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Abstract

Recent advances in single-cell RNA sequencing (scRNA-seq) have al-
lowed researchers to explore transcriptional function at a cellular level. In
this study, we present scPPIN, a method for integrating single-cell RNA
sequencing data with protein–protein interaction networks to detect ac-
tive modules in cells of different transcriptional states. We achieve this
by clustering RNA-sequencing data, identifying differentially expressed
genes, constructing node-weighted protein–protein interaction networks,
and finding the maximum-weight connected subgraphs with an exact
Steiner-tree approach. As a case study, we investigate RNA-sequencing
data from human liver spheroids but the techniques described here are
applicable to other organisms and tissues. scPPIN allows us to expand
the output of differential expressed genes analysis with information from
protein interactions. We find that different transcriptional states have
different subnetworks of the PPIN significantly enriched which represent
biological pathways. In these pathways, scPPIN also identifies proteins
that are not differentially expressed but of crucial biological function (e.g.,
as receptors) and therefore reveals biology beyond a standard differentially
expressed gene analysis.
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1 Introduction

Liver metabolism is at the centre of many non-communicable diseases, such as
diabetes and cardiovascular disease [1]. In healthy organisms, the liver is critical
for metabolic and immune functions and gene-expression studies have revealed
a diverse population of distinct cell types, which includes hepatocytes in diverse
functional cell states [2]. As diabetes is a complex and heterogenous disease,
the study of liver physiology at single-cell resolution helps to understand the in-
volved biology [3]. At a single-cell level, however, large-scale protein interaction
data is not available [4]. In this study, we develop scPPIN a method for the
integration of single-cell RNA-sequencing data with complementary protein–
protein interaction networks (PPINs). The scPPIN analysis reveals biological
pathways in cells of different transcriptional states that hint at inflammatory
processes in a subset of hepatocytes.

In recent years, much attention has been given to single-cell RNA sequencing
(scRNA-seq) techniques because they allow researchers to study and characterise
tissues at a single-cell resolution [5, 6, 7]. Most importantly, scRNA-seq reveals
that there exist clusters of cells with similar gene expression profiles, commonly
referred to as ‘cell states’ [8]. Multiple approaches have been created to reveal
these cell clusters, driven by the transcriptional profile of each cell [9, 10]. The
analysis of differentially expressed genes (DEGs) between these cell clusters can
reveal different cell types [11], diseased cells [12], and cells that resist drug
treatment [13]. Due to technological advances the quality and availability of
scRNA-seq data increased dramatically in the last decade [14]. This makes the
development of computational approaches for interpreting scRNA-seq data an
active field of research [15] of which one research direction is the identification
of gene regulatory networks in scRNA-seq data (e.g., SCENIC [16], PIDC [17]).

These approaches do not make systematic use of available data on protein–
protein interaction, which one may represented as PPINs [18]. One may use
PPINs to, for example, identify essential proteins [19, 20] and to predict disease
associations [21, 22] or biological functions [23, 24, 25]. For this, researchers use
tools from network science and machine learning. Many of these methods build
on the well-established evidence that in PPINs, proteins with similar biological
functions are closely interacting with each other. One calls these groups of
proteins with common biological functions modules [26, 27].

It is understood that gene-expression is context-specific and thus varies be-
tween tissues [28], changes over time [29], and differs between healthy and dis-
eased states [30]. It follows therefore that different parts of a PPIN are active
under different conditions [31]. Analysing PPINs in an integrated way, together
with bulk gene-expression data, provides such biological context, helps to reveal
context-specific active functional modules [32, 33], and can identify proteins
associated with disease [34].

Based on the success of methods where PPINs have been integrated with
bulk expression data, we have developed scPPIN, a novel method to integrate
scRNA-seq data with PPINs. It is designed to detect active modules in cells of
different transcriptional states. We achieve this by clustering scRNA-seq data,
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performing a DEGs analysis, constructing node-weighted PPINs, and identify-
ing maximum-weight connected subgraphs with an exact Steiner-tree approach.
Our method is applicable to organisms for which PPINs are available, which is
the case for a broad range of organisms [35].

We may use scPPIN to analyse mRNA-seq data from any tissue or or-
gan type. As a case study, we investigate scRNA-seq data from human liver
spheroids because this tissue is important in many diseases and it has diverse
cell types with different cellular metabolic processes. This makes the applica-
tion of our method particularly intriguing, because we expect the identification
of very different active modules in different cell clusters — a hypothesis that
our investigation partially confirms.

Our method identifies proteins involved in the liver metabolism that could
not be detected from the scRNA-seq data alone. Some of them have been shown
to be important in the liver of other organisms and for others this study is the
first indicator of important function in liver. Furthermore, we can associate cells
in a given transcriptional state with enriched biological pathways. In particular,
we find that cell clusters have different biological functions, for example, trans-
lational initiation, defence response, and extracellular structure organisation.

This case study demonstrates that scPPIN provides insights into the context-
specific biological function of PPINs. Importantly, these insights would not have
been revealed from either data type (PPIN or scRNA-seq) alone. We therefore
anticipate that this technique might also reveal novel insights for other organ-
isms and tissue types.

2 Results
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Figure 1: Our method consists of the following steps. (1) clustering of scRNA-
seq data (e.g., with Seurat [9]). For each cluster, we (2) compute p-values of
differential expression and use them to (3) estimate node scores by using an
approach presented in [32]. (4) We combine these node scores with a PPIN to
construct node-weighted PPINs for each cluster. (5) We compute functional
modules as maximum-weight connected subgraphs.

In this paper, we present scPPIN, a method that allows the detection of
functional modules in different cell clusters. The method involves multiple anal-
ysis steps (see Fig. 1 for an overview and the Method Section for a detailed
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discussion). First, we preprocess the scRNA-seq profiles. Second, we use an
unsupervised clustering technique from Seurat to identify sets of cells in sim-
ilar transcriptional states. Third, for each cluster, we identify DEGs with a
Wilcoxon rank sum test. Fourth, for each gene in every cluster, we compute
additive scores from these p-values (see [32] and Supplementary Note 1). Fifth,
for each cluster, we map these gene scores to their corresponding proteins in a
PPIN, which we constructed from publicly available data from BioGRID [35].
Lastly, we identify functional modules as maximum-weight connected subgraphs
in these node-weighted networks.
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Figure 2: (Left) Clustering the scRNA-seq data reveals ten clusters of which six
are hepatocyte cells. (Middle) For each cluster, we may perform DEGs analysis
to identify genes that most differentially expressed in a given cluster. Here, we
show DEGs for hepatocyte cluster 6 (H6). (Right) We use scPPIN to integrate
the p-values from DEGs analysis with the PPIN and identify a functional module
for the H6 cluster. We find genes that are significantly differentially expressed
(disks) and proteins that are not strongly differentially expressed (squares).
Colour indicates p-value from low (white) to high (purple).

In order to demonstrate scPPIN, we investigate newly measured scRNA-
seq data of liver hepatocytes (see Method Section 8 for a description of the
experimental setup and preprocessing steps). Using a standard modularity-
maximisation algorithm, we obtain ten cell clusters of which six consist of hep-
atocytes (see Fig. 2), which make up a majority of the liver tissue. Hepato-
cytes are known to show a functional diversity, which includes the carbohydrate
metabolism [2]. We then focus on hepatocytes because it allows us to study the
heterogeneity of cellular function in this single cell type.

Then, we identify DEGs in each of the hepatocyte clusters. In Fig. 2, we
show the p-values of differential expression for some of the genes in hepatocyte
cluster H6. Usually, the top-ranked genes in each of the clusters can be seen
as ‘marker genes’, i.e., one may use these genes to associate cells with a certain
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transcriptional state. For H6, for example, protein phosphatase 1 regulatory
subunit 3C (PPP1R3C) has with 10−63 the smallest of all p-values. It therefore
could serve as a potential biomarker and is a known regulator of liver glycogen
metabolism [36]. While such a DEG analysis reveals important genes in certain
cell states it is not straightforward to identify the crucial biological pathways.
Here, we demonstrate that integrating p-values from a DEGs analysis with PPIN
information can reveal a more comprehensive picture of the biological processes.
In Fig. 2, we show a functional module identified by scPPIN. We detect a
subnetwork consisting of nine proteins. This module consist of seven proteins
with small p-values (among them PPP1R3C) that are connected to each other
via the amyloid precursor protein (APP) and epidermal growth factor receptor
(EGFR), which have p-values ∼ 10−7 and 10−2, respectively. Both proteins are
integral membrane proteins and do not show significant differential expression
in this cell cluster as they rank 373 and 1800 out of all differentially expressed
genes. The EGFR signalling network has been identified as a key player in
liver disease [37]. The precise function of APP is unknown but it is involved
in Alzheimer’s disease and also has been hypothesised to be involved in liver
metabolism [38].

These findings demonstrate that scPPIN can help to automate the further
investigation of results from a DEGs analysis by identifying parts of the PPIN
that correspond to genes that are significantly differentially expressed. Further-
more, it also identifies proteins corresponding to genes that are not significantly
differentially expressed in a particular cluster. These genes are candidates of a
biological connector function between differentially expressed genes.

2.1 Influence of the False Discovery Rate

Thus far, we demonstrated that scPPIN can reveal functional modules inside
a PPIN and associate them with cells of a certain transcriptional state. Now
we explore that there is not necessarily one functional module for a given cell
state but functional modules of different size that scPPIN may identify.

There is only one free parameter in scPPIN, the false discovery rate (FDR).
Intuitively, increasing the FDR identifies a larger subgraph of the PPIN as an
active module. In the following, we explore this systematically, for the hepato-
cyte cluster H6 that we investigated before.

The size M ∈ [1, N ] of the detected modules is non-decreasing with the
FDR. While the size M is non-decreasing, our method is non-monotonous, i.e.,
proteins identified for a certain FDR are not necessarily detected for all larger
FDRs. For small FDRs, we detect a module of size M = 1, which is exactly
the protein with the smallest p-value1. For FDRs close to one, we detect a
maximum weight subgraph which is spanning almost the whole network.

In Fig. 3, we show the size M of the the optimal subnetworks for cluster
H6 as a function of the FDR. As expected, the M(FDR) is non-decreasing. For

1If this is non-unique, multiple optimal modules of size M = 1 exist and can be detected.
In none of our examples was this the case.
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FDR < 10−26, we detect a single node, which represents PPP1R3C, the protein
with the smallest p-value (∼ 10−63). For larger FDRs, we detect subnetworks
of larger size that contain proteins that are associated with larger p-values and
could not have been identified with the gene-expression data alone. For FDR =
10−25, for example, we detect the subnetwork of size M = 9 (shown in Fig. 2).

For FDR < 10−22, we detect an even larger functional module, which par-
tially overlaps with the one identified for FDR < 10−23, as it also includes
EGFR as connector between proteins with small p-values. The second connec-
tor is ELAV-like protein 1 (ELAVL1) with p ≈ 0.06. The precise function of
ELAVL1 is unknown but it is believed to play a role in regulating ferroptosis
in liver fibrosis [39]. For even larger FDRs, we identify a module with M = 42
nodes out of which 9 are not identified from the gene-expression data alone. We
observe all before-mentioned connectors, as well as, hepatocellular carcinoma-
associated Antigen 88 (ECI2) and S100 calcium-binding protein A4 (S100A4).
The latter regulates liver fibrogenesis by activating hepatic stellate cells [40].
Overall, the number of proteins we identify additionally with our method is
moderately increasing with the FDR. In Supplementary Note 7, we show these
M(FDR) curves for all six hepotacyte clusters.
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Figure 3: (Upper Panel) Network plots of the detected modules for three choices
of the FDR (10−25, 10−24, and 10−18). Nodes’ colour indicates p-value from
low (white) to high (purple). We indicate proteins that would not have been
discovered from the gene-expression data alone as squares and give their names
in bold red font. (Lower Panel) The size of detected modules (blue disks) de-
pends on the FDR. A large fraction of proteins in these modules have significant
p-values (red squares), however, for all FDR> 10−26, we also identify additional
proteins as for a given FDR, the blue disks are to the right of the red disks.
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2.2 Functional modules for different clusters

Previously, we investigated the influence of the FDR on the detected modules
for a single cell cluster. As we obtained six hepatocyte clusters (see Fig. 2), we
can compute DEGs and thus also active modules for each cluster separately. As
each cluster represents a different cell state, different genes are identified by a
DEG analysis, which then results in different functional modules. To compare
the detected modules, we use scPPIN with a FDR of 10−27 for all of them. In
Fig. 4, we show the functional modules for each of the six clusters. The detected
cluster differ in size with the largest consisting of 52 nodes (cluster H2) and the
smallest consisting only of a single node (Cluster H6). This occurs because the
p-values of differential expression are differently distributed for each cluster.
Cluster Two has the smallest p-values as its gene expression is most different
from those in all other clusters, which indicates a special function of these cells
in comparison to the rest. As shown for cluster H6 in Fig. 3, increasing the
FDR increases also the size of the detected functional module.

In four out of the six modules, we find proteins that we could not have
identified with a DEG analysis alone. For cluster H1, these are APP, ELAVL1,
TRIM25, ACTN4, PTEN, KRAS, TFG, and RPL4. For cluster H2, these are
VKORC1, APOA1, SNX27, CYCS, ECI2, APP, EGFR, UBE3A, HNRNPL,
COPS5, TP53, YWHAE, RCHY1, and TERF2IP. For cluster H3, this is APP.
For H5, these are HSPA8 and FN1. We find that APP is identified as part of the
active module in three of these clusters, which indicates that this membrane-
bound protein may play an important role in different biological contexts.

To systematically access these biological contexts, we perform an GO-term
enrichment test to assess the hypothesis that the detected modules represent
biologically relevant pathways (see Methods). We find that all but the two
smallest modules have GO terms enriched (see Table 1). The GO terms hint
at distinct biological functions for the different cell clusters. Clusters H1 and
H3 are involved in translational initiation, H2 in response to stress, and H5 in
the extracellular structure organisation. All of these identified cellular processes
represent different hepatocytes functions that have been found in vivo [41, 2].

The analysis of different cell states in the scRNA-seq with scPPIN indicates
that indeed genes associated with different parts of the PPIN are active in
different transcriptional states. Different biological functions of the cell clusters
are reflected by different enriched GO terms.

3 Discussion

In this study, we integrated scRNA-seq data with PPINs to construct node-
weighted networks. For each cell cluster, detecting a maximum-weight con-
nected subgraph identifies an active module, i.e., proteins that interact with
each other and taken together the corresponding genes are significantly differ-
ently expressed. The presented method scPPIN builds on advances of DEG
analysis, which are standard tools for the interpretation of scRNA-seq data. As
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Figure 4: Detected modules for all six hepatocyte clusters for FDR = 1027. We
find that the detected modules vary strongly in size with the smallest consisting
of a single protein and the largest consisting of 51 proteins. Colour indicates
p-value of associated gene from low (white) to high (purple). We show nodes
as squares if the could not have been detected without PPIN information. For
the larger modules, we only give the names of these proteins that we would not
have detected by a DEG analysis. See Supplementary Material for illustration
with all protein names.

a case study, we investigated data from healthy human livers. We find that
the six identified cell clusters have different subnetworks of the PPIN with the
corresponding genes exhibiting most significantly changed expression levels. A
GO-term enrichment analysis indicates that these are also associated with dif-
ferent biological functions. Furthermore, these subnetworks identify proteins for
which the corresponding genes are not differently expressed in a given cluster
but do interact with proteins for which the corresponding genes are strongly
differentially expressed. These proteins are candidates for important regulatory
functions in these cells. It is only through our combination of single-cell data
with PPIN data that these candidate proteins can be identified. Often, they are
integral membrane proteins such as FN1, EGFR, and APP, important drivers
of cell fate such as P53 and KRAS, but also proteins of so-far unknown function
such as TERF2IP and TFG.

In a more general setting, scPPIN can be used to systematically analyse
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cluster module size M top enriched GO terms
H1 51 translational initiation

nuclear-transcribed mRNA catabolic process
SRP-dependent cotranslational protein targeting to membrane

H2 52 response to stress
defense response

platelet deganulation
H3 27 SRP-dependent cotranslational protein targeting to membrane

nuclear-transcribed mRNA catabolic process
translational initiation

H4 3 none
H5 30 extracellular structure organization

regulated exocytosis
alcohol metabolic process

H6 1 none

Table 1: For each of the six clusters we give the three most enriched GO terms.

DEG in scRNA-seq data. The identified networks that characterise each clus-
ter help to identify and hypothesise a biological function associated to those
cells. For example, we identified the gene S100A4 in the hepatocyte cluster H6,
S100A4 has been identified as a key component in the activation of stellated
cells in order to promote liver fibrosis [40]. Although previously identified in a
population of macrophages [40, 42], we see expression of S100A4 in this clusters
of hepatocytes. This indicates, that a subpopulation of hepatocytes promotes fi-
brogenesis in paracrine. We also identified the amyloid precursor protein (APP)
and interaction partners active in multiple hepatocytes clusters. Although little
is known about liver-specific functions of APP, in the central nervous system
it is a key driver of Alzheimer’s disease, as source of the amyloid-β-peptide
(Aβ) [43]. Due to the major role of liver in the clearance of plasma Aβ, it
would be interesting to study the contribution of Aβ produced in the liver and
the impact in the central nervous system. This systemic view of Alzheimer’s
disease [44, 45] should be taken into consideration in order to try try to find a
successful treatment of it.

Despite their success, scRNA-seq techniques have methodological limitations
(e.g., zero-inflation [46]). The presented technique might be further improved
by considering such specific challenges, e.g., by constructing a different mix-
ture model (see Supplementary Note 1) or implementing an imputation/noise
reduction methodology.

In conclusion, we demonstrate that integrating scRNA-seq data with PPINs
detects distinct enriched biological pathways and demonstrates a functional het-
erogeneity of cell clusters in the liver. It suggest the participation of unexpected
proteins in these pathways that are undetectable from a gene-expression anal-
ysis alone. We provide an R package scPPIN, so our method can easily be
integrated to current analytical workflows for single cell RNA-seq analysis.
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8 Methods

8.1 Protein–Protein Interaction Network

We construct a PPIN from the publicly available BioGrid database [35], version
3.5.166. The obtained network for Homo sapiens has n = 17, 309 nodes and
m = 296, 637 undirected, unweighted edges. While the PPIN might be directed
and edge-weighted [48] (e.g., considering confidence in an interaction [49]), we
consider here exclusively undirected networks without edge weights.

8.2 Liver Spheroid and Bioinformatics

Human primary hepatocytes from a mixture of 10 donors grown in a 3D spheroid,
were purchased from InSphero AG (Switzerland) and maintained in the culture
medial provided by the company. Single cell libraries were prepare with a 10X
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Genomics 3’ kit and sequenced in an Illumina NextSeq 500. Sequencing data
demultiplexing and alignment was carried out with CellRanger with default
parameters [50].

8.3 Preprocessing

We analyse the scRNA-seq data with Seurat R package v2.3.4 [51]. As a
preprocessing step, we align the data with a canonical correlation analysis [51]
with usage of the first nine dimensions. We identify clusters with the default
resolution of one with the function FindClusters. To identify cell types, we use
gene markers expression and in-house references datasets.

To compute a p-value of differential expression for each obtained cluster, we
use the function FindAllMarkers with the argument return.thresh equal to
1 and logfc.threshold set to 0.0 because we would like to obtain p-values for
all genes (significant and non-significant ones). For the same reason, we do not
employ a threshold for fold-change in gene expression. We exclude genes that
are expressed in less than 2% of a cluster to avoid comparing sparsely expressed
genes.

8.4 Node-weighted network construction

The scPPIN pipeline builds on a method for the identification of functional
modules as introduced by Dittrich et al. for analysing bulk gene-expression
data [32]. Dittrich et al. compute maximum-weight connected subgraphs to
find subnetworks that change their expression significantly in a certain disease.
Here, we use a similar approach to identify subnetworks that change significantly
in different clusters of cells.

Given a network G = {V,E} with node se V and edge set E ⊂ V × V , we
construct a node-weighted network Gnw = {V,E,W} by assigning each node
i ∈ V a real-valued node weight wi, which we represent as a functionW : V → R.
We construct these node-weighted networks from a PPIN and gene-expression
information. The former is in form of a network and the latter are p-values of
differential expression. We assume a bijection between genes and proteins, i.e.,
each protein is expressed by exactly one gene, which is a simplification of the
biological processes. We find this bijection by mapping GeneIDs [35].

We delete all nodes from the PPIN for which no gene-expression data is
available. We present an alternative approach that can incorporate proteins
with missing expression data in the Supplementary Note 4. We assign each
node a score

S(x) = (α− 1) (log(x)− log(τ)) , (1)

which is a function of the p-value x and we vary the significance threshold τ to
tune the false discovery rate (FDR). We estimating α by fitting a beta-uniform
mixture model to the observed p-values (see Supplementary Note 1). This score
S(x) is negative for proteins below the significance threshold τ and positive
otherwise.
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8.5 Mathematical Optimisation Algorithm

Mathematically, the problem of identifying a subnetwork with maximal change
of expression is a maximum-weight connected subgraph problem. Algorithmi-
cally, it is easier to solve an equivalent prize-collecting Steiner tree (PCST)
problem [32]. Steiner trees are generalisations of spanning trees [52] and ‘prize-
collecting’ indicates that the nodes have weights. To find a PCST, we use the
dual ascent-based branch-and-bound framework dapcstp [53, 54]. For all cal-
culations in this paper the algorithm identified an optimal solution in less than
10 s. For details see Supplementary Note 2.

8.6 Gene Ontology Enrichment

We use topGO in version 3.8 for the gene ontology enrichment (GO-enrichment)
analysis. [55]. We use Fisher’s exact test to identify enriched GO terms [56]. All
reported GO terms are significant with p-value 0.01 and we use a Benjamini–
Hochberg procedure to counteract the multiple-comparison problem.
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[25] Tijana Milenković and Nataša Pržulj. Uncovering biological network func-
tion via graphlet degree signatures. Cancer Informatics, 6:CIN–S680, 2008.

[26] Jörg Menche, Amitabh Sharma, Maksim Kitsak, Susan Dina Ghiassian,
Marc Vidal, Joseph Loscalzo, and Albert-László Barabási. Uncovering
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