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1 Abstract

Background: Consecutive testing of single nucleotide polymorphisms (SNPs) is usually employed to identify
genetic variants associated with complex traits. Ideally one should model all covariates in unison, but most
existing analysis methods for genome-wide association studies (GWAS) perform only univariate regression.

Results: We extend and efficiently implement iterative hard thresholding (IHT) for multiple regression, treat-
ing all SNPs simultaneously. Our extensions accommodate generalized linear models (GLMs), prior infor-
mation on genetic variants, and grouping of variants. In our simulations, IHT recovers up to 30% more true
predictors than SNP-by-SNP association testing, and exhibits a 2 to 3 orders of magnitude decrease in false
positive rates compared to lasso regression. We also test IHT on the UK Biobank hypertension phenotypes
and the Northern Finland Birth Cohort of 1966 cardiovascular phenotypes. We find that IHT scales to the large
datasets of contemporary human genetics and recovers the plausible genetic variants identified by previous
studies.

Conclusions: Our real data analysis and simulation studies suggest that IHT can (a) recover highly cor-
related predictors, (b) avoid over-fitting, (c) deliver better true positive and false positive rates than either
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marginal testing or lasso regression, (d) recover unbiased regression coefficients, (e) exploit prior information
and group-sparsity and (f) be used with biobank sized data sets. Although these advances are studied for
GWAS inference, our extensions are pertinent to other regression problems with large numbers of predictors.

2 Introduction

In genome-wide association studies (GWAS), modern genotyping technology coupled with imputation algo-
rithms can produce an n× p genotype matrix X with n≈ 106 subjects and p≈ 107 genetic predictors (10; 41).
Data sets of this size require hundreds of gigabytes of disk space to store in compressed form. Decompressing
data to floating point numbers for statistical analyses leads to matrices too large to fit into standard computer
memory. The computational burden of dealing with massive GWAS datasets limits statistical analysis and
interpretation. This paper discusses and extends a class of algorithms capable of meeting the challenge of
multiple regression models with modern GWAS data scales.

Traditionally, GWAS analysis has focused on SNP-by-SNP (single nucleotide polymorphism) association
testing (10; 9), with a p-value computed for each SNP via linear regression. This approach enjoys the ad-
vantages of simplicity, interpretability, and a low computational complexity ofO(np). Furthermore, marginal
linear regressions make efficient use of computer memory, since computations are carried out on genotype
vectors one at a time, as opposed to running on the full genotype matrix in multiple regression. Some authors
further increase association power by reframing GWAS as a linear mixed model problem and proceeding with
variance component selection (20; 26). These advances remain within the scope of marginal analysis.

Despite their numerous successes (41), marginal regression is less than ideal for GWAS. It implicitly
assumes that all SNPs have independent effects. In contrast, multiple regression can in principle model the ef-
fect of all SNPs simultaneously. This approach captures the biology behind GWAS more realistically because
traits are usually determined by multiple SNPs acting in unison. Marginal regression selects associated SNPs
one by one based on a pre-set threshold. Given the stringency of the p-value threshold, marginal regression
can miss many causal SNPs with low effect sizes. As a result, heritability is underestimated. When p� n,
one usually assumes that the number of variants k associated with a complex trait is much less than n. If this
is true, we can expect multiple regression models to perform better because it a) offers better outlier detection
(35) and better prediction, b) accounts for the correlations among SNPs, and c) allows investigators to model
interactions. Of course, these advantages are predicated on finding the truly associated SNPs.

Adding penalties to the loss function is one way of achieving parsimony in multiple regression. The
lasso (39; 40) is the most popular model selection device in current use. The lasso model selects non-zero
parameters by minimizing the criterion

f (β) = `(β)+λ‖β‖1,

where `(β) is a convex loss, λ is a sparsity tuning constant, and ‖β‖1 = ∑ j |β j| is the `1 norm of the parame-
ters. The lasso has the virtues of preserving convexity and driving most parameter estimates to 0. Minimiza-
tion can be conducted efficiently via cyclic coordinate descent (15; 44). The magnitude of the nonzero tuning
constant λ determines the number of predictors selected.

Despite its widespread use, the lasso penalty has some drawbacks. First, the `1 penalty tends to shrink
parameters toward 0, sometimes severely so. Second, λ must be tuned to achieve a given model size. Third,
λ is chosen by cross-validation, a costly procedure. Fourth and most importantly, the shrinkage caused by the
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Figure 1: The `0 quasinorm of IHT enforces sparsity without shrinkage. The estimated effect size (dashed
line) is plotted against its true value (diagonal line) for `1, MPC, and `0 penalties.

penalty leaves a lot of unexplained trait variance, which tends to encourage too many false positives to enter
the model ultimately identified by cross-validation.

Inflated false positive rates can be mitigated by substituting nonconvex penalties for the `1 penalty. For
example, the minimax concave penalty (MCP) (50)

λ p(β j) = λ

∫ |β j|

0

(
1− s

λγ

)
+

ds

starts out at β j = 0 with slope λ and gradually transitions to a slope of 0 at β j = λγ . With minor adjustments,
the coordinate descent algorithm for the lasso carries over to MCP penalized regression (8; 29). Model selec-
tion is achieved without severe shrinkage, and inference in GWAS improves (21). However, in our experience
its false negative rate is considerably higher than IHT’s rate (22). A second remedy for the lasso, stability
selection, weeds out false positives by looking for consistent predictor selection across random halves of the
data (32). However, it is known to be under-powered for GWAS compared to standard univariate selection
(2).

In contrast, iterative hard thresholding (IHT) minimizes a loss `(β) subject to the nonconvex sparsity con-
straint ‖β‖0 ≤ k, where ‖β‖0 counts the number of non-zero components of β (3; 4; 7). Figure 1 explains
graphically how the `0 penalty reduces the bias of the selected parameters. In the figure λ , γ , and k are chosen
so that the same range of β values are sent to zero. To its detriment, the lasso penalty shrinks all β ’s, no matter
how large their absolute values. The nonconvex MCP penalty avoids shrinkage for large β ’s but exerts shrink-
age for intermediate β ’s. IHT, which is both nonconvex and discontinuous, avoids shrinkage altogether. For
GWAS, the sparsity model-size constant k also has a simpler and more intuitive interpretation than the lasso
tuning constant λ . Finally, both false positive and false negative rates are well controlled. Balanced against
these advantages is the loss of convexity in optimization and concomitant loss of computational efficiency. In
practice, the computational barriers are surmountable and are compensated by the excellent results delivered
by IHT in high-dimensional regression problems such as multiple GWAS regression.

This article has four interrelated goals. First, we extend IHT to generalized linear models. These models
encompass most of applied statistics. Previous IHT algorithms focused on normal or logistic sparse regression
scenarios. Our software can also perform sparse regression under Poisson and negative binomial response
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distributions and can be easily extended to other GLM distributions as needed. The key to our extension is
the derivation of a nearly optimal step size s for improving the loglikelihood at each iteration. Second, we
introduce doubly-sparse regression to IHT. Previous authors have considered group sparsity (46). The latter
tactic limits the number of groups selected. It is also useful to limit the number of predictors selected per
group. Double sparsity strikes a compromise that encourages selection of correlated causative variants in
linkage disequilibrium (LD). Notably, this technique generalizes group-IHT. Third, we demonstrate how to
incorporate predetermined SNP weights in IHT. Our simple and interpretable weighting option allows users
to introduce prior knowledge into sparse projection. Thus, one can favor predictors whose association to the
response is supported by external evidence. Fourth, we present MendelIHT.jl: a scalable, open source, and
user friendly software for IHT in the high performance programming language Julia (6).

3 Model Development

This section sketches our extensions of iterative hard thresholding (IHT).

3.1 IHT Background

IHT was originally formulated for sparse signal reconstruction, which is framed as sparse linear least squares
regression. In classical linear regression, we are given an n× p design matrix X and a corresponding n-
component response vector y. We then postulate that y has mean E(y) = Xβ and that the residual vector y−
Xβ has independent Gaussian components with a common variance. The parameter (regression coefficient)
vector β is estimated by minimizing the sum of squares f (β) = 1

2‖y−Xβ‖2
2. The solution to this problem is

known as the ordinary least squares estimator and can be written explicitly as β̂ = (XtX)−1Xty, provided the
problem is overdetermined (n > p). This paradigm breaks down in the high-dimensional regime n� p, where
the parameter vector β is underdetermined. In the spirit of parsimony, IHT seeks a sparse version of β that
gives a good fit to the data. This is accomplished by minimizing f (β) subject to ‖β‖0 ≤ k for a small value
of k, where ‖ · ‖0 counts the number of nonzero entries of a vector. The optimization problem is formally:

min
1
2
||y−Xβ||22 subject to ||β||0 ≤ k. (3.1)

IHT abandons the explicit formula for β̂ because it fails to respect sparsity and involves the numerically
intractable matrix inverse (XtX)−1.

IHT combines three core ideas. The first is steepest descent. Elementary calculus tells us that the negative
gradient −∇ f (x) is the direction of steepest descent of f (β) at x. First-order optimization methods like IHT
define the next iterate in minimization by the formula βn+1 = βn + snvn, where vn =−∇ f (βn) and sn > 0 is
some optimally chosen step size. In the case of linear regression −∇ f (β) = Xt(y−Xβ). To reduce the error
at each iteration, the optimal step size sn can be selected by minimizing the second-order Taylor expansion

f (βn + snvn)

= f (βn)+ sn∇ f (βn)
tvn +

s2
n

2
vt

nd2 f (βn)vn

= f (βn)− sn‖∇ f (βn)‖2
2 +

s2
n

2
∇ f (βn)

td2 f (βn)∇ f (βn)
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with respect to sn. Here d2 f (β) = XtX is the Hessian matrix of second partial derivatives. Because f (β) is
quadratic, the expansion is exact. Its minimum occurs at the step size

sn =
‖∇ f (βn)‖2

2
∇ f (βn)td2 f (βn)∇ f (βn)

. (3.2)

This formula summarizes the second core idea.

The third component of IHT involves projecting the steepest descent update βn + snvn onto the sparsity
set Sk = {β : ‖β‖0 ≤ k}. The relevant projection operator PSk(β) sets all but the k largest entries of β in
magnitude to 0. In summary, IHT solves problem (3.1) by updating the parameter vector β according to the
recipe:

βn+1 = PSk (βn− sn∇ f (βn))

with the step size given by formula (3.2).

An optional debiasing step can be added to improve parameter estimates. This involves replacing βn+1 by
the exact minimum point of f (β) in the subspace defined by the support { j : βn+1, j 6= 0} of βn+1. Debiasing
is efficient because it solves a low-dimensional problem. Several versions of hard-thresholding algorithms
have been proposed in the signal processing literature. The first of these, NIHT (7), omits debaising. The rest,
HTP(14), GraHTP (47), and CoSaMp (34) offer debiasing.

3.2 IHT for Generalized Linear Models

A generalized linear model (GLM) involves responses y following a natural exponential distribution with
density in the canonical form

f (y | θ ,φ) = exp
[

yθ −b(θ)
a(φ)

+ c(y,φ)
]
,

where y is the data, θ is the natural parameter, φ > 0 is the scale (dispersion), and a(φ), b(θ), and c(y,φ)
are known functions which vary depending on the distribution (13; 30). Simple calculations show that y has
mean µ = b′(θ) and variance σ2 = b′′(θ)a(φ); accordingly, σ2 is a function of µ . Table 1 summarizes the
mean domains and variances of a few common exponential families. Covariates enter GLM modeling through
an inverse link representation µ = g(xtβ), where x is a vector of covariates (predictors) and β is vector of
regression coefficients (parameters). In statistical practice, data arrive as a sample of independent responses
y1, . . . ,ym with different covariate vectors x1, . . . ,xm. To put each predictor on an equal footing, each should
be standardized to have mean 0 and variance 1. Including an additional intercept term is standard practice.

If we assemble a design matrix X by stacking the row vectors xt
i , then we can calculate the loglikelihood,
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Family Mean Domain Var(y) g(s)
Normal R φ 2 1
Poisson [0,∞) µ es

Bernoulli [0,1] µ(1−µ) es

1+es

Gamma [0,∞) µ2φ s−1

Inverse Gaussian [0,∞) µ3φ s−1/2

Negative Binomial [0,∞) µ(µφ +1) es

Table 1: Summary of mean domains and variances for common exponential distributions. In GLM, µ =
g(xtβ) denotes the mean, s = xtβ the linear responses, g is the inverse link function, and φ the dispersion.
Except for the negative binomial, all inverse links are canonical.

score, and expected information (13; 23; 30; 45)

L(β) =
n

∑
i=1

[
yiθi−bi(θi)

ai(φi)
+ c(yi,φi)

]
∇L(β) =

n

∑
i=1

(yi−µi)
g′(xt

iβ)

σ2
i

xi = XtW1(y−µ) (3.3)

J(β) =
n

∑
i=1

1
σ2

i
g′(xt

iβ)
2xixt

i = XtW2X,

where W1 and W2 are two diagonal matrices. The second has positive diagonal entries; they coincide under
the identity inverse link g(s) = s.

In the generalized linear model version of IHT, we maximize L(β ) (equivalent to minimizing f (β) =
−L(β)) and substitute the expected information J(βn) = E[−d2L(βn)] for d2 f (βn) in formula (3.2). This
translates into the following step size in GLM estimation:

sn =
‖∇L(βn)‖2

2
∇L(βn)tJ(βn)∇L(βn)

. (3.4)

This substitution is a key ingredient of our extended IHT. It simplifies computations and guarantees that the
step size is nonnegative.

3.3 Doubly Sparse Projections

The effectiveness of group sparsity in penalized regression has been demonstrated in general (31; 16) and for
GWAS (53) in particular. Group IHT (46) enforces group sparsity but does not enforce within-group sparsity.
In GWAS, model selection is desired within groups as well to pinpoint causal SNPs. Furthermore, one concern
in GWAS is that two causative SNPs can be highly correlated with each other due to linkage disequilibrium
(LD). When sensible group information is available, doubly sparse IHT encourages the detection of causative
yet correlated SNPs while enforcing sparsity within groups. Here we discuss how to carry out a doubly-sparse
projection that enforces both within- and between-group sparsity.

Suppose we divide the SNPs of a study into a collection G of nonoverlapping groups. Given a parameter
vector β and a group g ∈ G, let βg denote the components of β corresponding to the SNPs in g. Now
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suppose we want to select at most j groups and at most λg ∈ Z+ SNPs for each group g. In projecting β, the
component βi is untouched for a selected SNP i. For an unselected SNP, βi is reset to 0. By analogy with
our earlier discussion, we can define a sparsity projection operator Pg(βg) for each group g; Pg(βg) selects
the λg most prominent SNPs in group g. The potential reduction in the squared distance offered by group g
is rg = ‖βg‖2

2−‖Pg(βg)‖2
2. The j selected groups are determined by selecting the j largest values of rg. If

desired, we can set the sparsity level λg for each group high enough so that all SNPs in group g come into play.
Thus, doubly-sparse IHT generalizes group-IHT. In Algorithm 1, we write P(β) for the overall projection with
the component projections Pg(βg) on the j selected groups and projection to zero on the remaining groups.

3.4 Prior weights in IHT

Zhou et al. (53) treat prior weights in penalized GWAS. Before calculating the lasso penalty, they multiply
each component of the parameter vector β by a positive weight wi. We can do the same in IHT before
projection. Thus, instead of projecting the steepest descent step β = βn + snvn, we project the Hadamard
(pointwise) product w◦β of β with a weight vector w. This produces a vector with a sensible support S. The
next iterate βn+1 is defined to have support S and to be equal to βn + snvn on S.

In GWAS, weights can and should be informed by prior biological knowledge. A simple scheme for
choosing nonconstant weights relies on minor allele frequencies. For instance, Zhou et al. (51) assign SNP
i with minor allele frequency pi the weight wi = 1/

√
2pi(1− pi). Giving rare SNPs greater weight in this

fashion is most appropriate for traits under strong negative selection (49; 37). Alternatively, our software
permits users to assign weights geared to specific pathway and gene information.

de Lamare et al. (12) incorporate prior weights into IHT by adding an element-wise logarithm of a weight
vector q before projection. The weight vector q is updated iteratively and requires two additional tuning
constants that in practice are only obtained through cross validation. Our weighting scheme is simpler, more
computationally efficient, and more interpretable.
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3.5 Algorithm Summary

The final algorithm combining doubly sparse projections, prior weight scaling, and debiasing is summarized
in Algorithm 1.

Algorithm 1: Iterative hard-thresholding

Input : Design matrix X, response vector y, membership vector g, weight vector w, max number of
groups j, and overall sparsity projection P(β).

1 Initialize: β ≡ 0.
2 while not converged do
3 Calculate: score = v, Fisher information matrix = J, and step size = s = vt v

vt Jv
4 Ascent direction with scaling: β̃ = w◦ (βn + sv)
5 Project to sparsity: β̃ = P

(
β̃
)
./w (where ./ is elementwise division)

6 while L(β̃)≤ L(βn), backtrack ≤ 5 do
7 s = s/2
8 Redo lines 4 to 5
9 end

10 (Optional) Debias: Let F = supp(β̃), compute β̂ = argmax{β:β restricted to F}L(β)
11 Accept proposal: βn+1 = β̂

12 end
Output: β with j active groups and λg active predictors for group g

4 Results

Readers can reproduce our results by accessing the software, documentation, and Jupyter notebooks at:

https://github.com/OpenMendel/MendelIHT.jl

4.1 Scalability of IHT

To test the scalability of our implementation, we ran IHT on p= 106 SNPs for sample sizes n= 10,000,20,000, ...,120,000
with five independent replicates per n. All simulations rely on a true sparsity level of k = 10. Based on an
Intel-E5-2670 machine with 63GB of RAM and a single 3.3GHz processor, Figure 2 plots the IHT median
CPU time per iteration, median iterations to convergence, and median memory usage under Gaussian, logis-
tic, Poisson, and negative binomial models. The largest matrix simulated here is 30GB in size and can still fit
into our personal computer’s memory. Of course, it is possible to test even larger sample sizes using cloud or
cluster resources, which are often needed in practice.

The formation of the vector µ of predicted values requires only a limited number of nonzero regression
coefficients. Consequently, the computational complexity of this phase of IHT is relatively light. In contrast,
calculation of the Fisher score (gradient) and information (expected negative Hessian) depend on the entire
genotype matrix X. Fortunately, each of the np entries of X can be compressed to 2 bits. Figure 2b and d show
that IHT memory demands beyond storing X never exceeded a few gigabytes. Figure 2a and c show that IHT
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(a) Speed per iteration without debiasing (b) Memory usage without debiasing (c) Median iterations until convergence.

Without debiasing With Debiasing

Normal 4.0 (1.0) 2.0 (0.0)
Logistic 10.0 (5.5) 2.5 (2.25)
Poisson 47.5 (9.75) 33.0 (5.75)
Neg Bin 9.0 (0.25) 15.0 (1.5)

( ) = interquartile range

(d) Speed per iteration with debiasing (e) Memory usage with debiasing

Figure 2: (a, d) Time per iteration scales linearly with data size. Speed is measured for compressed genotype
files. On uncompressed data, all responses are roughly 10 times faster. (b, e) Memory usage scales as ∼ 2np
bits. Note memory for each response are usages in addition to loading the genotype matrix. Uncompressed
data requires 32 times more memory. (c) Debiasing reduces median iterations until convergence for all but
negative binomial regression. Benchmarks were carried out on 106 SNPs and sample sizes ranging from
10,000 to 120,000. Hence, the largest matrix here requires 30GB and can still fit into personal computer
memories.

run time per iteration increases linearly in problem size n. Similarly, we expect increasing p will increase run
time linearly, since the bottleneck of IHT is the matrix-vector multiplication step in computing the gradient,
which scales as O(np). Debiasing increases run time per iteration only slightly. Except for negative binomial
responses, debiasing is effective in reducing the number of iterations required for convergence and hence
overall run time.

4.2 Cross Validation in Model Selection

In actual studies, the true number of genetic predictors ktrue is unknown. This section investigates how q-fold
cross-validation can determine the best model size on simulated data. Under normal, logistic, Poisson, and
negative binomial models, we considered 50 different combinations of X, y, and βtrue with ktrue = 10, n= 5000
samples, and p = 50,000 SNPs fixed in all replicates. Here, ktrue is chosen so that it is closer to our NFBC and
UK Biobank results. On these data sets we conducted 5-fold cross validation across 20 model sizes k ranging
from 1 to 20. Figure 3 plots deviance residuals on the holdout dataset for each of the four GLM responses
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(a) Normal (b) Logistic (c) Poisson (d) Negative Binomial

(e) Normal (f) Logistic (g) Poisson (h) Negative Binomial

Figure 3: Five-fold cross validation results is capable of identifying the true model size ktrue. (a-d) Deviance
residuals of the testing set are minimized when the estimated model size k̂ ≈ ktrue. Each line represents 1
simulation. (e-h) k̂ is narrowly spread around ktrue = 10.

(mean squared error in the case of normal responses) and the best estimate k̂ of ktrue.

Figure 3 shows that ktrue can be effectively recovered by cross validation. In general, prediction error starts
off high where the proposed sparsity level k severely underestimates ktrue and plateaus when ktrue is reached
(Figure 3a-d). Furthermore, the estimated sparsity k̂ for each run is narrowly centered around ktrue = 10
(Figure 3e-f). In fact, |k̂− ktrue| ≤ 4 always holds. When k̂ exceeds ktrue, the estimated regression coefficients
for the false predictors tend to be very small. In other words, IHT is robust to overfitting, in contrast to lasso
penalized regression. We see qualitatively similar results when ktrue is large. This proved to be the case in our
previous paper (22) for Gaussian models with ktrue ∈ {100,200,300}.

4.3 Comparing IHT to Lasso and Marginal Tests in Model Selection

Comparison of the true positive and false positive rates of IHT and its main competitors is revealing. For lasso
regression we use the glmnet implementation of cyclic coordinate descent (15; 43; 44) (v2.0-16 implemented
in R 3.5.2); for marginal testing we use the beta version of MendelGWAS (54). As explained later, Poisson
regression is supplemented by zero-inflated Poisson regression implemented under the pscl (48) (v1.5.2)
package of R. Unfortunately, glmnet does not accommodate negative binomial regression. Because both
glmnet and pscl operate on floating point numbers, we limit our comparisons to small problems with 1000
subjects, 10,000 SNPs, 50 replicates, and k = 10 causal SNPs. IHT performs model selection by 3-fold cross
validation across model sizes ranging from 1 to 50. This range is generous enough to cover the models selected
by lasso regression. We adjust for multiple testing in the marginal case test by applying a p-value cutoff of
5×10−6.

Table 2 demonstrates that IHT achieves the best balance between maximizing true positives and minimiz-
ing false positives. IHT finds more true positives than marginal testing and almost as many as lasso regression.
IHT also finds far fewer false positives than lasso regression. Poisson regression is exceptional in yielding an
excessive number of false positives in marginal testing. A similar but less extreme trend is observed for lasso
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Normal Logistic Poisson Neg Bin
IHT TP 8.84 6.28 7.2 9.0
IHT FP 0.02 0.1 1.28 0.98

Lasso TP 9.52 8.16 9.28 NA
Lasso FP 31.26 45.76 102.24 NA

Marginal TP 7.18 5.76 9.04 (5.94) 5.98
Marginal FP 0.06 0.02 1527.9 (0.0) 0.0

Table 2: IHT achieves the best balance of false positives and true positives compared to lasso and marginal
(single-snp) regression. TP = true positives, FP = false positives. There are k = 10 causal SNPs. Best model
size for IHT and lasso were chosen by cross validation. () = zero-inflated Poisson regression.

regression. The marginal false positive rate is reduced by switching to zero-inflated Poisson regression. This
alternative model is capable of handling overdispersion due an excess of 0 values. Interestingly, IHT rescues
the Poisson model by accurately capturing the simultaneous impact of multiple predictors.

4.4 Reconstruction Quality for GWAS Data

Table 3 demonstrates that IHT estimates show little bias compared to estimates from lasso and marginal
regressions. These trends hold with or without debiasing as described earlier. The proportion of variance
explained is approximately the same in both scenarios. The displayed values are the averaged estimated β ’s,
computed among the SNPs actually found. As expected, lasso estimates show severe shrinkage compared to
IHT. Estimates from marginal tests are severely overestimated, since each SNP are asked to explain more trait
variance than it could. As the magnitude of βtrue falls, IHT estimates show an upward absolute bias, consistent
with the winner’s curse phenomenon. When sample sizes are small, small effect sizes make most predictors
imperceptible amid the random noise. The winner’s curse operates in this regime and cannot be eliminated
by IHT. Lasso’s strong shrinkage overwhelms the bias of the winner’s curse and yields estimates smaller than
true values.

The results displayed in Table 3 reflect n= 5,000 subjects, p= 10,000 SNPs, 100 replicates, and a sparsity
level k fixed at its true value ktrue = 10. The λ value for lasso is chosen by cross validation. To avoid data
sets with monomorphic SNPs, the minimum minor allele frequency (maf) is set at 0.05. For linear, logistic
and Poisson regressions in marginal tests, we first screen for potential SNPs via a score test. Only top SNPs
are used in the more rigorous and more computationally intensive likelihood ratio tests, which gives the beta
estimates. This procedure is described in (54). We ran likelihood ratio tests for all SNPs in the negative
binomial model because the screening procedure is not yet implemented. However, the inflation in parameter
estiamtes are present throughout all marginal tests.

4.5 Correlated Covariates and Doubly Sparse Projections

Next we study how well IHT works on correlated data and whether doubly-sparse projection can enhance
model selection. Table 4 shows that, in the presence of extensive LD, IHT performs reasonably well even
without grouping information. When grouping information is available, group IHT enhances model selection.
The results displayed in Table 4 reflect n = 1,000 samples, p = 10,000 SNPs, and 100 replicates. Each
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βtrue β Normal
IHT β

Logistic
IHT β Poisson

IHT β
NegBin
IHT

.5 .501± .015 .508± .039 .492± .039 .567± .670
.25 .249± .013 .256± .038 .247± .012 .249± .012
.10 .097± .014 .125± .016 .100± .014 .010± .012
.05 .063± .007 .108± .006 .057± .008 .060± .008
βtrue β Normal

lasso β
Logistic
lasso β Poisson

lasso β
NegBin
lasso

.5 .451± .015 .366± .058 .458± .037 NA
.25 .199± .013 .137± .032 .208± .015 NA
.10 .046± .014 .022± .016 .058± .016 NA
.05 .012± .008 .008± .003 .012± .009 NA
βtrue β Normal

marginal β
Logistic
marginal β Poisson

marginal β
NegBin
marginal

.5 .990± .500 .983± .475 .942± .331 .930± .315
.25 .493± .189 .480± .216 .452± .184 .486± .178
.10 .203± .078 * .198± .097 .190± .090
.05 * * .165± .049 .097± .060

Table 3: Comparison of coefficient estimates among IHT, lasso, and marginal regression methods. Displayed
coefficients are average fitted valued± one standard error for the discovered predictors. * = zero true positives
observed on average. NA = glmnet does not support negative binomial lasso regression. There are k = 10
true SNPs.

Ungrouped-IHT Grouped-IHT
TP FP TP FP

Normal 11.1±1.9 3.9±1.9 12.2±2.0 2.8±2.0
Logistic 3.8±1.6 11.2±1.6 7.7±2.2 7.3±2.2
Poisson 11.5±2.2 3.5±2.2 12.4±1.7 2.6±1.7
Neg Bin 11.0±2.1 4.0±2.1 12.4±1.6 2.6±1.6

Table 4: Doubly-sparse IHT enhances model selection on simulated data. TP = true positives, FP = false
positives, ± 1 standard error. There are 15 causal SNPs in 5 groups, each containing k ∈= {1,2, ...5} SNPs.

SNP belongs to 1 of 500 disjoint groups containing 20 SNPs each; j = 5 distinct groups are each assigned
1,2, ...,5 causal SNPs with effect sizes randomly chosen from {−0.2,0.2}. In all there 15 causal SNPs. For
grouped-IHT, we assume perfect group information. That is, groups containing 1 ∼ 5 causative SNPs are
assigned λg ∈ {1,2, ...,5}. The remaining groups are assigned λg = 1. As described in the Methods Section,
the simulated data show LD within each group, with the degree of LD between two SNPs decreasing as their
separation increases. Although the conditions of this simulation are somewhat idealized, they mimic what
might be observed if small genetic regions of whole exome data were used with IHT.

We repeated this examination of doubly sparse projection for the first 30,000 SNPs of the NFBC1966
(36) data for all samples passing the quality control measures outlined in our Methods Section. We arbitrarily
assembled 2 large groups with 2000 SNPs, 5 medium groups with 500 SNPs, and 10 small groups with 100
SNPs, representing genes of different length. The remaining SNPs are lumped into a final group representing
non-coding regions. In all there are 18 groups. Since group assignments are essentially random beyond
choosing neighboring SNPs, this example represents the worse case scenario of a relatively sparse marker
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Ungrouped-IHT Grouped-IHT
TP FP TP FP

Normal 17.0±1.2 2.0±1.2 17.0±1.4 2.1±1.4
Logistic 15.7±1.5 3.3±1.5 15.8±1.6 3.2±1.6
Poisson 17.1±1.3 1.9±1.3 17.0±1.4 2.0±1.4
Neg Bin 17.2±1.5 1.8±1.5 17.0±1.5 2.1±1.5

Table 5: Doubly sparse IHT is comparable to regular IHT on NFBC dataset using arbitrary groups. TP = true
positives, FP = false positives, ± 1 standard error. There are 19 causal SNPs in 18 groups of various size.
Simulation was carried out on the first 30,000 SNPs of the NFBC1966 (36) dataset.

Unweighted-IHT Weighted-IHT
TP FP TP FP

Normal 9.2±0.4 0.8±0.4 9.4±0.5 0.6±0.5
Logistic 7.3±0.6 2.7±0.6 8.0±0.6 2.0±0.6
Poisson 8.0±0.6 2.0±0.6 8.3±0.6 1.7±0.6
Neg Bin 9.2±0.5 0.8±0.5 9.4±0.5 0.6±0.5

Table 6: Weighted IHT enhances model selection. TP = true positives, FP = false positives, ± 1 standard
error. The true number of SNPs is k = 10.

map with undifferentiated SNP groups. We randomly selected 1 large group, 2 medium groups, and 3 small
groups to contain 5, 3, and 2 causal SNPs, respectively. The non-coding region harbors 2 causal SNPs. In
all there are 19 causal SNPs. Effect sizes were randomly chosen to be −0.2 or 0.2. We ran 100 independent
simulation studies under this setup, where the large, medium, small, and non-coding groups are each allowed
5, 3, 2, and 2 active SNPs. The results are displayed in Table 5. We find that even in this worse case scenario
where group information is completely lacking that grouped IHT does no worse than ungrouped IHT.

4.6 Introduction of Prior Weights

This section considers how scaling by prior weights helps in model selection. Table 6 compares weighted
IHT reconstructions with unweighted reconstructions where all weights wi = 1. The weighted version of IHT
consistently finds approximately 10% more true predictors than the unweighted version. Here we simulated
50 replicates involving 1000 subjects, 10,000 uncorrelated variants, and k = 10 true predictors for each GLM.
For the sake of simplicity, we defined a prior weight wi = 2 for about one-tenth of all variants, including the
10 true predictors. For the remaining SNPs the prior weight is wi = 1. These choices reflect a scenario where
one tenth of all genotyped variants fall in a protein coding region, including the 10 true predictors, and where
such variants are twice as likely to influence a trait as those falling in non-coding regions.

4.7 Hypertension GWAS in the UK Biobank

Now we test IHT on the second release of UK Biobank (38) data. This dataset contains ∼ 500,000 samples
and ∼ 800,000 SNPs without imputation. Phenotypes are systolic blood pressure (SBP) and diastolic blood
pressure (DBP), averaged over 4 or fewer readings. To adjust for ancestry and relatedness, we included the
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Figure 4: Manhattan plot comparing a logistic (univariate) GWAS vs logistic IHT on UK Biobank data.
Colored dots are log10 p-values from a logistic GWAS, and the circled dots are SNPs recovered by IHT.

following nongenetic covariates: sex, hospital center, age, age2, BMI, and the top 10 principal components
computed with FlashPCA2 (1). After various quality control procedures as outlined in the Methods section,
the final dataset used in our analysis contains 185,565 samples and 470,228 SNPs. For UK biobank analysis,
we omitted debiasing, prior weighting, and doubly sparse projections.

4.7.1 Stage 2 Hypertension under a Logistic Model

Consistent with the clinical definition for stage 2 hypertension (S2 Hyp) (42), we designated patients as
hypertensive if their SBP ≥ 140mmHG or DBP ≥ 90 mmHG. We ran 5-fold cross validated logistic model
across model sizes k = {1,2, ...,50}. The work load was distributed to 50 computers, each with 5 CPU cores.
Each computer was assigned one model size, and all completed its task within 24 hours. The model size that
minimizes the deviance residuals is k̂ = 39. The selected predictors include the 33 SNPs listed in Table 7 and
6 non-genetic covariates: intercept, sex, age, age2, BMI, and the fifth principal component.

Figure 4, generated by MendelPlots.jl (19), compares univariate logistic GWAS with logistic IHT.
SNPs recovered by IHT are circled in black. Our Github page records the full list of significant SNPs detected
by univariate GWAS. There are 10 SNPs selected by IHT that have a p-value less than 5×10−8; 83 SNPs pass
the threshold in the univariate analysis but remain unselected by IHT. IHT tends to pick the most significant
SNP among a group of SNPs in LD. Table 7 shows 25 SNPs selected by IHT that were previously reported
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SNP Chrom Position β̂ Known?
rs17367504 1 11862778 0.046 (27; 18)
rs757110 2 17418477 -0.025
rs1898841 2 165070207 0.022 (18)
rs1374264 2 164999883 0.020 (18)
rs16998073 4 81184341 -0.048 (27; 18)
rs1173771 4 32815028 0.046 (27; 18)
rs13107325 4 103188709 0.030 (27; 18)
rs72742749 5 32834974 0.029
rs11241955 5 127626884 0.028
rs2072495 5 158296996 -0.027
rs805293 6 31688518 -0.029 (18)
rs2392929 7 106414069 -0.039 (27; 18)
rs73203495 8 11580334 -0.031
rs12258967 10 18727959 0.039 (27; 18)
rs11191580 10 104906211 0.039 (27; 18)
rs2274224 10 96039597 0.036 (18)
rs1530440 10 63524591 0.028 (27; 18)
rs10895001 11 100533021 0.043 (18)
rs2293579 11 47440758 -0.035 (18)
rs2923089 11 10357572 -0.029 (18)
rs762551 11 75041917 -0.027 (18)
rs4548577 11 46998512 0.026
rs2681492 12 90013089 0.030 (27; 18)
rs10849937 12 111792427 0.030 (18)
rs35085068 14 23409909 -0.027 (18)
rs12901664 15 98338524 -0.027
rs7497304 15 91429176 -0.021 (27; 18)
rs2677738 15 91441673 0.021 (18)
rs3744760 17 43195981 -0.043 (18)
rs292445 18 55897720 -0.026
rs167479 19 11526765 0.036 (27; 18)
rs34328549 19 7253184 0.035 (18)
rs16982520 20 57758720 -0.030 (27; 18)

Table 7: UK Biobank GWAS results generated by running IHT on Stage 2 Hypertension (S2 Hyp) under a
logistic model. The SNP ID, chromosome number, position (in basepair), and estimated effect sizes are listed.

to be associated with elevated SBP/DBP (27) or that exhibit genome-wide significance when the same data
are analyzed as an ordinal trait (18). Ordinal univariate GWAS treats the different stages of hypertension as
ordered categories. Ordinal GWAS has higher power than logistic or multinomial GWAS (18). The known
SNPs displayed in Table 7 tend to have larger absolute effect sizes (avg 0.033) than the unknown SNPs (avg
= 0.027). Finally, IHT is able to recover two pairs of highly correlated SNPs: (rs1374264,rs1898841) and
(rs7497304,rs2677738) with pairwise correlations of r1,2 = 0.59 and r3,4 = 0.49.
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SNP Chrom Position β̂ Known?
rs6917603 6 30125050 0.17 (22; 27)
rs9261256 6 30129920 -0.07 (22)
rs9261224 6 30121866 -0.03
rs7120118 11 47242866 -0.03 (22; 36; 27)
rs1532085 15 56470658 -0.04 (22; 36; 27)
rs3764261 16 55550825 -0.05 (22; 36; 27)
rs3852700 16 65829359 -0.03
rs1800961 20 42475778 0.03 (27)

Table 8: NFBC GWAS results generated by running IHT on high density lipoprotein (HDL) phenotype as
a normal response. The SNP ID, chromosome number, position (in basepair), and estimated effect sizes are
listed.

4.8 Cardiovascular GWAS in NFBC1966

We also tested IHT on data from the 1966 Northern Finland Birth Cohort (NFBC1966) (36). Although this
dataset is relatively modest with 5402 participants and 364,590 SNPs, it has two virtues. First, it has been
analyzed multiple times (22; 36; 17), so comparison with earlier analysis is easy. Second, due to a population
bottleneck (28), the participants’ chromosomes exhibit more extensive linkage disequilibrium than is typically
found in less isolated populations. Multiple regression methods, including the lasso, have been criticized for
their inability to deal with the dependence among predictors induced by LD. Therefore this dataset provides
an interesting test case.

4.8.1 High Density Lipoprotein (HDL) Phenotype as a Normal model

Using IHT we find previously associated SNPs as well as a few new potential associations. We model the
HDL phenotype as normally-distributed and find a best model size k̂ = 9 based on 5-fold cross validation
across model sizes k = {1,2, ...,20}. Without debiasing, the analysis was completed in 2 hours and 4 minutes
with 30 CPU cores on a single machine. Table 8 displays the recovered predictors. SNP rs1800961 was
replaced by rs7499892 with similar effect size if we add the debiasing step in obtaining the final model.

Importantly, IHT is able to simultaneously recover effects for SNPs (1) rs9261224, (2) rs6917603, and (3)
rs6917603 with pairwise correlations of r1,2 = 0.618, r1,3 = 0.984, and r2,3 = 0.62. This result is achieved
without grouping of SNPs, which can further increase association power. Compared with earlier analyses
of these data, we find 3 SNPs that were not listed in our previous IHT paper (22), presumably due to slight
algorithmic modifications. The authors of NFBC (36) found 5 SNPs associated with HDL under SNP-by-
SNP testing. We did not find SNPs rs2167079 and rs255049. To date, rs255049 was replicated (17). SNP
rs2167079 has been reported to be associated with an unrelated phenotype (33). If we repeat the analysis
with HDL dichotomized into low and high HDL using a cutpoint of 60ml/DL, then we identify the 5 SNPs
rs9261224, rs6917603, rs9261256, rs3764261, and rs9898058; all but one of these, SNP rs9898058, is also
found under the continuous model. This SNP is not replicated in previous studies. As in the continuous model,
rs6917603 has the largest effect of all the selected SNPs. Readers interested in the full result can visit our
Github site.
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4.8.2 Low Density Lipoprotein (LDL) as a Binary Response

Unfortunately we did not have access to any qualitative phenotypes for this cohort, so for purposes of il-
lustration, we fit a logistic regression model to a derived dichotomous phenotype, high versus low levels of
Low Density Lipoprotein (LDL). The original data are continuous, so we choose 145 mg/dL, the midpoint
(42) between the borderline-high and high LDL cholesterol categories, to separate the two categories. This
dichotomization resulted in 932 cases (high LDL) and 3961 controls (low LDL). Under 5-fold cross validation
without debiasing across model sizes k = {1,2, ...,20}, we find k̂ = 3. Using 30 CPU cores, our algorithm
finishes in 1 hours and 7 minutes.

Despite the loss of information inherent in dichotomization, our results are comparable to the prior results
under a normal model for the original quantitative LDL phenotype. Our final model still recovers two SNP
predictors with and without debiasing (Table 8). We miss all but one of the SNPs that the NFBC analysis
found to be associated with LDL treated as a quantitative trait. Notably we again find an association with SNP
rs6917603 that they did not report.

5 Discussion

Multiple regression methods like iterative hard thresholding provide a principled way of model fitting and
variable selection. With increasing computing power and better software, multiple regression methods are
likely to prevail over univariate methods. This paper introduces a scalable implementation of iterative hard
thresholding for generalized linear models. Because lasso regression can handle group and prior weights, we
have also extended IHT to incorporate such prior knowledge. When it is available, enhanced IHT outperforms
standard IHT. Given its sharper parameter estimates and more robust model selection, IHT is clearly superior
to lasso selection or marginal association testing in GWAS.

Our real data analyses and simulation studies suggest that IHT can (a) recover highly correlated SNPs, (b)
avoid over-fitting, (c) deliver better true positive and false positive rates than either marginal testing or lasso
regression, (d) recover unbiased regression coefficients, and (e) exploit prior information and group-sparsity.
Our Julia implementation of IHT can also exploit parallel computing strategies that scale to biobank-level
data. In our opinion, the time is ripe for the genomics community to embrace multiple regression models as a
supplement to and possibly a replacement of marginal analysis.

Although we focused our attention on GWAS, the potential applications of iterative hard thresholding
reach far beyond gene mapping. Our IHT implementation accepts arbitrary numeric data and is suitable for
a variety of applied statistics problems. Genetics and the broader field of bioinformatics are blessed with
rich, ultra-high dimensional data. IHT is designed to solve such problems. By extending IHT to the realm
of generalized linear models, it becomes possible to fit regression models with more exotic distributions than
the Gaussian distributions implicit in ordinary linear regression. In our view IHT will eventually join and
probably supplant lasso regression as the method of choice in GWAS and other high-dimensional regression
settings.
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6 Methods

6.1 Data Simulation

Our simulations mimic scenarios for a range of rare and common SNPs with or without LD. Unless otherwise
stated, we designate 10 SNPs to be causal with effect sizes of 0.1,0.2, ...,1.0.

To generate independent SNP genotypes, we first sample a minor allele frequency ρ j ∼ Uniform(0,0.5)
for each SNP j. To construct the genotype of person i at SNP j, we then sample from a binomial distribution
with success probability ρ j and two trials. The vector of genotypes (minor allele counts) for person i form row
xt

i of the design matrix X. To generate SNP genotypes with linkage disequilibrium, we divide all SNPs into
blocks of length 20. Within each block, we first sample x1 ∼Bernoulli(0.5). Then we form a single haplotype
block of length 20 by the following Markov chain procedure:

xi+1 =

{
xi with probability p

1− xi with probability 1− p

with default p = 0.75. For each block we form a pool of 20 haplotypes using this procedure, ensuring every
one of the 40 alleles (2 at each SNP) are represented at least once. For each person, the genotype vector in a
block is formed by sampling 2 haplotypes with replacement from the pool and summing the number of minor
alleles at each SNP.

Depending on the simulation, the number of subjects range from 1,000 to 120,000, and the number of
independent SNPs range from 10,000 to 1,000,000. We simulate data under four GLM distributions: normal
(Gaussian), Bernoulli, Poisson, and negative binomial. We generate component yi of the response vector y by
sampling from the corresponding distribution with mean µi = g(xt

iβ), where g is the inverse link function. For
normal models we assume unit variance, and for negative binomial models we assume 10 required failures.
To avoid overflows, we clamp the mean g(xt

iβ) to stay within [−20,20]. (See Ad Hoc Tactics for a detailed
explanation). We apply the canonical link for each distribution, except for the negative binomial, where we
apply the log link.

6.2 Real Data’s Quality Control Procedures

UK Biobank. Following the UK biobank’s own quality control procedures, we first filtered all samples
for sex discordance and high heterozygosity/missingness. Second, we included only people of European
ancestry and excluded first and second-degree relatives based on empiric kinship coefficients. Third, we also
excluded people who had taken hypertension related medications at baseline. Finally, we only included people
with ≥ 98% genotyping success rate over all chromosomes and SNPs with ≥ 99% genotyping success rate.
Calculation of kinship coefficients and filtering were carried out via the OpenMendel modules SnpArrays
(52). Remaining missing genotypes were imputed using modal genotypes at each SNP. After these quality
control procedures, our UK biobank data is the same data that was used in (18).

Northern Finland Birth Cohort. We imputed missing genotypes with Mendel (24). Following (22), we
excluded subjects with missing phenotypes, fasting subjects, and subjects on diabetes medication. We con-
ducted quality control measures using the OpenMendel module SnpArrays (52). Based on these measures,
we excluded SNPs with minor allele frequency ≤ 0.01 and Hardy Weinberg equilibrium p-values ≤ 10−5. As
for non-genetic predictors, we included sex (the sexOCPG factor defined in (36)) as well as the first 2 principal
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components of the genotype matrix computed via PLINK 2.0 alpha (11). To put predictors, genetic and
non-genetic, on an equal footing, we standardized all predictors to have mean zero and unit variance.

6.3 Linear Algebra with Compressed Genotype Files

The genotype count matrix stores minor allele counts. The PLINK genotype compression protocol (11) com-
pactly stores the corresponding 0’s, 1’s, and 2’s in 2 bits per SNP, achieving a compression ratio of 32:1
compared to storage as floating point numbers. For a sparsity level k model, we use OpenBLAS (a highly
optimized linear algebra library) to compute predicted values. This requires transforming the k pertinent
columns of X into a floating point matrix Xk and multiplying it times the corresponding entries βk of β. The
inverse link is then applied to Xkβk to give the mean vector µ = g(Xkβk). In computing the GLM gradient
(equation 3.3), formation of the vector W1(y−µ) involves no matrix multiplications. Computation of the gra-
dient XtW1(y−µ) is more complicated because the full matrix X can no longer be avoided. Fortunately, the
OpenMendel module SnpArrays (52) can be invoked to perform compressed matrix times vector multiplica-
tion. Calculation of the steplength of IHT requires computation of the quadratic form ∇L(βn)

tXtW2X∇L(βn).
Given the gradient, this computation requires a single compressed matrix times vector multiplication. Finally,
good statistical practice calls for standardizing covariates. To standardize the genotype counts for SNP j, we
estimate its minor allele frequency p j and then substitute the ratio xi j−2p j√

2p j(1−p j)
for the genotype count xi j for

person i at SNP j. This procedure is predicated on a binomial distribution for the count xi j. Our previous paper
(22) shows how to accommodate standardization in the matrix operations of IHT without actually forming or
storing the standardized matrix.

Although multiplication via the OpenMendel module SnpArrays (52) is slower than OpenBLAS multi-
plication on small data sets, it can be as much as 10 times faster on large data sets. OpenBLAS has advantages
in parallelization, but it requires floating point arrays. Once the genotype matrix X exceeds the memory avail-
able in RAM, expensive data swapping between RAM and hard disk memory sets in. This dramatically slows
matrix multiplication. SnpArrays is less vulnerable to this hazard owing to compression. Once compressed
data exceeds RAM, SnpArrays also succumbs to the swapping problem. Current laptop and desktop comput-
ers seldom have more than 32 GB of RAM, so we must resort to cluster or cloud computing when input files
exceed 32 GB.

6.4 Computations Involving Non-genetic Covariates

Non-genetic covariates are stored as double or single precision floating point entries in an n× r design matrix
Z. To accommodate an intercept, the first column should be a vector of 1’s. Let γ denote the r vector
of regression coefficients corresponding to Z. The full design matrix is the block matrix (XZ). Matrix
multiplications involving (XZ) should be carried out via

(XZ)
(
β
γ

)
= Xβ+Zγ and (XZ)t v =

(
Xtv
Ztv

)
.

Adherence to these rules ensures a low memory footprint. Multiplication involving X can be conducted as
previously explained. Multiplication involving Z can revert to BLAS.
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6.5 Parallel Computation

The OpenBLAS library accessed by Julia is inherently parallel. Beyond that we incorporate parallel process-
ing in cross validation. Recall that in q-fold cross validation we separate subjects into q disjoint subsets. We
then fit a training model using q−1 of those subsets on all desired sparsity levels and record the mean-squared
prediction error on the omitted subset. Each of the q subsets serve as the testing set exactly once. Testing error
is averaged across the different folds for each sparsity levels k. The lowest average testing error determines
the recommended sparsity.

MendelIHT.jl offers 2 parallelism strategies in cross validation. Either the q training sets are each loaded
to q different CPUs where each compute and test differ sparsity levels sequentially, or each of the q training
sets are cycled through sequentially and each sparsity parameter is fitted and tested in parallel. The former
tactic requires enough disk space and RAM to store q different training data (where each typically require
(q−1)/q GB of the full data), but offers immense parallel power because one can assign different computers
to handle different sparsity levels. This tactic allows one to fit biobank scale data in less than a day assuming
enough storage space and computers are available. The latter tactic requires cycling through the training sets
sequentially. Since intermediate data can be deleted, the tactic only requires enough disk space and RAM to
store 1 copy of the training set. MendelIHT.jl uses one of Julia’s (6) standard library Distributed.jl to
achieve the aforementioned parallel strategies.

6.6 Ad Hoc Tactics to Prevent Overflows

In Poisson and negative binomial regressions, the inverse link argument exp(xt
iβ) experiences numerical over-

flows when the inner product xt
iβ is too large. In general, we avoid running Poisson regression when response

means are large. In this regime a normal approximation is preferred. As a safety feature, MendelIHT.jl
clamps values of xt

iβ to the interval [−20,20]. Note that penalized regression suffers from the same overflow
catastrophes.

6.7 Convergence and Backtracking

For each proposed IHT step we check whether the objective L(β) increases. When it does not, we step-halve
at most 5 times to restore the ascent property. Convergence is declared when

||βn+1−βn||∞
||βn||∞ +1

< Tolerance,

with the default tolerance being 0.0001. The addition of 1 in the denominator of the convergence criterion
guards against division by 0.

7 Availability of source code

Project name: MendelIHT
Project home page:
https://github.com/OpenMendel/MendelIHT.jl
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Operating systems: Mac OS, Linux, Windows
Programming language: Julia 1.0, 1.2
License: MIT

The code to generate simulated data, as well as their subsequent analysis, are available in our github repos-
itory under figures folder. Project.toml and Manifest.toml files can be used together to instantiate the same
computing environment in our paper. Notably, MendelIHT.jl interfaces with the OpenMendel (54) package
SnpArrays.jl (52) and JuliaStats’s packages Distribution.jl (5) and GLM.jl (25).

8 Availability of supporting data and materials

The Northern Finland Birth Cohort 1966 (NFBC1966) (36) was downloaded from dbGaP under dataset ac-
cession pht002005.v1.p1. UK Biobank data are retrieved under Project ID: 48152 and 15678.
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