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Abstract A fundamental problem of supervised learning algorithms for brain imag-
ing applications is that the number of features far exceeds the number of subjects.
In this paper, we propose a combined feature selection and extraction approach for
multiclass problems. This method starts with a bagging procedure which calculates
the sign consistency of the multivariate analysis (MVA) projection matrix feature-wise
to determine the relevance of each feature. This relevance measure provides a parsi-
monious matrix, which is combined with a hypothesis test to automatically determine
the number of selected features. Then, a novel MVA regularized with the sign and
magnitude consistency of the features is used to generate a reduced set of summary
components providing a compact data description.

We evaluated the proposed method with two multiclass brain imaging problems: 1)
the classification of the elderly subjects in four classes (cognitively normal, stable mild
cognitive impairment (MCI), MCI converting to AD in 3 years, and Alzheimer’s disease)
based on structural brain imaging data from the ADNI cohort; 2) the classification of
children in 3 classes (typically developing, and 2 types of Attention Deficit/Hyperactivity
Disorder (ADHD)) based on functional connectivity. Experimental results confirmed
that each brain image (defined by 29.852 features in the ADNI database and 61.425
in the ADHD) could be represented with only 30− 45% of the original features. Fur-
thermore, this information could be redefined into two or three summary components,
providing not only a gain of interpretability but also classification rate improvements
when compared to state-of-art reference methods.
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Introduction

Machine Learning (ML) techniques can be used for the design of imaging biomarkers
for various brain disorders and, additionally, the inferred ML models can be analysed as
multivariate, discriminative representations of the brain disease. Often in brain imag-
ing applications of ML, the number of features is larger than the number of training
subjects necessitating the use of dimensionality reduction techniques such as Feature
Selection (FS) or Feature Extraction (FE). The usage of feature selection or extrac-
tion is critical in cases where the number of input variables is considerably greater
than the number of data samples. In these cases, the usage of both methods entails
dimensionality reduction and, subsequently, avoids overfitting problems.

For these reasons, there exist numerous studies proposing and applying dimension-
ality reduction methods in ML applications to brain imaging problems. The dimension-
ality reduction methods can be divided to three different categories, and combinations
of them: 1) using a-priori neuroscientific information to select relevant features, for in-
stance, volumes of certain regions of interest (Tanpitukpongse et al. 2017; Stoub et al.
2004; Douaud et al. 2013; Varon et al. 2015); 2) using unsupervised dimensionality
reduction before the design of the classifier (e.g. Risacher et al. (2010); Klöppel et al.
(2008); Hinrichs et al. (2011)) This dimensionality reduction is usually carried out with
a principal component analysis (PCA). 3) Utilizing feature selection, either prior to the
classifier design or jointly with the classifier design as a regularizer (e.g. Tohka et al.
(2016); Michel et al. (2011); Cheng et al. (2017)).

Incidentally, while FS and supervised classification have been widely studied in
brain imaging, the studies have focused on the binary classification, and multiclass
setups have received only a limited amount of attention. The developed algorithms for
multiclass classification in brain imaging are designed for specific problems (Bron et al.
2015; Qureshi et al. 2016; Yu et al. 2013) and can not be adapted to be used for other
classification tasks than that they are designed for. 1 Furthermore, most methods avoid
dealing with high dimensional data and do not use FS or FE to automatically learn
the relevant variables with the exception of regularized multinomial logistic regression
that has found only few applications in brain imaging (Huttunen et al. 2013).

To address these shortcomings, we propose a Regularized Bagged - Cannonical
Correlation Analysis (RB-CCA) method that is inspired by a recently proposed parsi-

1 The reference Bron et al. (2015) summarizes the results of the data analysis competition,
where the task was to classify subjects into Alzheimer’s disease (AD), mild cognitive impair-
ment (MCI), and cognitively normal classes. We use this summary paper as a reference to all
the methods in the competition if there is no particular reason to specify a particular method.
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RB-CCA for Multiclass Learning in Brain Imaging 3

monious Multivariate Analysis (pMVA) method for FE and FS (Muñoz-Romero et al.
2017). However, unlike with pMVA, the FS procedure of the RB-CCA is implemented
by the calculation of a feature-wise sign consistency, analysed in Gomez-Verdejo et al.
(2019), through a bagged Cannonical Correlation Analysis (CCA) approach. This,
combined with a statistical test introduced in this paper assigning a p-value for the
relevance of each feature, comprises an automatic feature selection method of the opti-
mum characteristics for neuroimaging problems. The method’s goal is two-fold. First,
it generates a parsimonious matrix (Nie et al. 2010; Chen and Huang 2012; Qureshi
et al. 2016) which zeroes complete rows of the projection matrix and, thus, is capable
of removing the irrelevant features. Second, the consistency of the feature is used to
emphasize (by means of a proper regularization) the most relevant features of a subse-
quent CCA. This regularized CCA is capable of projecting the selected features onto a
lower dimension space and, thus, providing a reduced subset of summary components
to characterize the disease based on imaging data.

Furthermore, we propose the following novel contributions to pMVA to make it
suitable for brain imaging tasks: (1) Class-wise feature selection to provide additional
insights over the selected features; (2) A hypothesis test to automatically determine
the number of selected features; (3) A dual formulation over the selected features to
speed up the final feature extraction step; (4) A balanced version of the method to
compensate the effect of class imbalance.

To analyse the performance of the proposed method, we use two different neu-
roimaging databases, Alzheimer’s Disease Neuroimaging Initiative (ADNI) and ADHD-
200, Regarding the ADNI database we focus on classifying the subjects between 4 dif-
ferent groups: cognitively normal (NC), MCI subjects who will convert to AD within 3
years (progressive MCI), MCI subjects who do not convert to AD during 3 years (sta-
ble MCI), and subjects with AD. We will perform the classification using anatomical
MRIs of the subjects, preprocessed using voxel-based morphometry (VBM). With the
ADHD-200 database, we focus on the classifying the subjects between 3 groups: Typi-
cally Developing Children (TDC), ADHD of Inattentive type (ADHD-I) and ADHD of
Combined type (ADHD-C). We perform the classification using functional connectivity
measures between brain regions, extracted based on resting state functional MRI. The
intuition with both databases is that the inclusion of all classes provide correlated and
complementary information about the brain disorders in question (Li et al. 2016).

To demonstrate the advantages of the proposed method, its performance has been
measured in comparison to various baseline methods: a linear SVM, to obtain a refer-
ence error without any dimensionality reduction, a standard CCA, to show the limi-
tations of a feature extraction on its own, the feature selection (RFE) and classifying
(HELM) methods analysed by Qureshi et al. (2016) and the feature selection method
proposed by Abdulkadir et al. (2014), to analyse the advantages of our feature se-
lector. We show that the proposed method outperforms the baseline methods in the
classification accuracy.
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Methods: Regularized Bagged - CCA for Multiclass Learning

This section presents the Regularized Bagged - CCA (RB-CCA) method. As shown in
the diagram in Figure 1, the method consists of two main steps:

1. Feature selection process. This first step combines a standard CCA with a bag-
ging procedure to obtain a subset of selected voxels (XS) together with a measure
of the relevance for each selected feature (ρ).

2. Feature extraction for summary components design to characterize each
subject. This second step is based on a regularized version of CCA, guided by the
variable relevance ρ, to reduce the input set of selected features to a subset of
summary components (XB).

Fig. 1: RB-CCA scheme for neuromarkers design.

Review of the MVA framework

This section reviews the generalized MVA formulation presented in Muñoz-Romero
et al. (2017, 2016), which unifies into a single framework the formulations of the most
well-known MVA methods: PCA, CCA and OPLS.

In this context, a ML problem is given by N input/output data pairs {(xn,yn)}Nn=1,
where the observations xn have d features and the targets yn have c output variables.
Therefore, the problem is defined by two matrices: an input data matrix X ∈ RN×d

and an output matrix Y ∈ RN×c. In classification problems, this output matrix is
encoded knowing yn

i = 1 when xn belongs to class i and yn
i = 0 otherwise. In this

work, we consider that the matrices X an Y are centred.
Our goal is to find a d×R projection matrix, U , that maps the input data onto a

lower dimensional space with R features by solving the following optimization problem:

minimize L(W,U) =
∥∥∥(Y −XUWT )Γ 1/2

∥∥∥2
F
, (1)

s.t. UTXTXU = I
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where ‖·‖F2 the Frobenius norm operator, W is a c × R regression matrix and Γ

is the matrix that will define the different MVA algorithms considered: CCA (Γ =
N(Y TY )−1), PCA (Γ = I and Y = X) and OPLS (Γ = I).

The constraint in (1) can be replaced by one over W , obtaining an equivalent
optimization problem:

minimize L(W,U) =
∥∥∥(Y −XUWT )Γ 1/2

∥∥∥2
F
, (2)

s.t. WTΓW = I

As this paper is focused on high dimensional small-sample problems (d >> N),
working with the dual formulation results more computationally efficient algorithms.
Noting that U can be expressed as a linear combination of the inputs and some dual
variables A, U can be defined as U = XTA to express (2) as:

minimize L(W,A) =
∥∥∥(Y −KxAW

T )Γ 1/2
∥∥∥2
F
+ λ1 ‖A‖2F , (3)

s.t. WTΓW = I

where we have defined Kx = XXT as the linear kernel matrix of the input data and we
have included a regularization term over A to overcome the ill-conditioned problems.

To solve our MVA problem, we firstly express A as a function of W 2:

A = (KxKx + λ1I)
−1KxY ΓW (4)

and, then, we substitute (4) into (3). Finally, W is obtained as the solution of the
following eigenvalue problem:

Γ 1/2Y TKx(KxKx + λ1I)
−1KxY Γ

1/2V = V Σ (5)

where V = Γ 1/2W is introduced to simplify the computations. In a similar way, V can
be computed and used to calculate A:

A = (KxKx + λ1I)
−1KxY Γ

1/2V (6)

Note that the solution of Equation (5) involves operating with matrices of size of
the order of c, instead of classical MVA approaches which work with matrices of size
of the order of N . This advantage signifies a reduction of computational cost in almost
all cases as the number of classes in a classification problem are usually considerably
lower than the number of training data (c << N).

2 Note that the inclusion of the regularization term over A prevents problems in the cal-
culation of the inverse of KxKx. These issues should not appear when working with high
dimensional data, however they can occur in case of high redundancy among variables.
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Bagged MVA for feature selection

When a MVA method is applied, we obtain a new low-dimensional representation of
the data given by

zr =
∑
j

xjUjr, r = 1, ..., R,

where R is the number of principal components found by the MVA method. Intuitively,
one could analyse matrix U to measure the relevance of each characteristic according to
the magnitude of the associated weights and, therefore, to generate a feature selector;
however, in practice, this could cause overfitting problems when dealing with high di-
mensional problems. Therefore, as in Bi et al. (2003); Parrado-Hernández et al. (2014),
overfitting can be mitigated by including of a bagging procedure (Breiman 2001).

Here, we propose to construct a set of P bagged MVA, where each MVA is trained
with a randomly subsampled input data XM . This process is carried out class-wise,
computing C sets of projection matrices for each bagging iteration, {U1

c , ...U
p
c }Pp=1.

Since the presented MVA framework works over the dual variables, the projection
matrix in the dual space, A, can be calculated before the bagging procedure, as pro-
posed in Muñoz-Romero et al. (2017). At the same time, using the labels corresponding
to each subject, matrices X and A can be divided into the different classes, Xc and
Ac, where these matrices are defined by the rows of X and A corresponding to class
c. This way the FS is able to work class-wise, having a more informative selection
of the most relevant characteristics. Finally, these matrices can be randomly subsam-
pled for the bagging procedure, and then, by calculating the product of both matrices
Up
c = XT

Mc
AMc

, with c = 1, . . . , C, we can obtain the projection matrix for each class.
This approach is fast, needing just to iterate a single matrix-product per class, which
is a low cost operation.

Once the projection matrices, {Up
c }Pp=1 are computed, we can analyse their sign

consistency to measure the relevance of each input feature for each eigenvector over
the c-th class as:

Bc =
1

P/2

∣∣∣∣∣
P∑

p=1

1(Up
c > 0)− P/2

∣∣∣∣∣ , (7)

where 1(T > 0) is the indicator function, which assigns a 1 to all the positive values
in the matrix and, conversely, a 0 to the negative values. This new d × R matrix
provides a high value when the j-th feature is sign consistent in the k-th eigenvector
over the bagging iterations for the c-th class. This measures can be converted into a
single measure for each feature and class by calculating their averaged value over the
different eigenvectors:

bjc =
1

R

R∑
r=1

Bjcr, j = 1, ..., d; c = 1, .., C.

Note that the value of bjc is normalized, so a value close to 1 implies a highly consistent
feature, whilst a value close to 0 implies a non relevant feature with no consistency.
By sorting the bjc values, we have the class-wise most relevant features and can choose
the number of those features we want to use. This selection could be carried out by
adjusting the percentage of most relevant features (or selecting a threshold) by CV
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process. To avoid the computational cost of this process, next subsection introduces
a hypothesis test to automatically fix the number of selected features. The scheme of
this approach, in combination with the statistical test, is presented in Figure 2.

Fig. 2: Class-wise feature Selection scheme for parsimonious MVA.

Hypothesis test for feature selection

After applying the bagged MVA approach, a variable is irrelevant when it has positive
and negative signs with the same probability. To be more precise, a variable j can be
considered as irrelevant for the class c and the eigenvector r if its associated success
probability

pjcr =
1

P

P∑
p=1

1(Up
jcr > 0), j = 1, ..., d; c = 1, .., C; r = 1, .., R (8)

is equal to 0.5. Then, we can formulate the following hypothesis test:{
H0 : pjcr = 0.5, j is not relevant for c− th class and r− th eigenvector.

H1 : pjcr 6= 0.5, j is relevant for c− th class and r− th eigenvector.
(9)

To statistically evaluate if pjcr differs from 0.5, we define the statistic tjcr which is
given by the success probability divided by a scaling factor associated with the standard
deviation of the probability. The derivation of this scaling factor is presented in A:

tjcr =
pjcr − 0.5√

M
1−M pjcr(1− pjcr)

, (10)

where M is the subsampling rate.
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Under the null hypothesis, the statistic tjcr follows a normal distribution with zero
mean and unit standard deviation. Therefore, we can apply the test by selecting the
values that correspond to the tails of the normal distribution.

Once the statistic tjcr is computed, the class-wise feature selection can be deter-
mined by majority vote of the r parameter. This way, the selection takes into account
if a feature is relevant for most eigenvectors or just for some of them.

Thanks to the inclusion of the statistical test, the cross-validation (CV) of the
optimum number of selected features is not needed reducing the computational time.
Furthermore, this efficient approach allows the selection of features in a class-wise
manner, improving the interpretability of the results and posing an advantage over the
approach presented in Muñoz-Romero et al. (2017).

Regularized MVA

This section introduces the final step of the proposed method that, combining the
parsimonious pattern and the relevance of each feature (learned in the previous step),
will allow to compute the desired summary components.

Once the bagged MVA-based feature selection (BagMVA-ST) is applied, we obtain
a parsimonious pattern defined by sets of indexes Sc, with c = 1, . . . , C, which indicate
which features are relevant for each class. These sets of indexes are then reduced to
a single set of selected features, S, composed by the union of all Sc subsets. So, from
the original data matrix X, here, we will use as input for this stage the matrix XS

consisting of the columns indexed by S.
Moreover, from the bagging process, we have also obtained information about the

relevance of each feature. Here, we will also use this information to regularize this
MVA so that we can guide the summary component design with the relevance of each
feature. In this way, this regularization will aim to assign lower (/higher) penalties to
more (/less) relevant features, increasing (/reducing) their influence over the projected
data. To define which features are considered more or less relevant, two criteria are
combined:

– The sign consistency of the eigenvectors. As the bagged feature selection does, we
can use the consistency values bjc to evaluate the usefulness of a feature.

– The associated eigenvector magnitude. It is expected that the eigenvector weights
associated to relevant variables have a greater value than useless ones. So we can
reinforce the consistency values with the following measure of the magnitude the
associated eigenvector components:

ujr = max
c

{
1

P

P∑
p=1

upjcr

}
(11)

Then, we can combine both criteria to define the following relevance measure:

ωj =
1

ρj
=

1

bj
∥∥uj

∥∥
2

(12)

As high magnitude values imply more consistency, Equation (12) uses the inverse
of the consistencies to indicate the relevancies for the regularization, in this way, more
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relevant features will have a low penalties and the regularized MVA will let them reach
higher values.

Now, we can include this regularization over the MVA framework by replacing the
penalty over dual variables of Equation (3) by a penalty over primal variables given by
ωj that is,

L(W,A) =
∥∥∥(Y −KxSAW

T )Γ 1/2
∥∥∥2
F
+ λ2

∥∥∥Ω1/2XT
S A
∥∥∥2
F
,

s.t. WTΓW = I (13)

where KxS is the linear kernel matrix of the selected data, Ω is a diagonal matrix of
the relevance measure values ωj and λ2 is a regularization parameter. Despite feature
selection, we are still dealing with a scenario where the input dimension (size of S) is
still higher than N , so the dual space formulation leads to computational savings.

Then we can follow a similar procedure to that of Section Review of the MVA
framework, so we can define the matrix V as Γ 1/2W and obtain its value solving the
following eigenvalue problem:

Γ 1/2Y TKx(KxKx + λ2XSΩX
T
S )−1KxY Γ

1/2V = V Σ (14)

and, then, we can compute the solution of A by means of

A = (KxKx + λ2XSΩX
T
S )−1KxY Γ

1/2V (15)

Balanced regularized MVA

Neuroimaging problems can be highly imbalanced. The (class) imbalance refers here to
the problem that there are different numbers of representative examples of each class,
perhaps not reflecting the true (often unknown) class distribution. If we want to obtain
a representative set of summary components (over all the classes), we have to make
MVA approach pay more attention to the less populated classes.

For this purpose, we can define a new Frobenius norm as:

‖D‖2FΘ = Tr{DTΘD}

where Θ is a diagonal matrix which uses the values of Y to adjust weights inversely
proportional to class frequencies in the input data as N/Nc, being Nc the amount of
samples of one class. Then, in order to balance the classes, (14) would be redefined as:

Γ 1/2Y TΘKx(KxΘKx + λ2XSΩX
T
S )−1KxΘY Γ

1/2V = V Σ (16)

Conversely, with the inclusion of the class balance, (15) could be rewritten as:

A = (KxΘKx + λ2XSΩX
T
S )−1KxΘY Γ

1/2V (17)
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Implementation details

We calculated the reported results with a nested 10-folds cross-validation. The outer
CV is used to divide the dataset into training and test partitions, while the inner CV
is in charge of validation and, therefore, it divides the training partition into a second
training set and a validation set. This way we were able to estimate the performance
of the whole framework and, additionally, validate the model parameters.

We used balanced classification accuracy of a one vs. all SVM to compare the
performance of the different variations of the methods and to adjust the method hy-
perparameters. This balanced accuracy improves the performance of the methods on
low-populated classes. The value of the hyperparameter C of the SVM was validated
using a SVM with all the input voxels and was set to a rather small value (C = 0.035).
We evaluated this value over the remaining approaches and we checked that their per-
formance was good. Therefore, the parameter C of the SVM was set to C = 0.035 for
all the methods under study, simplifying the CV of the MVA versions.

Despite the proposed framework includes several MVA approaches, for the sake of
simplicity, we have limited the experimental comparison to the CCA approach. We
made this decision based on the fact that CCA works in a supervised way and that it
has been seen that CCA and OPLS work in a similar way in classification problems
Sun et al. (2009).

We analysed the dependency on the subsampling rate and saw that the performance
of the method does not depend on this value. Therefore, the subsampling rate was set
to 50%. However, in order to have a balanced feature extractor and, learning the
consistency of each input voxel equally over all the classes, the data was balanced in
the bagging by randomly selecting the same number of samples in each class.

We cross-validated the regularization hyperparameter λ2, as its value was indeed
critical for the final method’s performance. Its optimum value was cross-validated,
exploring 17 values in a logarithmic scale from [10−4 to 103]. At the same time, we set
the number of extracted features to the maximum, #classes− 1, although some tests
have been carried out to discard the relevance of using less features.

The implementation of this project was done using Python 2.7.13 and the cross val-
idation was carried out using the package StratifiedKFold from Scikit-learn (Pedregosa
et al. 2011). An exemplary notebook, including the complete code of the proposed
method, is available at https://github.com/sevisal/regMVA.git.

Materials

ADNI data

Data used in the preparation of this article were obtained from the Alzheimer’s Dis-
ease Neuroimaging Initiative (ADNI) database (adni.loni.usc.edu). The ADNI was
launched in 2003 as a public-private partnership, led by Principal Investigator Michael
W. Weiner, MD. The primary goal of ADNI has been to test whether serial magnetic
resonance imaging (MRI), positron emission tomography (PET), other biological mark-
ers, and clinical and neuropsychological assessment can be combined to measure the
progression of mild cognitive impairment (MCI) and early Alzheimer’s disease (AD).

The initial goal of ADNI (ADNI-1) was to recruit 800 subjects but ADNI has been
followed by ADNI-GO and ADNI-2. To date these three protocols have recruited over
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1500 adults, ages 55 to 90, to participate in the research, consisting of cognitively
normal older individuals, people with early or late MCI, and people with early AD.
The follow-up duration of each group is specified in the protocols for ADNI-1, ADNI-2
and ADNI-GO. For up-to-date information, see www.adni-info.org.

Data used in this work included MRIs from 200 AD patients, 164 pMCI subjects,
100 sMCI subjects and 231 NCs ( T1-weighted MP-RAGE sequence at 1.5 T, typically
256 × 256 × 170 voxels with the voxel size of approximately 1mm × 1mm × 1.2mm)
for whom baseline MRI data were available. The characteristics of these subjects are
summarized in Table 1. The conversion status of the MCI subjects was defined as in
Moradi et al. (2015). Briefly, a subject was considered to be in progressive MCI group
if the diagnosis was MCI at the baseline and the subject converted to AD in three
years. A subject was considered to be in stable MCI group if the diagnosis was MCI
at the baseline and the subject did not convert to AD during the follow-up. Subjects
who had less than 3 years of follow-up and subjects whose diagnostic status fluctuated
were excluded.

Characteristic AD pMCI sMCI NC

No. of subjects 200 164 100 231
Age 75.6± 7.7 74.57± 7.0 75.4± 7.2 76.0± 5.0
Gender (M/F) 103/97 97/67 66/34 119/112

Table 1: ADNI - Characteristic of data samples used in this work

The MRIs were preprocessed into gray matter tissue images in the stereostatic
space, as described by Gaser et al. (2013), and thereafter they were smoothed with the
8-mm FWHM Gaussian kernel, resampled to 4 mm spatial resolution and masked into
29.852 voxels.

Atrophic regions detected in AD patients were found to overlap with those regions
showing a normal age-related decline in healthy control subjects (Dukart et al. 2011).
Therefore, the data was age-corrected by regressing out the age of the subject on a
voxel-by-voxel basis (Moradi et al. 2015).

ADHD data

We have also studied functional connectivity in ADHD using ADHD200 data (Milham
et al. 2012). The data consists of 973 resting state fMRI and anatomical MRI datasets
collected at eight independent imaging sites, all from children and adolescents between
the ages of 7 and 21 years. We used the resting state fMRIs preprocessed by the
Neuro Bureau using the Athena computer cluster of Virginia Tech as described by
Bellec et al. (2017). Briefly, the preprocessing was done with AFNI (https://afni.
nimh.nih.gov/) as detailed in https://www.nitrc.org/plugins/mwiki/index.php/
neurobureau:AthenaPipeline#Extracted_Time_Courses.

The time courses of brain regions corresponding to CC400 atlas (ADHD-200 ver-
sion, Craddock et al. (2012)) were obtained by averaging voxel-wise fMRI intensities
within regions. This yielded 351 regional time courses per subject. Based on these
351 regional time courses, we computed a 351 x 351 correlation matrix describing the
strength of the functional connectivity between region pairs. Vectorizing correlation
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Characteristic ADHD-C ADHD-I TDC

No. of subjects 204 127 555
Age 11.94± 2.6 11.3± 3.2 12.2± 3.5
Gender (M/F) 170/34 92/35 288/267

Table 2: ADHD - Characteristic of data samples used in this work

matrix and removing redundant elements yields 61425 features per subject. We removed
the datasets that did not pass the quality control of the Neuro Bureau. After this,
data from 922 subjects remained (555 Typically Developing, 204 ADHD-Combined,
12 ADHD-Hyperactive/Impulsive, and 127 ADHD-Inattentive). We still removed 12
ADHD-Hyperactive/impulsive cases from consideration as the number of subjects in
this group was not sufficient for meaningful classification.

Results

Performance compared to baseline methods

This section presents the experimental results obtained using the presented methods
with both the ADNI and the ADHD databases. To analyse the performance of our
algorithm, we have compared it with the following baseline approaches:

– SVM classifier (SVM): A set of original features are fed to a linear SVM.
– Standard CCA with a SVM (CCA): The original features are processed by a stan-

dard CCA and, later, classified by a linear SVM.
– SVM significance map with a SVM (p-map): The features are fed to the p-map

of the SVM which carries out the feature selection, being after classified by a
linear SVM. The p-map+SVM method was used by Abdulkadir et al. (2014) in the
CADDementia challenge (Bron et al. 2015) as a multiclass classification approach
following a one vs. all approach, providing a set of selected features for each class.

Regarding the ADHD database, we have implemented the methods used by Qureshi
et al. (2016) for multiclass classification with feature selection. One should note that
Qureshi et al. (2016) used 320 cortical features based on structural MRI whereas we
have 61425 features based on resting-state fMRI. Three different implementations of
the method have been used, using ELM with all the features (ELM), ELM along with
the feature selection obtained with the RFE (ELM+RFE) and HELM with the feature
selection of the RFE (HELM+RFE). When cross-validating the number of selected
features, we used CV Stability Point (CV-SP) to select the optimum threshold 3.

We compared the baseline approaches to the RB-CCA+ST (RB-CCA along with
statistical test) version of our method with balanced CCA. We made use of our bal-
ancing MVA scheme (Subsection Balanced regularized MVA) along with the balanced
version of the final SVM classifier. Different versions of our method are compared in
section Analysis of the different stages of the method.

3 As the accuracy validation curves tend to present a saturation profile and their maximum
value is given when almost all features are used, we have selected as optimum working point
the CV Stability Point (CV-SP), the point of the curve where the saturation begins. In this
way, we obtain a good performance point using a reduced set of features.
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Method No. feat Accuracy class AUC AUC
NC sMCI pMCI AD

SVM 29.852 56, 47
±5, 97% 0,892 0,694 0,792 0,860 0, 831

±0, 024

Standard CCA 29.852 52, 15
±5, 17% 0,854 0,603 0,751 0,825 0, 786

±0, 029

p-map 19.637
±6.959

55, 98
±5, 95% 0.886 0.694 0.795 0.862 0, 830

±0, 024
RB-CCA+ST
(Balanced)

13.222
±1.004

62, 91
±4, 64% 0,915 0,766 0,830 0,882 0, 864

±0, 024

Table 3: ADNI - Accuracy results with the proposed method compared with the base-
lines. This values have been obtained validating using the balanced accuracy. In this
case, the balanced accuracy value obtained by chance would be 25%. The results show
that the proposed method outperforms the baselines in terms of both accuracy and
AUC.

The results obtained with the different methods with the ADNI database are listed
in Table 3. These show that the proposed approach outperformed the baseline methods
both in terms of balanced accuracy and AUC. In addition, this performance improve-
ment was achieved using one third of the original features. Comparing our approach
with the p-map baseline, the proposed approach resulted in better classification ac-
curacy with smaller standard deviation in the number of selected features and could
thus be considered to lead to more consistent and relevant characterization of the
classification problem.

Method No. feat Accuracy class AUC AUC
TDC ADHD-I ADHD-C

SVM 61.425 39, 40
±14, 66% 0,592 0,502 0,649 0, 582

±0, 057

Standard CCA 61.425 36, 94
±8, 40% 0,597 0,500 0,632 0, 581

±0, 053

p-map 969
±61

36, 54
±6, 33% 0,568 0,484 0,635 0, 568

±0, 032

ELM 61.425 24, 26
±10, 05% 0,533 0,504 0,567 0, 537

±0, 065

ELM + RFE 7.025
±2.376

22, 64
±5, 26% 0,507 0,511 0,534 0, 514

±0, 060

HELM + RFE 7.025
±2.376

28, 99
±8, 56% 0,525 0,505 0,564 0, 531

±0, 057
RB-CCA+ST
(Balanced)

18.295
±4.393

38, 48
±8, 18% 0,600 0,530 0,644 0, 600

±0, 058

Table 4: ADHD - Accuracy results with the proposed method compared with the
baselines. This values have been obtained validating using the balanced accuracy. In
this case, the balanced accuracy value obtained by chance would be 33, 3%. The results
show that the proposed method performs in a similar way to the baselines, while been
capable of reducing one fifth the amount of used voxels.
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Table 4 shows the results obtained on the ADHD database. The studied methods
improved the results that would be obtained by chance (33, 3% accuracy when ran-
domly assigning a subject to one of the three possible classes). When comparing our
method with the one proposed by Qureshi et al. (2016), our method outperformed it
in both AUC and balanced accuracy term. In this dataset, the main advantages are
in terms of interpretability, since we are capable of reducing the amount of input vari-
ables one fifth from the original, maintaining a good a classification score; note that
the p-map approach presents poor performance results when reducing the number of
input features.

Analysis of the different stages of the method

The proposed method combines different steps: a feature selection step, a statistical test
and a regularized CCA. In this subsection, we will analyse the effect of these steps to
the final performance of our method. To do so, we have included different combinations
of the proposed feature selection (no FS, Bagged CCA with the statistical test based
threshold (BagCCA+ST), Bagged CCA with the CV-based threshold (BagCCA+CV))
and extraction methods (no FE, standard CCA, regularized CCA). When using the
CV-based thresholding, we used CV Stability Point to select the optimum threshold.

Extraction
Selection
method

No. feat Accuracy class AUC AUC

NC sMCI pMCI AD

No

None 29.852 56, 47
±5, 97% 0,892 0,694 0,792 0,860 0, 831

±0, 024

BagCCA+CV 11.642
±5.373

60, 55
±6, 48% 0,908 0,737 0,825 0,883 0, 857

±0, 026

BagCCA+ST 13.222
±1.004

61, 90
±9, 65% 0,912 0,739 0,835 0,884 0, 861

±0, 024

Standard CCA

None 29.852 52, 09
±5, 16% 0,854 0,593 0,747 0,825 0, 783

±0, 030

BagCCA+CV 15.075
±5.602

52, 12
±5, 89% 0,850 0,598 0,745 0,831 0, 783

±0, 030

BagCCA+ST 13.222
±1.004

52, 07
±5, 95% 0,856 0,635 0,754 0,828 0, 792

±0, 028

Regularized CCA

None 29.852 58, 19
±6, 42% 0,911 0,718 0,816 0,870 0, 849

±0, 019

BagCCA+CV 6.862
±5.135

62, 04
±5, 50% 0,909 0,785 0,835 0,887 0, 868

±0, 025

BagCCA+ST 13.222
±1.004

62, 91
±4, 64% 0,915 0,766 0,830 0,882 0, 864

±0, 024

Table 5: ADNI - Accuracies with the different versions of the method. This table
justifies the need of adding the regularisation to the CCA as well as the usage of a
selection method. The feature selection not only provides a better performance, but
also improves the interpretability of the results. Furthermore, feature selecting with
the statistical test is more efficient in terms of computational time than the validation.

Table 5 depicts the accuracy results with the different versions of the method. All
the methods in Table 5 are with balancing and the results of unbalanced method are
presented in B. As is visible in the table, feature selection improved the performance.
Between the two types of feature selection the statistical test based threshold slightly
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Extraction
Selection
method

No. feat Accuracy class AUC AUC

TDC ADHD-I ADHD-C

No

None 61.425 39, 40
±14, 66% 0,592 0,502 0,649 0, 582

±0, 057

BagCCA+CV 21.806
±19.202

36, 11
±10, 52% 0,564 0,501 0,634 0, 571

±0, 045

BagCCA+ST 18.295
±4.393

38, 65
±12, 23% 0,589 0,516 0,634 0, 588

±0, 044

Standard CCA

None 61.425 34, 53
±8, 78% 0,593 0,506 0,629 0, 589

±0, 057

BagCCA+CV 16.277
±11.978

37, 18
±8, 72% 0,582 0,513 0,619 0, 580

±0, 051

BagCCA+ST 18.295
±4.393

36, 18
±8, 96% 0,598 0,528 0,624 0, 594

±0, 039

Regularized CCA

None 61.425 37, 10
±8, 73% 0,597 0,492 0,627 0, 589

±0, 055

BagCCA+CV 24.877
±17.879

37, 40
±6, 96% 0,590 0,518 0,625 0, 587

±0, 050

BagCCA+ST 18.295
±4.393

38, 48
±8, 18% 0,600 0,530 0,644 0, 600

±0, 058

Table 6: ADHD - Accuracy results with the different versions of the method, considering
the usage of the proposed selection and extraction methods in their balanced version.
The feature selection improves the interpretability of the results, reducing them by
one fifth while keeping a similar performance. Furthermore, feature selecting with the
statistical test is more efficient in terms of computational time than the validation.

outperforms with respect to accuracy, while leading to substantial savings in compu-
tation time. Also, adding regularization to the CCA was beneficial.

Table 6 lists the results on the ADHD database with the different versions of
the method. Comparing the selection methods BagCCA+ST and BagCCA+CV, the
accuracy differences were minimal, however, BagCCA+ST was orders of magnitude
faster due to the elimination of one CV loop. Furthermore, the number of selected
features by the CV-SP had a greater standard deviation than by the ST meaning that
the threshold selection by ST resulted in more stable feature selection. Feature selection
using CV-SP, in some cases, was too conservative, selecting too few features.

In conclusion, the usage of the regularized CCA with the bagged CCA and the sta-
tistical test (RB-CCA+ST) led to the best performance among the presented methods.

Balanced accuracy in validation

Tables 7 and 8 show the confusion matrices of the classifiers obtained based on the bal-
anced accuracy and standard accuracy, respectively. These were calculated as the sum
of the confusion matrices over the 10 outer CV-folds. The validation is used to select
the regularization parameter λ2 as outlined in section 2.6. If the balanced accuracy
was used as the validation measure, the influence of the most populated classes was
mitigated to give more importance to less populated classes. Instead, if the standard ac-
curacy was used as validation measure, the influence of the more populated classes was
not mitigated and, therefore, the misclassification of the less populated ones increased.
In the case of ADHD-200 database, this led to useless classifiers typically selecting the
most populated class.
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Predicted label

NC sMCI pMCI AD
T
ru
e
la
be

l NC 82 % 9 % 3 % 6 %

sMCI 23 % 40 % 30 % 7 %

pMCI 6 % 19 % 54 % 21 %

AD 13 % 3 % 12 % 72 %

Predicted label

TDC ADHD-I ADHD-C

T
ru
e
la
be

l

TDC 59 % 10 % 31 %

ADHD-I 60 % 7 % 33 %

ADHD-C 43 % 9 % 48 %

Table 7: Classifier’s confusion matrix with the balanced RB-CCA+ST and validating
with the balanced accuracy. With the ADNI database (left) the method is capable
of correctly classify around 50% of the least populated classes while separating them
from the most populated ones. With the ADHD database (right) the method provides
a good classification of the highly less populated classes regarding the complexity of
the problem.

Predicted label

NC sMCI pMCI AD

T
ru
e
la
be

l NC 81 % 7 % 3 % 9 %

sMCI 27 % 34 % 33 % 6 %

pMCI 6 % 21 % 52 % 21 %

AD 13 % 2 % 11 % 74 %

Predicted label

TDC ADHD-I ADHD-C

T
ru
e
la
be

l

TDC 87 % 2 % 11 %

ADHD-I 86 % 4 % 10 %

ADHD-C 79 % 2 % 19 %

Table 8: Classifier’s confusion matrix with the balanced RB-CCA+ST and validating
with the standard accuracy. With the ADNI database (left) the validation provides a
greater misclassification of the least populated class (sMCI) while slightly improving the
classification of the most populated ones. With the ADHD database (right) validating
with the standard accuracy implies a substantial reduction of the classification of both
least populated classes.
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Selected features and summary components

Figure 3 represents which voxels have been selected using RB-CCA+ST with ADNI
data. Figure 3 shows the axial slices at locations that have been previously found to
be to relevant AD-related cerebral atrophy including temporal, frontal and parietal
areas, hypothalamus, cingulate gyrus and hippocampus (Weiner et al. 2017; Frisoni
et al. 2010). As Figure 3 shows, the selections of the proposed method agreed with
expectations based on literature. A more detailed figure of the class-wise selection
including more axial slices is available in supplementary material.

Figure 4 shows the mean values of sign consistency parameters bjc over 10 CV-
folds, note bjc takes values between 0 and 1. Similarly to Figure 3, Figure 4 shows first
class-wise sign consistencies, and the bottom row shows the combined relevance of all
classes.

The summary components were generated by the CCA as a projection of the data
in an orthogonal space that decorrelates the data (Equation (15)). In our four-class
problem with ADNI data, three summary components were obtained using the informa-
tion of the sign and magnitude voxel-wise consistency and were subsequently used by
the classifier. In the feature extractor CCA (Equation (1)), the summary components
are given by the primal projection matrix U , which shows the relation between the
original features and the summary components. Figure 5 shows the first, second and
third eigenvectors averaged over the 10 folds, which indicates how the selected voxels
influence the construction of the three summary components. Figure 6 visualizes the
summary components values for one representative CV fold. Figure 6a depicts the first
two summary components along with the SVM boundaries between each pair of classes
for a particular fold. The two summary components are decorrelated and orthogonal.
The first summary component separated AD subjects from the rest and the second
summary component separates the three other classes. Note that the class overlapping
in Figure 6 is intuitive as pMCI subjects should be more similar to AD subjects and
sMCI subjects should share a certain degree of similarity with NC subjects. Figure
6b shows the projection of the data using the three extracted summary components,
which have been normalised for a better interpretation. The complete projection of
the summary components is not as intuitive as its two dimensional form and the third
component provides less help in the discrimination between the different classes.

Regarding the ADHD database the same procedure has been followed as with the
ADNI database. However, as this database is composed by fMRI, the plot of the data is
less intuitive, complicating the interpretation of the results. For this reason, the images
related to the selected features and the summary components have been included in
the supplementary material.

For the ADHD dataset, the summary component values are shown in Figure 7,
having the plot of the summary components along with the SVM boundaries between
each pair of classes for a particular fold. As happened with the previous database, the
main problem with this data resides on the discrimination of the minority classes. This
can be seen in this figure, were the less populated classes are partially separated but
do not provide any kind of conclusive result.
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Fig. 3: Locations of the most frequently selected voxels using RB-CCA with ADNI
data. Note that the selection is first class-wise and each class-wise selected voxel is
included in the final set of voxels. The overlay intensity gives the number of times a
voxel has been selected during the 10-fold CV and we have used a threshold 5 to show
only those voxels which have been selected in 50% of the folds. Four axial slices are
shown, at z = 50mm, 20mm−10mm,−40mm of the MNI space. The first 4 rows show
the features selected for each class. The fifth row shows the complete selection which
will be applied to the input data. The bottom row visualizes the classes providing the
selected voxels.
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Fig. 4: Variable relevance in ADNI data using RB-CCA. Only relevances of voxels
which have been selected at least in 5 of 10 CV-folds are shown. Four axial slices are
shown, at z = 50mm, 20mm− 10mm,−40mm of the MNI space. Four top rows show
the class-wise relevances of the voxels and the bottom row shows the complete the
relevance of all the selected voxels.

Discussion

This paper has presented a RB-CCA framework for the extraction of summary compo-
nents in neuroimaging data. The method first carries out a bagging procedure, which
calculates the sign consistency of the CCA projection matrix feature-wise, to determine
the relevance of each feature. Then, it uses the learned relevance to select the most
significant features and to regularize the posterior CCA. To select the optimum number
of features, we have proposed a novel hypothesis test based approach as a replacement
for the CV-based model selection, which is time consuming and prone to high variance
of the CV based error estimates. The proposed method combines a FS and a FE step
capable of using the information obtained in the FS process to guide, according to the
importance of each feature, the subsequent FE stage. The final result of the method
are the summary components which reduce the original number of features to just c−1
orthogonal components that are easy to visualize and provide insights to the data.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 11, 2019. ; https://doi.org/10.1101/698134doi: bioRxiv preprint 

https://doi.org/10.1101/698134


20 Carlos Sevilla-Salcedo et al.

Fig. 5: Normalised mean values of the generated summary components using RB-CCA
with ADNI data. Masked with the most selected voxels in the 10-folds CV.

The proposed method is inspired by Muñoz-Romero et al. (2017), but contains
several novel aspects as compared to it: 1) We have adapted the bagging procedure to
obtain a class-wise FS which improves the interpretability of the feature selection, hav-
ing the features that are most relevant for each class. 2) The additional computational
cost derived from this change is solved by the inclusion of a statistical hypothesis test,
specifically designed for the bagged CCA scheme, to be able to automatically select the
optimum number of selected features per class. The hypothesis test removes the neces-
sity to carry our computationally expensive CV to select the optimum threshold for
feature selection and we have shown that it leads to equal classification accuracy than
the use of CV. 3) We have improved the regularized CCA by making it use the sign
consistency, which is obtained through the bagged CCA, in its regularization term. This
leads to novel regularization based in both sign and magnitude consistency. This mod-
ification provides a more informative regularization by the inclusion of extra relevance
criterion that has been learned during the CCA bagging. 4) We have introduced the
dual space formulation of CCA leading computational savings in small-sample high
dimensional scenarios. The previous approach assumed that having regularized fea-
ture extractor was enough to use the primal formulation, which is advantageous when
(N > d), where d refers to the number of selected features. However, when sample sizes
are small enough compared to the data dimensionality, as often in brain imaging, the
dual formulation is advantageous. 5) Finally, we have introduced balanced formulation
of MVA to enable its use in heavily imbalanced problems as these are typical in brain
imaging.

We have applied the different variations of the proposed method to two different
databases. With the ADNI database using the proposed parsimonious MVA along
with the feature selection and the ST provide the best results in terms of balanced
accuracy and AUC. At the same time, the balanced version of the method outperforms
the unbalanced when there is a dataset with highly unbalanced classes. Using this

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 11, 2019. ; https://doi.org/10.1101/698134doi: bioRxiv preprint 

https://doi.org/10.1101/698134


RB-CCA for Multiclass Learning in Brain Imaging 21

(a) First two summary component values with SVM decision boundaries

(b) Plot of the 3 summary component values

Fig. 6: Normalised summary component values for one representative fold with the
SVM’s decision boundaries using ADNI data. The proposed method finds a projection
of the data capable of representing the dataset with 3 values. The first two summary
components are the most informative and the ones that have the biggest role in the
projection of the data. The first summary component is capable of discriminating
between sMCI and AD. The second summary component separates NC from pMCI.
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Fig. 7: ADHD - Normalised summary components for one representative fold with the
SVM’s boundaries. The proposed method finds a projection of the data capable of
representing the dataset with 2 values.

optimum set-up the method provides a balanced accuracy of 61, 56% in the multiclass
classification setting, which poses an improvement of 5% in the balanced accuracy
compared to the different analysed baselines and 0, 036 in terms of AUC.

The accuracy results obtained with our method in the ADNI database compared to
the one presented by Liu et al. (2015) for the 4 classes classification, pose an improve-
ment of almost 0,14 in the standard (not balanced) accuracy. Furthermore, we have
implemented the method p-map used by Abdulkadir et al. (2014) in the CADDementia
challenge (Bron et al. 2015). The comparison between our method and p-map showed
an improvement of 0,07 in terms of accuracy and 0,03 in terms of AUC.

Our results suggested that in the ADNI database the sMCI class was the most
difficult to classify. This matches with Dong et al. (2016) where different clusters where
defined to differentiate MCI subjects. In this sense, the proposed balanced version was
able to pay more attention over the sMCI class, facilitating the detection of this group
of subjects.

The advantages were not as clear with the ADHD database as with the ADNI
database. If we compare our performance to that of the baseline methods without
feature selection (SVM and CCA), the results show that our method was capable of
providing similar results in terms of balanced accuracy and slightly better in terms of
AUC while using roughly 30% of the original variables.

In relation to the methods which carry out feature selection, we have compared
to p-map (Liu et al. 2015) and RFE+HELM (Qureshi et al. 2016), which have been
implemented and validated using the balanced accuracy measure. Note that we can
not directly compare to the results obtained in Qureshi et al. (2016) as they were
working with ROIs instead of voxels and they did not use the balanced accuracy to
validate their method and to evaluate its performance. Our experiments showed that
our method achieves an improvement of 0, 02 and 0, 09 in balanced accuracy and 0, 03
and 0, 07 in AUC, compared to p-map and RFE+HELM, respectively.
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The balanced version of our method outperforms the unbalanced version, which
overfits to the majority class. Most multiclass methods proposed in neuroimaging (e.g.,
(Qureshi et al. 2016, 2017)) deal with class imbalance by reducing the number of
subjects of all classes to the number of subjects of the minority class. Our method
tackles the class imbalance by the definition of a balanced version able to maintain all
the available data.

While most methods for multiclass taks in neuroimaging are problem-specific (Bron
et al. 2015; Qureshi et al. 2016), our approach is more generic. The method is able to
work with very high dimensional data, and as shown in the experiments, overcomes the
limitations by other methods designed to use fewer variables. Regardless of the limits
imposed by the difficulty of the datasets, our method showed a good performance at
the selection of most relevant features, the definition of summary components and
classification. The summary components have proven to by sufficiently informative
to describe with two or three of them the whole set of original variables. Finally,
the scoring results show that the method is capable of working with the multiclass
setting, which has not been widely studied, providing consistent results for the different
scenarios analysed.
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A Hypothesis Test

Considering the success probability pjcr = (1/P )
∑P

p=1 1(U
p
c > 0), we can formulate the fol-

lowing hypothesis test:{
H0 : pjcr = 0.5, j is not relevant for c− th class and r− th eigenvector.

H1 : pjcr 6= 0.5, j is relevant for c− th class and r− th eigenvector.
(18)

To be able to statically evaluate if pjcr differs from 0.5, we define the following statistic:

tjcr =
pjcr − 0.5

σjcr
, (19)

where σjcr is a scaling factor proportional to the standard error of pjcr . We now derive this
scaling factor. The term

∑P
p=1 1(U

p
c > 0) counts of the number of times that a feature is

positive over P bagging iterations. Thus, assuming that the bagging iterations are indepen-
dent, it can be modelled as a rescaled Binomial distribution with parameters P (number of
experiments) and pjcr (success probability). Further, since the number of bagging iterations is
very large, the binomial distribution can be approximated by a Normal distribution with mean
P · pjcr and variance P · pjcr(1− pjcr). So, under the independence assumption, we can define

σjcr as the standard deviation of the term
1

P

∑P
p=1 1(U

p
c > 0), which is straightforwardly

computed by rescaling the variance of the Normal distribution:

σjcr =

√
1

P
· pjcr(1− pjcr). (20)

However, we need to take into account that the observations are coming from a bagging
process and independence can not be assumed. To address this problem, the standard deviation
is computed with an unbiased estimator (Nadeau and Bengio 2000) which, applied to our
scenario, provides the following corrected estimator for the standard deviation:

σ̃corr
jcr =

√
1

P

(
1 + P

M

1−M

)
pjcr(1− pjcr)

'

√
M

1−M
pjcr(1− pjcr) (21)

and, therefore, the statistic tj becomes:

tjcr =
pjcr − 0.5√

M
1−M

pjcr(1− pjcr)
. (22)

The statistic tjcr is distributed according to the t-distribution with P − 1 degrees of freedom.
Since P is very large, one can safely approximate the t-distribution by the standard normal
distribution.

Once this statistic is calculated, the class-wise feature selection can be carried out by
majority-voting r. This means that for each class we select the features that are considered as
relevant by the majority of the eigenvectors.

Thanks to the inclusion of the statistical test, the cross-validation (CV) of the optimum
amount of selected features is not needed, therefore reducing the computational time. Further-
more, this efficient approach allows the selection of features in a class-wise manner, improving
the interpretability of the results and posing an advantage over the approach presented in
Muñoz-Romero et al. (2017).
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B Unbalanced method results

In this appendix further results obtained with different versions of the method are depicted. In
particular, here we present the results obtained in both databases when not using the balanced
version of the method.

Extraction
Selection
method

No. feat Accuracy class AUC AUC

NC sMCI pMCI AD

No
None 29.852 56, 47

±5, 97% 0,892 0,694 0,792 0,860 0, 831
±0, 024

BagCCA + CV-SP 11.642
±5.373

60, 55
±6, 48% 0,908 0,737 0,825 0,883 0, 857

±0, 026

BagCCA + ST 13.222
±1.004

61, 90
±9, 65% 0,912 0,739 0,835 0,884 0, 861

±0, 024

Standard CCA
None 29.852 52, 15

±5, 17% 0,854 0,603 0,751 0,825 0, 783
±0, 030

BagCCA + CV-SP 15.821
±6.409

52, 10
±5, 62% 0,849 0,597 0,745 0,830 0, 783

±0, 026

BagCCA + ST 13.222
±1.004

52, 07
±6, 02% 0,856 0,635 0,754 0,828 0, 792

±0, 028

Regularized CCA
None 29.852 59, 94

±8, 72% 0,909 0,730 0,812 0,875 0, 851
±0, 027

BagCCA + CV-SP 8.956
±8.857

63, 10
±7, 44% 0,907 0,785 0,841 0,884 0, 867

±0, 022

BagCCA + ST 13.222
±1.004

61, 05
±6, 24% 0,911 0,755 0,822 0,878 0, 858

±0, 022

Table 9: ADNI - Accuracy results with the different versions of the method, considering
the usage of the proposed selection and extraction methods in their unbalanced version.
This table justifies the need of adding the regularisation to the CCA as well as the usage
of a selection method. Furthermore, this table depicts the need to include the balanced
version for the correct classification of less populated classes.

Regarding Table 9, the results are similar to the ones obtained in Table 5 in terms of
accuracy and slightly worse considering the AUC. The main advantage of using the balanced
version in this database is the improvement in the classification of the most critical class, sMCI.

In Table 10 we can see the results obtained using the unbalanced version of the method in
the ADHD database. In this highly unbalanced database, the results are worse than the ones
obtained in Table 6 in terms of accuracy, having that without the usage of the balanced version
the method overfits to the most populated class. Therefore, it is critical in this database to
use the balanced version.

not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which wasthis version posted July 11, 2019. ; https://doi.org/10.1101/698134doi: bioRxiv preprint 

https://doi.org/10.1101/698134


26 Carlos Sevilla-Salcedo et al.

Extraction
Selection
method

No. feat Accuracy class AUC AUC

TDC ADHD-I ADHD-C

No
None 61.425 39, 40

±14, 66% 0,592 0,502 0,649 0, 582
±0, 057

BagCCA + CV-SP 21.806
±19.202

36, 11
±10, 52% 0,564 0,501 0,634 0, 571

±0, 045

BagCCA + ST 18.295
±4.393

38, 65
±12, 23% 0,589 0,516 0,634 0, 588

±0, 044

Standard MVA
None 61.425 36, 49

±8, 40% 0,597 0,500 0,632 0, 581
±0, 053

BagCCA + CV-SP 20.270
±16.889

36, 31
±6, 84% 0,576 0,510 0,616 0, 576

±0, 048

BagCCA + ST 18.295
±4.393

36, 84
±7, 18% 0,597 0,517 0,626 0, 592

±0, 036

Regularized MVA
None 61.425 35, 68

±10, 00% 0,602 0,504 0,639 0, 596
±0, 059

BagCCA + CV-SP 17.199
±16.436

35, 26
±8, 33% 0,584 0,510 0,634 0, 585

±0, 059

BagCCA + ST 18.295
±4.393

38, 48
±10, 74% 0,595 0,518 0,627 0, 591

±0, 048

Table 10: ADHD - Accuracy results with the different versions of the method, consid-
ering the usage of the proposed selection and extraction methods in their unbalanced
version. The feature selection improves the interpretability of the results, reducing
them by one fifth while keeping a similar performance. Nevertheless, the results ob-
tained without the balanced version imply overfitting the most populated class and do
not provide reliable results.
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