

917 proteins that have a BH corrected p-value <0.1.  
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C. Robustness of the Estimated Beta Coefficients for Age for Quantified Proteins Across 
all 12 TMT Experiments. To assess the robustness in the identification of the 1265 age-

associated proteins across all 12 TMT experiments, we estimated the effect of age (beta 

coefficient) on single proteins in regression analyses run in two separate sets of 6 TMT sets 

selected at random from the 12 available and estimated the average correlation coefficient 

between proteins quantified in the two sets. Then, we repeated this analysis 100 times and 

plotted the distribution of correlation coefficients. The results of the linear mixed models appear 

to be robust against TMT variability. 

D. Clusters of Proteins Dysregulated with Aging- NMJ Related Proteins. Neuromuscular 

protein abundance with age. Agrin and Acetylcholineesterase proteins are not significantly 

associated with age. 
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Figure S3 (related to Figure 3).  

A. Age-associated protein abundance of CYB5R3 protein. The abundance of this protein is 

significantly higher at older age; age groups are color-coded. 

B. Respiratory Chain Complex I-V and Aging. Electron Transport Chain Protein 

Quantification. Proteins quantified from Complex I, Complex II, Complex III, Complex IV, 

Complex V and Assembly complex proteins are represented. Age-associated proteins are 

marked by a red asterisk (*). Log2 fold ratios of the gene are on x axis; arrows pointing to left 

shows underrepresented proteins and arrows pointing to the right are overrepresented proteins.  

C. Dysregulation of Bioenergetic Pathway. Proteins quantified from glycolysis and TCA cycle 

are shown. (Left) Of the 26 glycolysis proteins quantified, 6 are significantly underrepresented 

with age. (Right) Of the TCA cycle gene products shown, 4 are significantly decreased with 

aging. A red asterisk indicates genes significantly changed with age (p<0.05). 
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Figure S4 (related to Figure 2). 

A. Dysregulation of Proteins Involved in Genomic Maintenance. A large number of proteins 

involved in genetic maintenance are overrepresented at older ages. 

B. Prelamin. Protein levels increase significantly with age. 

C. Sirtuin 2. Raw protein abundance of SIRT2 is plotted according to age and shows no age 

association. However, adjusting for confounder the negative association with age becomes 

statistically significant (p=0.032). 

D. Dysregulation of Proteins Involved in Cellular Senescence. Age-associated proteins of 

cellular senescence. Log2 raw protein abundance and age correlation is shown from simple 

linear regression method. Unadjusted p-values are represented with r2. 
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Figure S5 (related to Figure 4). 

A. Spliceosome Protein Abundance and Expression Variation Across Ages. A total of 99 

spliceosomal proteins are detected across all 5 age groups. The abundance of each protein is 

represented as a heatmap; each column represents a study participant and each row indicates 

a specific protein. The x axis scatter plot across the top is the average of spliceosomal protein 

abundance for each donor, revealing an increase in spliceosome abundance with age. The y 

axis scatterplot on the right is the average log2 protein abundance from all donors for each 

protein, showing that most of the spliceosome proteins are highly abundant. 

B. Spliceosomal protein categories and age association. 

  

.CC-BY 4.0 International licenseavailable under a
not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (which wasthis version posted July 11, 2019. ; https://doi.org/10.1101/700468doi: bioRxiv preprint 

https://doi.org/10.1101/700468
http://creativecommons.org/licenses/by/4.0/


 

Figure S6 (related to Figure 2). 

A. Depletion of Ribosomal Proteins with Age. Age-associated ribosome proteins and 

interacting partners. Different categories of ribosome proteins are color-coded. 

B. Protein-protein interaction of age-associated ribosome proteins from co-expression. 
The protein-protein interaction enrichment score p-value <1.0e-16. Color node shows query 

proteins and black edge represent co-expressed protein association. The top left cluster NOP58 

is required for the biogenesis of the 60S ribosomal subunit and the biogenesis of box C/D 

snoRNAs such as U3, U8 and U14 snoRNA. 

C. Log2 raw protein abundance of NOP58, a nucleolar protein important for ribosomal 

biogenesis, according to age.  Unadjusted p-value is shown with r2
. 
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Figure S7 (related to Figure 6). 

HSPA8 protein and its association with age. 
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