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Abstract 

 

In biobank data analysis, most binary phenotypes have unbalanced case-control ratios, which can 

cause inflation of type I error rates. Recently, a saddlepoint approximation (SPA) based single 

variant test has been developed to provide an accurate and scalable method to test for 

associations of such phenotypes. For gene- or region-based multiple variant tests, a few methods 

exist which adjust for unbalanced case-control ratios; however, these methods are either less 

accurate when case-control ratios are extremely unbalanced or not scalable for large data 

analyses. To address these problems, we propose SKAT/SKAT-O type region-based tests, where 

the single-variant score statistic is calibrated based on SPA and Efficient Resampling (ER). 

Through simulation studies, we show that the proposed method provides well-calibrated p-

values. In contrast, the unadjusted approach has greatly inflated type I error rates (90 times of 

exome-wide 𝛼 =2.5×10-6) when the case-control ratio is 1:99. Additionally, the proposed method 

has similar computation time as the unadjusted approaches and is scalable for large sample data. 

Our UK Biobank whole exome sequence data analysis of 45,596 unrelated European samples 

and 791 PheCode phenotypes identified 10 rare variant associations with p-value < 10-7, 

including the associations between JAK2 and myeloproliferative disease, TNC and large cell 

lymphoma and F11 and congenital coagulation defects. All analysis summary results are 

publicly available through a web-based visual server. 

 

   

Introduction 

With the decreased cost of sequencing, big biobanks have started to whole exome or whole 

genome sequence large number of participants to identify the role of rare variants to complex 

diseases1-3. By combining rich phenotypic information in electronic health record (EHR)4, these 

sequence data will illuminate the phenome-wide association patterns of rare variants. Since most 

of diseases and symptoms have low prevalence, the binary phenotypes in biobanks generally 

have unbalanced case-control ratios (1:10 or 1:100, for example)5.  For example, in the UK 

Biobank data, nearly 99% of PheCode-based binary phenotypes have case-control ratios less 

than 1:10 6. Substantial challenges are posed when analyzing the associations between rare 

variants and unbalanced phenotypes.  
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Since single-variant tests are underpowered to identify disease associated rare variants7, gene- or 

region-based multiple variant tests, including burden test8,9, SKAT10, and SKAT-O11, are 

commonly used to identify rare variant associations. To evaluate the association signals in 

multiple variants, these methods aggregate single variant score statistics. However, as shown in 

our simulation studies and elsewhere12-14, these methods suffer from the inflation of type I error 

rates when case-control ratios are unbalanced.  For single variant tests, saddlepoint 

approximation (SPA) based approach has been developed and provides accurate p-values under 

such a case-control imbalance5,15. Although a few methods exist which adjust for unbalanced 

case-control ratios for gene- or region-based tests, including moment-based adjustment (MA)16 

and efficient resampling (ER)16, these methods are not scalable or accurate for biobank data. 

When the case-control ratio is extremely unbalanced, MA can still have inflated type I error 

rates. ER is computationally expensive when minor allele counts (MAC) are moderate or large. 

To address these problems, we propose a robust region-based test that adjusts single variant 

score statistics using SPA and ER, and aggregate the adjusted statistics. The SPA and ER help to 

precisely calculate the reference distribution of the single variant score statistics, thereby 

properly controlling for the type I error rates. The computation cost of the proposed approach is 

comparable to unadjusted tests, and hence can be applied to large biobank data.  Using extensive 

simulation studies, we demonstrate that our robust burden, SKAT, and SKAT-O tests have 

proper type I error rates even when the case-control ratio is 1:99 and exhibit larger power 

compared to the unadjusted burden, SKAT, and SKAT-O test. In addition, the method can be 

applicable not only rare variant tests but also the joint association test of common and rare 

variants.  

The UK Biobank resource2 was extended with the first tranche of whole exome sequencing 

(WES) data for 49,960 participants1. We performed robust gene-based rare-variant tests of 

45,596 unrelated European samples on 791 phenotypes with at least 50 cases and identified 10 

rare variant associations with p-value < 10-7, including the associations between JAK2 and 

myeloproliferative disease, NAGS and cervical intraepithelial neoplasia, TNC and large cell 

lymphoma. These results shed light on the discoveries we can make with full 500,000 WES 

samples, which will be available in near future.  

 

Results 
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The proposed approach calibrates single variant score statistics for region-based tests. The 

calibration is performed using SPA and ER. SPA is an asymptotic-based approximation to the 

true distribution of score statistics by approximating the inversion of the cumulant generating 

function17,18. It has a faster convergence rate than using normal distribution5, but when the minor 

allele count is too low (ex. MAC < 10), the method cannot work properly. ER is a resampling-

based approach and provides an exact p-value when MAC is low16. However, as MAC increases, 

the computation cost increases rapidly. The proposed approach combines these two methods: 

when the variant MAC < 10, ER is used to calculate the p-values of single variant score 

statistics, and when MAC >=10, SPA is used. The p-values are used to calibrate the variance 

estimates, and then the gene- and region-based p-value is calculated with the updated variance. 

The details can be found in Methods below.   

 

Type I Error and Power Simulation Results 

We generated 107 datasets to compare type I error rates of the proposed approaches (Robust 

burden, SKAT and SKAT-O), unadjusted approaches (burden, SKAT and SKAT-O) and a 

hybrid approach for SKAT-O16. The hybrid approach applies several adjustment methods based 

on MAC.  Table 1 shows that the unadjusted approaches had substantial inflation of type I error 

rates when the case-control ratio was unbalanced. In contrast, the robust SKAT controlled type I 

error rates much better and had only a slight inflation when the case-control ratio was 1:99. 

Interestingly, the existing hybrid approach showed substantially inflated type I error rates when 

case-control ratios were extremely unbalanced (case-control ratio=1:49 and 1:99). This may be 

due to the fact that the MAC-based method selection rule in the hybrid approach do not perform 

well under extremely unbalanced case-control ratios. When the case-control ratios are more 

extreme than 1:99, the robust SKAT and SKAT-O showed some inflation of type I error rates 

(Supplementary Table 1). Overall, the type I error simulation results confirmed that the proposed 

robust approaches provide substantially improved type I error rates compared to the unadjusted 

and the existing hybrid approaches.  

Figure 1 shows the empirical powers of the hybrid, unadjusted and robust version of SKAT-O 

methods, considered at type I error simulations. The empirical powers of unadjusted and robust 

versions of SKAT and burden can be found in Supplementary Figure 1. Since unadjusted and 

hybrid methods had severely inflated type I error rates, for the fair comparison, we used the 
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empirical significance level estimated from type I error simulation studies. Assuming that the 

type I error rates could be properly controlled for all methods, robust SKAT-O had similar power 

as unadjusted SKAT-O in balanced and moderately unbalanced case-control ratios (1:1 and 1:9) 

and was more powerful than unadjusted SKAT-O in extremely unbalanced ratios (1:49 and 

1:99). Robust burden tests had the same power as unadjusted burden tests across all four case-

control ratios. Robust SKAT had similar power with unadjusted SKAT in balanced ratios and 

was more powerful than unadjusted SKAT in unbalanced ratios. If the number of cases was 

fixed, more controls (1:49 and 1:99) increased power greatly compared to case-control ratio 1:1 

for all three robust methods (Supplementary Figure 2). In addition, we found that 1:99 had 

slightly more power than 1:49, where we could infer that 1:99 is sufficient to achieve the 

maximum power and more controls can hardly increase the power.   

In summary, the robust methods had similar or more power than the unadjusted methods in all 

scenarios. Among the three robust methods, robust SKAT-O generally performed better than 

robust SKAT and robust burden tests since robust SKAT-O combined the two tests 

(Supplementary Figure 3). 

 

Comparison of computational times 

To compare the computation times, we generated 1,000 datasets (Figure 2). Since SKAT-O 

combines the burden and SKAT tests, we only considered the SKAT-O test. As the sample sizes 

increased, the computation time of ER increased and required ~16.1 CPU hours for analyzing 

one gene for 50,000 individuals. In contrast, unadjusted methods required 140x less computation 

time (~6.7 min) and the computation times barely changed by sample size (5,000-100,000 

individuals). Our robust method performed similarly as unadjusted SKAT-O (~8.5 min). Since 

the hybrid approach selects its methods based on MAC and case-control ratios, the computation 

cost of the hybrid approach is not determined by the sample size.  Overall, the hybrid approach 

was slower than the proposed method.  

The computation time for analyzing UK-Biobank data of 791 binary phenotypes with robust 

SKAT-O was 453 CPU days, i.e. ~13.7 CPU hours per one phenotype.  

 

Analysis of whole exome sequencing (WES) data in the UK Biobank 
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We applied six methods (unadjusted and robust versions of SKAT, burden and SKAT-O tests) to 

the analysis of WES data in the UK Biobank. We restricted our analysis to the rare 

nonsynonymous and splicing variants with minor allele frequencies (MAFs) < 0.01 in exon 

regions. A total of 18,360 genes were analyzed based on 45,596 independent European samples 

across 791 binary phenotypes with at least 50 cases. For phenotypes with case-control ratios 

more extreme than 1:99, we identified the ancestry-matched control samples to make case-

control ratios 1:99 (See Method).  

With the cutoff of 𝛼 =  2.5 × 10−6, unadjusted SKAT-O detected 77,941 significant genes, most 

of them would be false positives, while our robust methods detected 102 significant genes for 

SKAT, 40 for the burden test and 117 for SKAT-O. Since we were testing many phenotypes, the 

usual exome-based cutoff of 2.5 × 10−6 can produce spurious associations. Following Hout et 

al1, we used a more stringent level 𝛼 =10-7 and identified that 10 gene-phenotype pairs had 

robust SKAT-O p-values smaller than 10-7 (Table 2). Among them, rare variant associations 

between JAK2 and myeloproliferative disease (number of cases=94)19, and HOXB13 and prostate 

cancers (number of cases=741)20 have been previously reported, which demonstrates that our 

analysis can replicate known signals, even when the number of case samples is very small. 

Among 10 phenotype-gene pairs, only 2 had a single SNP p-value < 5 × 10−8, indicating that 

gene/region-based approaches are more powerful than single variant analyses. For each gene, the 

top 3 smallest p-value variants were reported in Supplementary Table 4 and single variant p-

values were presented in Supplementary Figure 4. QQ plots for those 10 phenotypes show that 

unadjusted SKAT-O had greatly inflated type I error rates, but our robust approach provided 

relatively well calibrated results (Supplementary Figure 5). 

Among other genes, NAGS causes N-acetylglutamate synthase deficiency, an autosomal 

recessive disorder of the urea cycle21. In our data, NAGS was significantly associated with 

cervical intraepithelial neoplasia (p-value=4.71×10-9). PheWAS plot (Figure 3) also shows an 

association signal between NAGS and cervical cancer (p-value= 6.37×10-6). These findings are 

supported by recent literature which has shown that urea cycle dysregulation is related to 

cancer22. The TNC gene encodes Tenascin-C, an extracellular matrix protein with a spatially and 

temporally restricted tissue distribution. TNC has been associated with large cell lymphoma (p-

value=6.10×10-9) consistent with the finding that Tenascin-C is highly expressed in various 

tumors including T-Cell non-Hodgkin lymphomas23 and associated with invasive front of 
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tumors24. Although TNC is a well-known cancer maker, to the best of our knowledge, this is the 

first report of the role of rare variants in TNC in lymphoma. F11, also known as Coagulation 

Factor XI, was observed as associated with congenital coagulation defects (p-value=6.13×10-8), 

which is consistent with the fact that Factor XI participates in blood coagulation as a catalyst in 

the conversion of factor IX to factor IXa in the presence of calcium ions25.  

We carried out conditional analysis to evaluate whether the rare variant association signals were 

independent of the nearby variant association signals (± 100 Kbp up and down stream) (Table 3). 

To identify most significant nearby variants, we used SAIGE single variant analysis results of 

the UK-Biobank imputed datasets of 400,000 British samples15. All ten associations remained 

significant after the conditional analysis.  

We have generated summary statistics for all gene-phenotype association results using our robust 

approach and made them available in a PheWEB like visual server (See Code and data 

availability). 

  

Discussion 

In this paper, we present a robust approach that can address case-control imbalance in region-

based rare variant tests. The proposed approach uses recently developed ER and SPA to calibrate 

the variance of single variant score statistics to accurately calculate region-based p-values. 

Computation cost of the proposed approach is similar to the unadjusted approach, which makes it 

scalable for large analysis. Simulation studies showed that unadjusted methods suffer severe 

inflation of type I error rate in unbalanced case-control ratios while robust methods can 

successfully address it. The UK-Biobank exome data analysis shows that the method provides 

calibrated p-values and contribute to identifying true association signals.  

The proposed robust methods combine SPA and ER to recalibrate variances of single score 

statistics. SPA can be thought as higher order asymptotic approach with error bound 𝑂(𝑛−3/2) 5, 

where n is the sample size, which is much smaller than the error bound of normal approximation,  

𝑂(𝑛−1/2). But SPA is still asymptotic-based and cannot perform well when MAC is small. Since 

ER is a resampling-based approach and can calculate the exact p-value when MAC is small, it 

can complement SPA.  

Our UK Biobank WES data analysis of 45,596 European samples have identified 10 rare variant 

associations with p-value < 10-7, including the replication of two known signals. Currently UK-
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Biobank is carrying out whole exome sequencing for 500,000 individuals. Our analysis shows 

the early snapshot of the discoveries that can be made with full UK-Biobank samples.  

All the UK-Biobank analysis summary statistics are publicly available, which can be a useful 

community resource to show detailed results of the UK-Biobank. For example, researchers could 

utilize it for meta-analysis to combine samples with different studies. It can also be used to 

validate novel signals from other studies.   

There are several limitations in the proposed method. Currently, the robust methods require all 

individuals are unrelated. When there are related individuals, generalized linear mixed model 

(GLMM) based approaches15,26 should be used to incorporate the relatedness. Recently Wei et al 

developed scalable GLMM for gene-based tests that can handle the full size of UK-Biobank data 

of 500,000 samples27. In future, we will apply the robust approach to gene-based GLMM. 

Second, when the case-control ratios are more extreme than case:control=1:99, the method 

suffered type I error inflation. Because of this, our UK-Biobank exome analysis used the 

matching scheme in which if the case control ratios are more extreme than 1:99, we use the 

matching to reduce the number of controls.  

In summary, we have proposed a robust region-based method and showed that the method can 

accurately analyze UK-Biobank exome data. With the continuous decrease of sequencing cost 

and growing effort to build large biobanks and cohorts28, rare variants association analysis will 

be increasingly applied to binary phenome. Our method will provide accurate results for binary 

phenome analysis and contribute to finding the role of rare variants to complex diseases.  

 

Methods 

Gene/region-based rare variant tests for binary traits 

Assume 𝑛 individuals are sequenced in a region, which has 𝑚 rare variants. For the 𝑖-th 

individual, let 𝑦𝑖 denote a binary phenotype, 𝐺𝑖 = ( 𝑔𝑖1, 𝑔𝑖2, …,   𝑔𝑖𝑚)′ the hard call genotypes 

(𝑔𝑖𝑗 = 0,1,2) or dosage values of the 𝑚 genetic variants in the target gene or region, and 𝑋𝑖 =

( 𝑋𝑖1, 𝑋𝑖2, …,   𝑋𝑖𝑠)′ the covariates, including the intercept. To model the binary outcome, the 

following logistic regression model can be used: 

𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) = 𝑋𝑖
′𝛼 + 𝐺𝑖′𝛽, 

where 𝜋𝑖 is the disease probability for the 𝑖-th individual, 𝛼 is an 𝑠 × 1 vector of regression 

coefficients of covariates, and 𝛽 is an 𝑚 × 1 vector of regression coefficients of genetic variants. 
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Suppose  𝑆𝑗 = ∑ 𝑔𝑖𝑗(𝑦𝑖 − 𝜋�̂�)
𝑛
𝑖=1  is the score statistic for the variant 𝑗, where 𝜋�̂� is the estimated 

disease probability under the null hypothesis of no association (i.e. 𝛽 = 0). Burden and SKAT 

test statistics can be written as 

𝑄𝐵 = (∑ 𝜔𝑗𝑆𝑗

𝑚

𝑗=1

)

2

, 𝑄𝑠 = ∑ 𝜔𝑗
2𝑆𝑗

2

𝑚

𝑗=1

, 

where wj is the weight for each variant.10 In the simulation and real data analysis, we used the 

beta(1,25) weight, which upweight rarer variants10. The SKAT-O method combines the burden 

test and SKAT with the following framework: 

𝑄𝜌 = (1 − 𝜌)𝑄𝐵 + 𝜌𝑄𝑠, 

where 𝜌 is a tuning parameter with range [0,1].  Since the optimal 𝜌 is unknown, SKAT-O 

applies the minimum p-values over a grid of 𝜌 as a test statistic. 

Under the null hypothesis,  𝑆 = (𝑆1, … , 𝑆𝑚)𝑇 asymptotically follows the multivariate normal 

distribution, 𝑀𝑉𝑁 (0,  𝑉
1

2𝐶𝑉
1

2), where 𝐶 is the correlation matrix among m variants and 𝑉 is a 

diagonal matrix where the diagonal elements are the asymptotic variances of 𝑆. In the presence 

of a case-control imbalance, however, the distribution of score statistics is skewed, which causes 

the inflation of type I error rates. To address this problem, we will utilize SPA and ER to adjust 

the variance matrix 𝑉.  

 

Saddle Point Approximation (SPA) and Efficient Resampling (ER)  

SPA is a statistical method to calculate the distribution function using the cumulant generating 

function (CGF). Since it utilizes all the cumulants, SPA is more accurate than using normal 

approximation, which only uses the first two cumulants (mean and variance). Drawing on the 

work of Dey et al5, suppose 𝐾𝑗(𝑡) is the CGF of the score statistic 𝑆𝑗, which can be derived based 

on the fact that  𝑌𝑖~Bernoulli(𝜋𝑖) under the null. Then, the distribution function of the score 

statistic 𝑆𝑗 can be approximated by 

Pr(𝑆𝑗 < s) = �̃�(𝑠) = Φ {𝑑 +
1

𝑑
log (

𝑣

𝑑
)}, 

where 𝑑 = 𝑠𝑔𝑛(�̂�)√2 (�̂�𝑠 − 𝐾𝑗(�̂�)), v = �̂�√𝐾𝑗
′′(�̂�) , �̂� is the solution to the equation 𝐾𝑗

′(�̂�) =

𝑠 , and Φ is the distribution function of the standard normal distribution5.  
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Although SPA performs better than normal approximation, since it is still an asymptotic-based 

approach, SPA can result in inaccurate p-values when MAC is very low. To address this issue, 

we use ER for low MAC variants. ER is a resampling method that resamples the case–control 

status of individuals with a minor allele at a given variant and disease risk 𝜋𝑖 instead of 

permuting case–control status across all individuals. This is because only individuals with minor 

alleles contribute to the score statistics S. Since ER is resampling-based, it can provide an 

accurate p-value for a very rare variant. When MAC is low (ex. MAC  10), ER can rapidly 

calculate the exact p-value by numerating all possible configurations of case-control statuses.  

The detailed derivations of ER can be found in Lee et al16.   

 

Robust SKAT, Robust burden test and Robust SKAT-O 

For each variant 𝑗, when the score statistic 𝑆𝑗 lies within 2 standard deviations of the mean, the 

normal approximation generally performs well5. Otherwise, due to the skewed distribution, the 

normal approximation causes inflated type I error rates. Hence, when 𝑆𝑗 is out of 2 standard 

deviations of the mean, we apply SPA (when MAC > 10) or ER (when MAC  10) to calculate 

the p-value 𝑝𝑗, which will be used to calibrate the variance of 𝑆𝑗. 

Let 𝑆𝑗
2/�̂�𝑗 be a square-standardized test statistic in which �̂�𝑗 is the estimated variance of 𝑆𝑗

2. 

When 𝑆𝑗 follows the normal distribution,  𝑆𝑗
2/�̂�𝑗 follows the chi-square distribution with one 

degree of freedom. We adjust the variance as the p-value is the same as 𝑝𝑗, in which the adjusted 

variance is  

�̃�𝑗 = 𝑆𝑗
2/𝜒𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒

2 (1 − 𝑝𝑗), 

where 𝜒𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒
2  is the quantile function of the chi-square distribution with one degree of 

freedom. Note that if 𝑆𝑗 lies within 2 standard deviations of the mean,  �̃�𝑗 = �̂�𝑗. Suppose �̃� =

(�̃�1, �̃�2, … , �̃�𝑚), then the p-value of the region can be calculated based on the assumption that  

𝑆~𝑀𝑉𝑁 (0,  �̃� 
1
2𝐶�̃� 

1
2). 

The adjustments above overcome the inflated type I error rates for common variants, but are 

insufficient to address the inflation issue for rare variants (4.87 times of exome-wide 

alpha=2.5×10-6 when the case-control ratio is 1:99. Details can be found in Supplementary Table 

1). We apply additional adjustment by using the fact that burden test can be presented as a single 
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marker test with collapsed variants, and SPA performs very well for single marker test. From the 

above equation, the variance estimate of the burden test is �̃�𝑏𝑢𝑟𝑑𝑒𝑛 = 𝑤𝑇�̃� 
1

2𝐶�̃� 
1

2𝑤, where 𝑤 =

(𝑤1, … , 𝑤𝑚)𝑇 is an 𝑚 × 1 vector of the weight. Suppose 𝑔𝑖
𝑏𝑢𝑟𝑑𝑒𝑛 = ∑ 𝑤𝑗𝑔𝑖𝑗

𝑚
𝑗=1 , and then the 

burden test statistic (i.e. 𝑄𝐵) is identical to 𝑆𝑏𝑢𝑟𝑑𝑒𝑛
2 , where 𝑆𝑏𝑢𝑟𝑑𝑒𝑛 = ∑ 𝑔𝑖

𝑏𝑢𝑟𝑑𝑒𝑛(𝑦𝑖 − 𝜋�̂�)
𝑛
𝑖=1 , and 

the p-value �̌�𝑆𝑏𝑢𝑟𝑑𝑒𝑛
 of  𝑆𝑏𝑢𝑟𝑑𝑒𝑛 can be calculated from SPA. Using the similar approximation in 

the above, we estimate the variance 𝑆𝑏𝑢𝑟𝑑𝑒𝑛 as �̌�𝑠𝑢𝑚  = 𝑆𝑏𝑢𝑟𝑑𝑒𝑛
2 /𝜒𝑞𝑢𝑎𝑛𝑡𝑖𝑙𝑒

2 (1 − �̌�𝑆𝑏𝑢𝑟𝑑𝑒𝑛
). 

Suppose 𝑟 = �̃�𝑠𝑢𝑚  �̌�𝑠𝑢𝑚⁄ . In order to control type I error inflation, we suggest utilizing a more 

conservative variance. Let �̃� = min(1, 𝑟), then 

𝑆~𝑀𝑉𝑁 (0,  (
�̃� 

�̃�
)

1

2
𝐶 (

�̃� 

�̃�
)

1

2
). 

With this formula, Robust SKAT, SKAT-O and burden test can be performed.  

 

Extension to the joint test of common and rare variants 

Our robust method can be extended to the joint test of common and rare variants. Consider the 

following model 

𝑙𝑜𝑔𝑖𝑡(𝜋𝑖) = 𝑋𝑖
′𝛼 + 𝐺1𝑖

′ 𝛽1 + 𝐺2𝑖
′ 𝛽2. 

For the individual 𝑖, 𝜋𝑖 is the disease probability; 𝑋𝑖 is the vector containing all the covariates, 

including the intercept;  𝐺1𝑖 is the genotype vector of rare variants with length 𝑚𝑟; and 𝐺2𝑖 is the 

vector of common variants with length 𝑚𝑐. To test the hypothesis of no genetic effects: 𝐻0: 𝛽1 =

0,  𝛽2 = 0, the test statistic 𝑄𝜙 can be written as  

𝑄𝜙 = (1 − 𝜙)𝑄𝑟𝑎𝑟𝑒 + 𝜙𝑄𝑐𝑜𝑚𝑚𝑜𝑛 

                 = (1 − 𝜙)𝑆1
′𝑊1𝑊1

′𝑆1 + 𝜙𝑆2
′ 𝑊2𝑊2

′𝑆2,    

where 𝑆1 and 𝑆2 are the vectors of score statistics for rare and common variants respectively, 

and 𝑊1 and 𝑊2 are diagonal weight matrices for rare and common variants.  

Under the null, 𝑆 = (𝑆1,   𝑆2)~𝑀𝑉𝑁 (0,  𝑉
1

2𝐶𝑉
1

2). Using the approach described in the previous 

section, we apply SPA and ER to calibrate variance estimates to perform a robust SKAT method.   

 

Numerical Simulations  

We conducted extensive simulation studies to evaluate the performance of the proposed methods 

for dichotomized traits. The sequence data of mimicking European ancestry over 200 kb regions 
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were generated using the calibrated coalescent model29. We randomly selected regions with 

lengths of 1 kb and tested for associations in all simulation settings. On average each simulated 

dataset had 16.33 (SD: 4.05) rare variants when the sample size was 50,000. 

We generated data sets with sample size 50,000. We included two covariates for the analysis. 

The first one followed a Bernoulli distribution with 𝑝 = 0.5 and the other followed the standard 

normal distribution, corresponding to the gender and normalized age. Four case-control ratios 

were considered, 1:1, 1:9, 1:49 and 1:99, and the binary phenotypes were simulated from 

logit(𝜋𝑖) = 𝛾0 + 𝛾1𝑋1𝑖 + 𝛾2𝑋2𝑖 + 𝛽1𝑔1𝑖 + ⋯ + 𝛽𝑚𝑔𝑚𝑖, 

where 𝛽1 = 𝛽2 = ⋯ = 𝛽𝑚 = 0; 𝛾1 and 𝛾2 were chosen to let the odds ratio (OR) of 𝑋1 and 𝑋2 

equal 1.2 and 1.5 respectively, and 𝛾0 was chosen based on disease prevalence. Seven different 

methods were applied to each of the generated dataset. For all variants in the region, we applied 

the unadjusted and robust joint test of common and rare variants. For rare variant tests 

(MAF<=0.01), we applied (1) SKAT; (2) robust SKAT; (3) burden test; (4) robust burden test; 

(5) SKAT-O; (6) robust SKAT-O; and (7) the hybrid method.  The hybrid method16, developed 

by Lee, selects a method among ER, Quantile adjusted moment matching (QA) and Moment 

matching adjustment (MA) based on MAC, and the degree of case-control imbalance. A total of 

107 phenotypes were generated, and type I error rates were estimated by the proportion of p-

values smaller than the given 𝛼 level divided by given 𝛼. 

For power simulations, 30% of variants were randomly selected as causal variants with the same 

OR. For each setting, 10,000 data sets were generated, and the power was estimated as the 

proportion of p-values smaller than the empirical 𝛼 level, which was calculated in the type I error 

simulation.  

 

Analysis of whole exome sequencing (WES) data in the UK Biobank 

We have analyzed the first tranche of UK Biobank WES data with 49,960 participants1. We have 

downloaded genotype data processed from the Regeneron pipeline. The details of sample 

selection, variant calling and QC procedures are described elsewhere1. We excluded one 

individual in related pairs (up to second-degree relatives) to identify a set of unrelated 

individuals. To preserve cases, we first selected a maximal set of unrelated cases, then removed 

controls that were related to the unrelated cases and kept a maximal set of unrelated controls. 

Because of the missing values in the phenotypes, the individuals included in the analysis varied 
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across phenotypes. We performed gene-based tests on 45,596 independent European participants 

in the UK Biobank, whose phenotype data were available. 

With a previously published scheme30, we defined disease-specific binary phenotypes by 

combining hospital ICD-9 codes into hierarchical PheCodes, each representing a specific disease 

group. ICD-10 codes were mapped to PheCodes using a combination of available maps through 

the Unified Medical Language System (https://www.nlm.nih.gov/ research/umls/), manual 

review and other sources. Study participants were labeled a PheCode if they had one or more of 

the PheCode-specific ICD codes. Cases were defined as all study participants with the PheCode 

of interest and controls were all study participants without the PheCode of interest or any related 

PheCodes. Gender checks were performed, so PheCodes specific for one gender could not be 

assigned to the other gender by mistake15. 

There were 791 binary phenotypes with at least 50 cases based on PheCodes, in which 551 

phenotypes had case-control ratios smaller than 1:99. Because our robust methods would cause a 

certain inflation for extremely unbalanced case-control ratios (Supplementary Table 1), we did 

matching on these 551 traits using the first 4 genotype principal components in which for each 

case we found the closest controls in Euclidean distance to make the case-control ratio be 1:99.   

We focused on the rare variants (MAF<=0.01) of the nonsynonymous and splicing variants in 

the exon and neighboring regions. A total of 18,360 genes were used for the analysis. The 

number of variants in genes ranged from 2 to 7,439 with a highly skewed distribution 

(Supplementary Figure 6). Six methods discussed in the simulation study, unadjusted and robust 

version of SKAT, burden and SKAT-O methods, were applied to the data. Age, gender and first 

four principal components were used as covariates to adjust for population stratification.   

 

Code and Data Availability 

The proposed robust methods are implemented as an open-source R package available at 

https://github.com/leeshawn/SKAT/tree/Sparse_Version.  

The GWAS results for 791 binary phenotypes with the PheCodes constructed based on ICD 

codes in UK Biobank using robust SKAT-O are available at http://ukb-50kexome.leelabsg.org, 

which consists of gene-based Manhattan plots, single variant plots for each gene-phenotype 

association as well as the PheWAS plots for every gene.  
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URLs 

Robust gene-based test, https://github.com/leeshawn/SKAT/tree/Sparse_Version. 

SKAT (version 1.3.2.1), https://cran.r-project.org/web/packages/SKAT 

UK-Biobank, https://www.ukbiobank.ac.uk/ 

UK-Biobank analysis results (gene-based test for binary phenome), http://ukb-

50kexome.leelabsg.org/ 
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Table 1. Type I error rates of unadjusted and robust versions of SKAT, burden and SKAT-O and 

hybrid method when testing rare variants with dichotomous traits at 𝛼 = 10−2, 10−4 and 2.5 ×
10−6. The sample size was 50,000 and 107 datasets were generated. 

 

𝛼 
Case: 

control SKAT 

Robust 

SKAT Burden 

Robust 

burden 

SKAT-

O 

Robust 

SKAT-O 

Hybrid 

SKAT-O 

10−2 1:1 0.99 0.99 1.00 1.00 1.11 1.11 1.09 

 1:9 1.01 1.01 0.99 1.00 1.13 1.13 1.09 

 1:49 1.44 1.22 1.02 0.95 1.44 1.23 1.27 

 1:99 1.92 1.41 1.07 0.91 1.82 1.33 1.53 

10−4 1:1 0.99 1.03 1.02 1.00 1.27 1.32 1.27 

 1:9 1.39 1.14 1.12 0.99 1.65 1.40 1.52 

 1:49 6.31 1.65 2.43 0.97 6.16 1.79 4.54 

 1:99 13.48 2.13 3.95 1.02 12.77 2.17 8.89 

2.5
× 10−6 

  

1:1 1.24 1.54 1.11 1.03 1.38 1.38 1.40 

1:9 2.47 1.45 1.29 0.77 2.51 1.49 2.23 

1:49 28.27 1.91 6.88 1.06 23.70 1.98 16.69 

1:99 89.53 1.81 16.34 0.90 71.32 1.60 42.59 
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Table 2. Significant Gene-Phenotype Associations Based on UK Biobank WES Data. Lowest P 

SNP means the lowest p-value of all single variants contained in the gene-phenotype association. 

Conditional P-value (SKAT-O) means the robust SKAT-O p-value after conditioning on the 

most significant nearby variants (± 100 Kbp up and down stream). P-value of the most 

significant nearby variant was from SAIGE single variant analysis results15 of the UK-Biobank 

imputed datasets of 400,000 British samples. 

 

Phenotype (PheCode) 

Gene 

name Case: control  

The 
number 

of snps 

Total 
minor 

allele 

counts 
for 

cases 

Total 

minor 

allele 
counts for 

controls 

Robust 
SKAT-O 

P-values 

Lowest P 

SNP 

Conditional 
P-value 

(SKAT-O) 

P-value of 

the most 

significant 
nearby 

variant  

Myeloproliferative disease (200) JAK2 94: 9306 68 26 435 8.92×10-30 4.39×10-36 6.69×10-32 2.30×10-17 
Cervical intraepithelial neoplasia [CIN] 

[Cervical dysplasia] (180.3) NAGS 309:21875 81 21 340 4.71×10-9 4.37×10-4 1.33×10-8 2.12×10-3 

Large cell lymphoma (202.24) TNC 56:5544 135 14 491 6.10×10-9 1.02×10-5 2.99×10-9 7.89×10-4 

Cancer of prostate (185) HOXB13 741:18940 37 18 154 3.00×10-8 5.24×10-8 5.67×10-8 1.12×10-4 

Spondylosis and allied disorders (721) MAP3K7CL 849:43787 58 14 153 4.85×10-8 2.11×10-7 7.59×10-9 3.46×10-3 

Congenital coagulation defects (286.1) F11 76:7524 39 8 85 6.13×10-8 4.52×10-5 3.83×10-8 4.21×10-3 

Peptic ulcer (excl. esophageal) (531) LMNB2 773:44818 171 24 501 6.65×10-8 3.83×10-6 6.27×10-8 4.17×10-1 

Menopausal and postmenopausal disorders 
(627) NFE2L3 1345:21226 172 144 1369 6.93×10-8 2.72×10-5 1.85×10-7 2.14×10-4 

Other aneurysm (442) P3H1 164:16236 112 17 498 7.13×10-8 1.71×10-5 2.26×10-7 5.12×10-4 
Congenital anomalies of great vessels 

(747.13) SLC46A1 134:13266 29 11 256 7.50×10-8 1.86×10-8 1.97×10-8 3.71×10-4 
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Figure 1. Empirical power estimates for the unadjusted and robust versions of SKAT-O and 

hybrid method where 30% of variants were causal variants and all causal variants were 

deleterious. The sample size was 50,000 and 10,000 datasets were generated. The X-axis 

represents the genetic effect odds ratio and the Y-axis represents the empirical power. All causal 

variants had the same odds ratios. 
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Figure 2. Comparison of computation time of unadjusted, hybrid, ER and robust approaches for 

SKAT-O. The rare-variant region-based tests were performed on randomly selected 1 kb regions 

of 1,000 resamples. The X-axis represents the sample size and the Y-axis represents the run time 

of 1,000 resamples. 
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Figure 3. PheWAS plots of 10 rare variant associations with p-value< 10-7. The X-axis represents 

791 binary traits and the Y-axis represents the negative log10 p-values. The dashed line 

represents the cutoff of 0.05/791=6.32×10-5. 
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