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Abstract 29 

Background. Tumors harbor extensive genetic heterogeneity in the form of distinct clone 30 

genotypes that arise over time and across different tissues and regions of a cancer patient. Many 31 

computational methods produce clone phylogenies from population bulk sequencing data 32 

collected from multiple tumor samples. These clone phylogenies are used to infer mutation order 33 

and clone origin times during tumor progression, rendering the selection of the appropriate clonal 34 

deconvolution method quite critical. Surprisingly, absolute and relative accuracies of these 35 

methods in correctly inferring clone phylogenies have not been consistently assessed.  36 

Methods. We evaluated the performance of seven computational methods in producing clone 37 

phylogenies for simulated datasets in which clones were sampled from multiple sectors of a 38 

primary tumor (multi-region) or primary and metastatic tumors in a patient (multi-site). We 39 

assessed the accuracy of tested methods metrics in determining the order of mutations and the 40 

branching pattern within the reconstructed clone phylogenies. 41 

Results. The accuracy of the reconstructed mutation order varied extensively among methods 42 

(9% – 44% error). Methods also varied significantly in reconstructing the topologies of clone 43 

phylogenies, as 24% – 58% of the inferred clone groupings were incorrect. All the tested methods 44 

showed limited ability to identify ancestral clone sequences present in tumor samples correctly. 45 

The occurrence of multiple seeding events among tumor sites during metastatic tumor evolution 46 

hindered deconvolution of clones for all tested methods. 47 

Conclusions. Overall, CloneFinder, MACHINA, and LICHeE showed the highest overall 48 

accuracy, but none of the methods performed well for all simulated datasets and conditions.  49 

 50 

Keywords: Clone phylogeny; bulk sequencing; tumor evolution; mutation order  51 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 19, 2019. ; https://doi.org/10.1101/697318doi: bioRxiv preprint 

https://doi.org/10.1101/697318
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

 

Background 52 

Somatic mutations play a crucial role in cancer progression [1-3]. Early models proposed that 53 

clones with driver mutations sweep through the population, which is called a linear progression of 54 

clone evolution [4]. Now, it is clear that tumors are not monoclonal, and that the clonal evolution 55 

generally follows a branching model (i.e., incomplete clonal sweep) even within a tumor [4-10]. 56 

Similarly, metastatic tumors also follow a branching pattern [11, 12]. Clones found in primary and 57 

metastatic tumors show inter- and intra-tumor evolutionary relationships, which can be 58 

represented by a single-patient clone phylogeny [13-16] (e.g., Fig. 1g and 1h). The reconstruction 59 

and analysis of clone phylogenies have become standard practices in cancer genomics [16-26]. 60 

Clone phylogenies are most often inferred using bulk sequencing data [16, 27-30]. Bulk 61 

sequencing of tumor samples is cost effective and can accurately identify single nucleotide 62 

variants (SNVs) [31, 32]. The resulting data contains SNV frequencies of cancer cell populations 63 

within each tumor sample [27, 33]. Several computational methods have been developed to 64 

decompose these SNV profiles into individual clone genotypes, and to predict clone phylogenies 65 

[13, 34-39]. These clone genotypes and phylogenies are then employed to infer relative ordering 66 

of somatic mutations and to build migration maps of metastatic tumors [40, 41]. 67 

Computational methods for clone prediction and phylogeny inference are operationally 68 

different from each other. PhyloWGS clusters together SNVs at similar frequencies and then 69 

orders them to infer clone genotypes and phylogeny [37]. MACHINA follows a similar process, 70 

but also incorporates a model of cancer cell migration between tumor sites (seeding events) [13]. 71 

LICHeE generates SNV clusters defined by the pattern of presence and absence of SNVs among 72 

tumor samples while considering SNV frequencies [34]. CloneFinder reconstructs ancestral 73 

clones in predicting clone genotypes [35]. Treeomics examines the presence and absence of 74 

SNVs among tumor samples and resolves evolutionarily incompatible patterns when 75 
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decomposing SNV profiles into clone genotypes [36]. Ultimately, all of these methods deconvolute 76 

individual clones from population bulk sequencing of multiple tumor samples acquired over time 77 

and/or different locations in a patient.  78 

Surprisingly, absolute and relative accuracies of clone phylogenies produced by these 79 

computational methods have not been assessed using the same collection of datasets, i.e., their 80 

performances are yet to be benchmarked. Such benchmarking is critical, because of the biological 81 

relevance of the downstream inferences. For example, the accuracies of the order of driver 82 

mutations and the interrelationship of clones depend on the performance of current methods in 83 

accurately deconvoluting individual clone genotypes and reconstructing evolutionary events. No 84 

previous study has evaluated the relative accuracy of clone phylogenetic inferences, as they 85 

focused on introducing and assessing the strengths of the new clone prediction methods [13, 34-86 

39]. Besides, the robustness of these computational methods to the complexity of clonal 87 

structures and the evolutionary histories of clones from different tumor sites is largely unknown.  88 

 Therefore, we evaluated the accuracy of clone phylogenetic inferences by seven clone 89 

prediction methods (Table 1). We used bulk sequencing datasets simulated under various tumor 90 

evolutionary scenarios. Simulated data included small and large numbers of persistent ancestral 91 

clones and metastatic tumors that arise from polyclonal seeding events. Our assessments are 92 

based on simulation studies because correct phylogenies are known, and computer simulation 93 

has emerged as a standard approach for evaluating the performance of statistical methods in 94 

cancer genomics [34, 35, 37, 42]. In this study, we identify and highlight the limitations of methods 95 

that can most accurately infer clone phylogenies.  96 

Results 97 

We analyzed 150 simulated datasets of tumor bulk sequencing data in which the number of tumor 98 

samples ranged from 6 to 11. Tumors and clone sequences were simulated with four distinct 99 
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models of branching evolution (G7, G12, P10, and MA datasets; Fig. 1), and a variety of simulated 100 

clone phylogenies (e.g., Fig. 2). Details of these simulated datasets are described in the Methods 101 

section. We inferred clone phylogenies for each simulated dataset by using seven different 102 

methods (Table 1). We used multiple metrics to assess the accuracy, including those measures 103 

that score the correctness of the order of mutations and the branching order within the 104 

reconstructed clone phylogenies. 105 

Accuracy of ordering mutations 106 

A clone phylogeny can be viewed as a mutational tree [43] in which all the mutations are mapped 107 

along branches (e.g., Fig. 3). Such mutational trees can be used to test whether a pair of 108 

mutations have occurred concurrently, sequentially, or in parallel (Fig. 3). At first, we evaluated 109 

the accuracy of the predicted order of mutations by using the MLTED score; a smaller score 110 

shows greater similarity between the true and inferred mutational tree (see the Methods section 111 

for details). We begin with results for G7 and G12 datasets that were modeled after the predicted 112 

evolutionary histories of two patients (EV005 and RK26, respectively) (Fig. 1a-1d) [35, 44]. Each 113 

tumor sample may contain one or a few evolutionarily closely-related clones, assuming a localized 114 

genetic heterogeneity [4, 6], i.e., migration of cancer cells to another section of a tumor was 115 

assumed to be rare. In total, we obtained 60 simulated datasets (replicates) with 34-89 SNVs per 116 

dataset. G7 datasets contained seven tumor samples per dataset, while G12 datasets contained 117 

eleven samples. For the G7 datasets, all seven methods showed relatively small MLTED scores. 118 

For the G12 datasets, four methods (CloneFinder, MACHINA, Treeomics, and LICHeE) produced 119 

much smaller MLTED scores compared to other three (PhyloWGS, MixPhy, and Cloe) (Fig. 4a).  120 

 The clonal structures of tumors in P10 and MA datasets were more complex than G7 and 121 

G12 datasets. The P10 datasets were composed of a few tumor samples, in which ancestral 122 

clones were present alongside their descendants (Fig. 1e and 1f). The MA datasets were 123 
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generated by simulating the evolution of primary and metastatic tumors. The clonal structure of 124 

metastatic tumors of some MA datasets was evolutionarily complex, as more than one founding 125 

(seeding) clone migrated from another tumor site(s) (e.g., Fig. 1g and 1h). For the P10 and MA 126 

datasets, we found that the MLTED scores of Cloe were higher (worse) than other methods (Fig. 127 

4a). For the MA datasets, MLTED scores of all the methods were generally higher than the other 128 

datasets, and there were large differences among the datasets. Overall, MACHINA and LICHeE 129 

showed slightly better performance than the other methods.  130 

 Next, we evaluated error rates of ordering sequential, concurrent, and parallel mutations 131 

(Fig. 3). We generated all possible pairs of SNVs (mutations) and classified them into these three 132 

possible categories. In each category, we computed the proportion of real mutation pairs that 133 

were not present in the inferred tree, and the proportion of all incorrect mutation pairs. The 134 

average of these two proportions was used to assess the error rate of ordering the given type of 135 

mutations (see the Methods section for details). Sequential and concurrent mutations were 136 

inferred with lower accuracy than the parallel mutations (Table 1), a difference that was greater 137 

for P10 and MA datasets. For example, the error rate of inferring parallel mutations was only 4 – 138 

6% in CloneFinder, MACHINA, Treeomics, and LICHeE analyses for MA datasets, while the error 139 

rates for sequential and concurrent mutations were much higher (12 – 21%). Therefore, 140 

identification of parallel mutations was generally more reliable than classifying sequential or 141 

concurrent mutations.  142 

Accuracy of predicting branching patterns (topology of clone phylogeny)  143 

We next evaluated the accuracy of inferred branching patterns by computing TreeVec and RF 144 

distances (see the Methods section for details). These distances evaluate the errors of clone 145 

groupings in inferred phylogenies. For the G12 datasets (Fig. 4b), CloneFinder, MACHINA, 146 

Treeomics, and LICHeE showed smaller TreeVec distances than the other methods, i.e., these 147 
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methods produce more accurate branching patterns. Cloe generally showed higher TreeVec 148 

distances than other methods. For the G7 datasets, all the methods showed relatively small 149 

TreeVec, and indeed, reconstructed clone phylogenies were quite similar to the correct phylogeny 150 

for these data (Additional file 1: Fig. S1). These patterns are consistent with those based on 151 

MLTED scores (Fig. 4a and Table 1). The results of RF distances were also consistent with 152 

MLTED and TreeVec analyses (Fig. 4c).   153 

Impact of persisting ancestral clones 154 

To better understand factors that cause inference errors, we analyzed the impact of the presence 155 

of ancestral clones in tumor samples on the accuracy of clone inference. We found that fewer 156 

than 50% of the ancestral clones were identified by current methods (Fig. 5). Treeomics analysis 157 

rarely identified ancestral clones, even in datasets containing as many as six ancestral clones, 158 

and MixPhy also performed poorly.  159 

 All tested methods, except for Cloe, performed well in ordering mutations for a dataset 160 

that contained only two ancestral clones (Fig. 6a). However, the accuracy of ordering mutations 161 

declined when datasets contained tumors with a large number of ancestral clones. In these 162 

datasets, CloneFinder, MACHINA, Treeomics, and LICHeE analyses generally had a lower error, 163 

indicating their robustness to the presence of persisting ancestral clones within a dataset.  164 

 For Treeomics, LICHeE, and CloneFinder, the error rate of predicting parallel mutation did 165 

not increase significantly with an increasing number of ancestral clones, but the error rates in 166 

predicting sequential and concurrent mutations increased significantly (Fig. 6a). This is because 167 

the inability to detect ancestral clones would misclassify sequential mutations as concurrent 168 

mutations (e.g., Additional file 1: Fig. S2).   169 
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 Consistent with the ability to predict correct mutation orders, all tested methods (except 170 

for Cloe) showed relatively small TreeVec and RF distances when a dataset contained only two 171 

ancestral clones (Fig. 6b), while CloneFinder, MACHINA, Treeomics, and LICHeE generally 172 

produced smaller TreeVec and RF distances for datasets with larger numbers of ancestral clones. 173 

Overall, no method produced highly accurate clone phylogenies for datasets containing a large 174 

number of ancestral clones. 175 

Impact of polyclonal seeding events during metastatic tumor evolution   176 

The analysis of MA datasets was used to assess the impact of polyclonal seeding of metastatic 177 

tumors on clone phylogeny and mutation orders. These datasets contained primary tumors and 178 

four or six metastatic tumors. Up to four metastatic tumors per dataset evolved with polyclonal 179 

seeding events, i.e., these metastatic tumors were founded by more than one seeding clone. 180 

When a metastatic tumor received more than one seeding clone (polyclonal seeding events), 181 

these tumors contained clones from different evolutionary lineages due to distinct founder 182 

(seeding) clones (e.g., Fig. 1g and 1h). No tested method was able to accurately identify a 183 

majority of clones within multiple-seeded metastatic tumors (Fig. 7a). MACHINA is the only 184 

method that incorporates the metastatic progression model of clone seeding events during its 185 

estimation process, and it did outperform other tested methods when datasets contained the 186 

largest number of multiple-seeding events (Fig. 7a). Overall, the poor performance of all the 187 

methods in inferring clones resulted in higher error rates of ordering mutations and reconstructing 188 

branching patterns (Fig. 7b-7g).  189 

 Even when a MA dataset contained only one polyclonal seeding event in a metastatic 190 

tumor, we observed errors in phylogenetic predictions, mainly caused by unsuccessful inference 191 

of clones’ presence within that metastatic tumor. For example, Figure 8 shows inferred clone 192 

phylogenies for an example dataset (Fig. 1g and 1h) in which a metastatic tumor (M5) 193 
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experienced polyclonal seeding events such that two seeding clones came from two distinct clone 194 

lineages (clone lineage C/D, which contained clone C and D, and lineage M with clone M). All the 195 

methods, including MACHINA, identified only one out of these two clone lineages (lineages C/D 196 

or M), with MACHINA producing two solutions (Fig. 8b and 8c). The first solution contained only 197 

clone C, whereas the second solution contained only clone M. In these MACHINA phylogenies, 198 

these two clones were connected with erroneously long branches (Fig. 1g). Thus, those correct 199 

clones found within the M5 metastatic tumor were convoluted into one clone genotype in the 200 

inferred clone phylogenies. This same type of error was observed in predicted clone phylogenies 201 

generated via other methods (Fig. 8), except for Cloe (which produced phylogenies that 202 

dramatically differed from the true phylogeny). Apart from these errors, the predicted clone 203 

phylogenies were largely similar to the true clone phylogeny, and the branching patterns were 204 

mostly correct (Fig. 1 and Fig. 8). For this example MA dataset, MACHINA, CloneFinder, and 205 

LICHeE produced more accurate clone phylogenies than other methods. For example, 206 

Treeomics, PhyloWGS, and MixPhy produced much smaller phylogenies, as these methods did 207 

not infer many ancestral or highly-similar clones.  208 

 This pattern of errors in inferred clone phylogenies became more acute when a dataset 209 

included many metastatic tumors that evolved with polyclonal seeding events. For example, when 210 

a dataset was composed of four metastatic tumors with polyclonal seeding events, inferred clone 211 

phylogenies contained fewer clones than the true phylogeny (Additional file 1: Fig. S3). The 212 

tested methods tended to predict only one clonal lineage for each of the four metastatic tumors 213 

of this dataset. Note that Cloe produced a phylogeny with little similarity to the true phylogeny. 214 

MACHINA produced 870 solutions for this example dataset, with the best solution (smallest 215 

number of SNV assignment errors per clone) similar to the true phylogeny, and the worst solution 216 

that missed many clonal lineages. Overall, current clone prediction methods cannot reliably 217 

decompose many clones within metastatic tumors with polyclonal seeding events.   218 
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Empirical data analysis 219 

The application of these clone prediction methods to an empirical dataset (A7 dataset from a 220 

previous study [30]) showed results consistent with our analyses of simulated data. The original 221 

study reported that metastatic rib and lung tumors harbored clones from different clonal lineages 222 

(Fig. 9a). The lung tumor contained three different clone lineages, indicating a complicated history 223 

of metastatic tumor evolution. Different methods predicted clone phylogenies that showed limited 224 

similarity to the clone phylogeny reported in the original study (Fig. 9b-9i). MACHINA produced 225 

four similar solutions (Fig. 9b-9e). However, only the predicted evolutionary relationship of clones 226 

from liver and kidney tumors agreed with those reported in the original study [30]. The predicted 227 

clone sharing between lung and brain tumors reported by CloneFinder agreed with the original 228 

study, but the clone phylogeny differed dramatically (Fig. 9f). Treeomics correctly predicted the 229 

evolutionary relationship of clones from the liver, kidney, and rib tumors, but did not predict most 230 

of the ancestral clones (Fig. 9g), a failing that we also observed in our simulation results. 231 

PhyloWGS produced two distinct but highly similar clone phylogenies (Fig. 9h and 9i) that 232 

indicated the presence of three clonal lineages, instead of the two lineages reported in the original 233 

study. LICHeE analyses did not produce a solution. MixPhy produced >400 clones for this dataset, 234 

and Cloe results suggested the unlikely scenario that all predicted clones were present in most of 235 

the samples. Therefore, we anticipate that the application of different computational methods in 236 

actual empirical data analysis will result in widely varying inferences, making it challenging to 237 

reach reliable biological conclusions, when the tumor evolution is highly complex.  238 

 239 

Discussion 240 

Predictions of accurate clone phylogenies are essential to infer the order of driver mutation 241 

occurrences and the evolutionary relationship of clones. We tested the accuracy of published 242 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 19, 2019. ; https://doi.org/10.1101/697318doi: bioRxiv preprint 

https://doi.org/10.1101/697318
http://creativecommons.org/licenses/by-nc-nd/4.0/


11 
 

 

methods in reconstructing clone phylogenies as a first step in identifying the patterns of errors in 243 

clone phylogeny inference, which revealed some useful guidelines for applying computational 244 

methods in practical data analysis.  To begin with, we suggest the use of CloneFinder, MACHINA, 245 

Treeomics, and LICHeE, because they often showed lower error rates of ordering mutations and 246 

inferring phylogenies. All of these methods benefit from the use of intrinsic evolutionary 247 

relationship of tumor clones. The evolutionary information provides resolution beyond inferences 248 

primarily based on the dissimilarities of observed SNV frequencies because low read depth cause 249 

SNV frequencies to have significant variance and clone predictions based on only the similarities 250 

of observed SNV frequencies become error-prone. 251 

 Careful consideration of the input data is strongly recommended before choosing a 252 

method for analyses. First, these clone prediction methods require copy-number-neutral SNVs, 253 

because observed SNV frequencies are affected by copy number alterations (CNAs). SNV 254 

frequencies should be adjusted to eliminate the impact of CNAs.  Notably, Cloe [39] is designed 255 

for the analysis of datasets with CNAs, but it did not perform well for datasets without CNAs.  256 

Also, most methods are known not to be robust to the presence of incorrect SNV 257 

assignments, so one should proceed with extreme caution when analyzing datasets with high 258 

rates of sequence error. For example, LICHeE may fail to produce any inferences on such 259 

datasets or the accuracy may become much lower than other methods (e.g., Treeomics) [35]. 260 

LICHeE failed to produce any results for our example empirical dataset [30]. In general, clone 261 

predictions are expected to become more challenging when the dataset contains CNAs and 262 

sequencing errors. Also, the accuracy of clone phylogeny inference can be adversely impacted 263 

by biological factors (e.g., the impact of strong natural selection). 264 

 Another important consideration in experimental design is the benefit of sequencing a 265 

larger number of tumor samples. The most successful methods in our evaluations use the intrinsic 266 
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evolutionary relationships among tumor samples so a larger sample number can provide more 267 

information to improve clone predictions. All of the methods tested here performed well on 268 

simulated datasets with the largest number of tumor samples (G12 datasets). Although the actual 269 

number of tumor samples preferred depends on the situation, it is clear that one should avoid 270 

datasets generated from only a few samples. Importantly, datasets with a very small number of 271 

samples will underestimate the genetic heterogeneity of a tumor site, and therefore, the use of a 272 

large number of samples per patient is a standard recommendation [6, 45].  273 

 We do not expect any of the currently available methods to be effective in situations where 274 

each tumor sample contains clones from many lineages (if tumors frequently exchange clones). 275 

We have previously documented that CloneFinder will not perform well on such datasets [35]. 276 

Also, our simulation analyses have shown that none of the tested methods perform well when a 277 

mixture of clones from different evolutionary lineages exist within metastatic tumors (multiple 278 

seeding).  279 

 Lastly, we suggest using multiple methods to infer clone phylogenies and examining the 280 

consistency among the results. We found that the best performing methods produced similar 281 

results when inferred clone phylogenies were accurate. When using Treeomics, it is crucial to be 282 

aware that the inferred clone phylogenies will not include most of the ancestral clones. Also, 283 

potential errors on clonal lineage deconvolution can be detected when MACHINA produces at 284 

least two disparate clone phylogenies (e.g., Fig. 8) or when MACHINA produces hundreds of 285 

solutions. In general, the inconsistency of inferred clone phylogenies suggests the influence of 286 

complicated clonal structures within tumors, i.e., a mixture of different lineage clones. Currently, 287 

no method can produce accurate clone phylogenies from such data. Thus, consistency among 288 

inferred phylogenies may be useful to validate inferences.   289 
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 In summary, we can accurately infer clone phylogenies only when tumor evolution 290 

generally tracks clonal evolution, a relationship that is disrupted when tumors exchange clones 291 

reduce the quality of the inferred clone phylogenies. Also, ancestral clones that persist alongside 292 

the descendant clones within a tumor sample are difficult to identify, leading to inaccuracy in the 293 

reconstruction of evolutionary events.  294 

Conclusions 295 

Analyses of correct clone phylogenies are critical to a better understanding of tumor evolution and 296 

the influence of genetic heterogeneity. We recommend clone prediction methods that use the 297 

intrinsic evolutionary relationship of tumor samples (e.g., CloneFinder, MACHINA, TreeOmics, 298 

and LICHeE). The inferences of multiple methods should also be compared to validate 299 

predictions. There is a strong need for more advanced methods that can perform well for datasets 300 

with intermixing of tumor samples. 301 

 302 

Methods 303 

Generation of bulk sequencing data 304 

We analyzed 150 simulated datasets that were available from published studies in which the 305 

accuracy of inferred clone sequences was assessed [13, 35]. Each dataset contained information 306 

on mutant and wild-type read counts (with read counting errors).  307 

G7 and G12 datasets. These datasets contained seven and twelve clones, respectively, modeled 308 

after the predicted evolutionary histories of two patients (EV005 and RK26 [44], respectively) (Fig. 309 

1a-1d) [35]. Each tumor sample may contain one or a few evolutionarily closely-related clones, 310 

assuming a localized genetic heterogeneity due to branching evolution [4, 6]. Thus, the migration 311 
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of cancer cells to another section of a tumor was assumed to be rare in these datasets. In total, 312 

we obtained 60 simulated datasets (replicates) with 34-89 SNVs per dataset.  313 

P10 datasets. In these datasets, various numbers of clones persisted within a sector (sample) of 314 

a tumor after the origin of descendant clones. Ten random clone phylogenies were simulated, 315 

and every tumor sample was populated with one tip clone and its ancestral clones (“localized 316 

sampling process” [34]) (Fig. 1e and 1f). Each of P10 datasets contained 2 – 6 ancestral clones 317 

(30 datasets). A selection of simulated clone phylogenies is shown in Figure 3 of Miura et al. [35]. 318 

MA datasets. These datasets were generated by modeling the evolution of primary and metastatic 319 

tumors (four or seven metastatic tumors per dataset) [13]. Metastatic tumors were founded by 320 

cancer cells (seeding clones) that migrated from another tumor site (primary or another metastatic 321 

tumor). Under a simple metastatic tumor evolution scenario, each metastatic tumor received a 322 

single founder (seeding) clone from another tumor site, and a metastatic tumor contained only 323 

clones that evolved from a single seeding clone. Clonal structures of metastatic tumors became 324 

more complicated when a metastatic tumor was seeded by more than one clone (polyclonal 325 

seeding events). In MA datasets, a metastatic tumor received a maximum of two seeding clones, 326 

and any dataset may contain more than one metastatic tumor with polyclonal seeding events. 327 

Thus, the observed genotypes of these metastatic tumors represented two convoluted clone 328 

lineages, and clone prediction methods were required to correctly identify such tumors and 329 

decompose them into two distinct clone lineages (e.g., Fig. 1g and 1h). Each MA dataset 330 

contained up to four metastatic tumors with polyclonal seeding events. Each clone phylogeny was 331 

unique (60 MA datasets). All the clone phylogenies are shown in figure 2.  332 

Selection of clone prediction methods and parameter settings 333 

We selected clone prediction methods that have performed well in predicting clone genotypes 334 

from observed SNV frequencies or read counts of bulk sequencing data [35]. That is, we excluded 335 
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methods that produce highly incorrect clone genotypes because such clone genotypes do not 336 

produce correct clone phylogenies. By this criterion, we excluded CITUP [46], BayClone2 [47], 337 

Clomial [48], Canopy [49], cloneHD [50], and AncesTree [51] (see Additional file 1: Table S1 for 338 

the average number of SNV assignment errors per clone). We did not include methods that 339 

require prior information of the composition of SNV clusters (e.g., TrAp [52]) or those that require 340 

the use of another software to produce clone genotypes by ordering predicted clusters (e.g., 341 

PyClone [53] and SciClone [54]). Lastly, we did not include methods that were designed for the 342 

analyses of single-cell sequencing data (e.g., SCITE [55] and BEAM [56]), because clone 343 

deconvolution is not necessary for this type of data, while these methods focus on imputing 344 

missing data and minimizing SNV assignment errors in the inference of cell phylogenies [31, 32]. 345 

These considerations resulted in the selection of seven clone prediction methods (Table 1) [13, 346 

34-39]. Each method was used with its default or recommended parameter settings. In MA 347 

datasets, we found many similar clone genotypes, so we used parameter settings that can 348 

differentiate similar clone genotypes. This modification was applied only for LICHeE and 349 

CloneFinder, as only these two methods include options for this purpose. 350 

MACHINA [13]. We used the PMH-TI mode in the MACHINA software, which infers clone 351 

genotypes from read count data. The MACHINA software requires a priori identification of tumor 352 

sites as primary or metastatic for each sample. Since G7, G12, and P10 datasets were simulated 353 

without the consideration of primary and metastatic tumor evolution, we assumed that the primary 354 

tumor contained the root clone (e.g., clone A for G7 and G12 datasets) (Fig. 1a and 1c). When a 355 

root clone was not present in a dataset, we selected the clone that was most closely located to 356 

the root of a simulated phylogeny. For MA datasets, we provided the correct tumor site (primary 357 

or metastatic site, in which distinct metastatic tumor sites were accordingly distinguished) for each 358 

clone sequence that was found. Note that MACHINA often produced a large number of solutions 359 

(>10 solutions per dataset) for G7, G12 and MA datasets. In those cases, we first identified the 360 
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best and worst solutions for each dataset, which were determined based on the average number 361 

of SNV assignment errors per clone. We reported the average error rate (see below) of the best 362 

and worst solutions. 363 

LICHeE [34]. Following the default settings, we set the variant allele frequency (VAF) error margin 364 

the value 0.1. SNVs were considered robustly present in a sample at VAF > 0.005 (robust SNVs), 365 

and the others were considered absent in a sample. SNVs with VAF > 0.6 were excluded. LICHeE 366 

groups SNVs based on the pattern of presence/absence of mutations across the samples and 367 

each SNV group was required to contain at least two robust SNVs. LICHeE also clusters SNVs 368 

by VAF similarities. We required that an SNV cluster contained at least two SNVs unless an SNV 369 

was sample specific. All the SNV groups/clusters were initially kept in the network. Two 370 

groups/clusters could collapse when mean VAF difference was < 0.2.   371 

LICHeE did not produce clonal compositions of samples (i.e., clone frequencies). Thus, we 372 

estimated clone frequencies using the relationship ½f × M = V, where f is a two-dimensional matrix 373 

of estimated clone frequencies of the samples, M is a matrix of predicted clone genotypes, and V 374 

is the observed SNV frequency [33]. The equation above applies to cases where the variants are 375 

free of copy number alterations (CNAs) [33], which is the case for our datasets. We estimated f 376 

through the regression of V to a function of M and f [57]. Clone frequencies were estimated 377 

excluding SNVs with small total read count (<50) and mutant read count (<2), because those 378 

observed SNV frequencies were not reliable. When ancestral clones were predicted to co-exist 379 

with their descendant clones within a sample, we tested if these ancestral clones were spurious. 380 

Between a pair of ancestral and descendant clones, we compared observed SNV frequencies 381 

that are unique to the descendant clone and those shared with the ancestral clone. We used the 382 

expectation of higher observed SNV frequencies on shared (mutations that were found in both 383 

clones) than on unique mutations (mutations that were found in only a descendant clone; t-test) 384 
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to discover the spurious presence of ancestral clones. When the differences between SNV 385 

frequencies were not significant (P > 0.05), the ancestral clones were removed. Also, we 386 

discarded clones present at low frequencies (<2%). 387 

In the analyses of MA datasets, only SNVs with zero SNV frequency were considered to be 388 

robustly absent from a sample, and SNVs with > 0.0001 frequency were considered to be robustly 389 

present in a sample (robust SNVs). All SNVs were examined regardless of their observed 390 

frequency. The minimum number of SNVs per cluster/group was set to one. Two SNV clusters 391 

were collapsed when mean SNV frequency differences were less than 1%. We did not discard 392 

any ancestral clones. 393 

CloneFinder [35]. We estimated clone genotypes using SNVs with at least 50 reference read 394 

counts and two mutant read counts, and we discarded clones when estimated clone frequencies 395 

were < 2%. To analyze MA datasets, we did not combine similar clone genotypes or discard 396 

clones. We used all reads.  397 

Treeomics [36]. We used the option of enabling subclone detection.  398 

PhyloWGS [37]. The fraction of expected reference allele sampling from the reference population 399 

and the variant population were 0.999 and 0.4999, respectively. We set copy number equal to 400 

one (heterozygous mutant allele). As PhyloWGS did not produce clone frequencies, we computed 401 

clone frequencies using the approach described for LICHeE (see above). 402 

Mixed Perfect Phylogeny (MixPhy) [38]. We performed analyses in MixPhy (v0.1) with the option 403 

of a heuristic algorithm. As the input file requires a binary matrix of tumor sample genotypes 404 

(presence/absence of mutation), we provided correct sample genotypes, assuming that there 405 

were no false positive or false negative detections of mutations.  406 
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Cloe [39]. We applied Cloe with 10,000 iterations and 4 MCMC parallel chains at temperatures of 407 

1, 0.9, 0.82, and 0.75. For the posterior evaluation of MCMC sampled trees, the burn-in of MCMC 408 

chains was 0.5, and chain thinning was 4. The maximum number of clones for a dataset was set 409 

to the true clone count. 410 

Evaluation of predicted clone phylogenies 411 

We compared each predicted clone phylogeny with the respective true clone phylogeny by using 412 

the following four metrics.  413 

Multi-labeled tree edit distance (MLTED) [58]. A clone phylogeny is often viewed as a mutational 414 

tree [43] in which all the mutations are mapped along branches. Mutational trees are useful when 415 

the number of tips in the inferred clone phylogeny differs from the true phylogeny and when the 416 

sequences of the inferred clones do not match all the true clones. We used the Multi-labeled Tree 417 

Edit Distance (MLTED score) for comparing the inferred and the true tree, as it has been designed 418 

to evaluate clone trees [58], available at https://github.com/khaled-rahman/MLTED. This 419 

algorithm requires that the inferred tree contains the same set of mutations as in the true tree. 420 

Because of errors in clone sequence predictions, some mutations were not assigned to any 421 

branch in the inferred tree. These mutations were placed at the root of the inferred mutational 422 

tree. 423 

The error rate of ordering mutations. We generated all possible pairs of SNVs (mutations) and 424 

classified them into three possible types, i.e., concurrent, sequential, and parallel (see Fig. 3 for 425 

examples). Concurrent mutations are those that occurred on the same branch (irrespective of 426 

their order), whereas sequential and parallel mutations are those that occurred on different 427 

branches of the clone phylogeny. More specifically, two mutations are sequential if one occurred 428 

on the ancestral branch and the other on its descendant branch, but multiple intervening branches 429 

may separate them. Two mutations are parallel if they are found on sibling lineages that have 430 
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descended from their most recent common ancestor. Any true mutation pair not found in the 431 

inferred tree was classified as “unassigned.”  432 

 We estimate the error rate of ordering concurrent, sequential, and parallel mutations, 433 

separately. In each category, we first scored the number of true mutation pairs that were not 434 

present in the inferred tree and divided it by the total number of true mutation pairs. Then, we 435 

scored the number of mutation pairs that were incorrect and divided it by the total number of 436 

inferred mutation pairs. Then, the average of these two proportions was used as the error rate of 437 

ordering the given type of mutations. Similar measures have been used to evaluate clone 438 

prediction methods in previous studies [34]. 439 

Advanced Tree vector (TreeVec) [59]. We also evaluated the accuracy of branching patterns 440 

(topology) in inferred clone phylogenies (clonal lineage trees [43]). For this purpose, we first 441 

mapped inferred clone genotypes to the true clone genotypes, because inferred clone genotypes 442 

never perfectly match the true clone genotypes. We mapped each inferred clone genotype to its 443 

most similar true clone genotype in a two-step process. First, each true clone genotype was 444 

compared to all the inferred clone genotypes, and the two clones with the smallest difference 445 

were paired. When the number of inferred clones was greater than the number of true clones, the 446 

remaining inferred clones were paired with the most similar true clone genotype. For uniformity, 447 

we reconstructed inferred clone phylogenies by using predicted clone genotypes produced by 448 

each method. Because mutations arose only once in the computer simulated data, the maximum 449 

parsimony analysis was suitable [60] and was performed using MEGA-CC [61]. All the clone 450 

phylogenies were rooted using germline sequences (normal cells) as outgroups. In inferred clone 451 

phylogenies, we labeled tips with clone annotations. When an inferred clone genotype had two 452 

different annotations, we duplicated the genotype in an inferred clone phylogeny, i.e., the 453 
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corresponding tip was duplicated. Also, two inferred clone genotypes might have the same 454 

annotation. In this case, two tips in an inferred clone phylogeny were labeled identically.  455 

 Among various tree distance computation methods for phylogenies [62], we selected the 456 

advanced TreeVec distance developed by Kendall et al. [59], because TreeVec allowed more 457 

than one tip with identical labels. Briefly, TreeVec distance computation first collapsed any 458 

monophyletic clade(s), i.e., a clade with tips that had an identical label. Then, the traditional 459 

TreeVec distance [63] was computed, which counted the number of branches (edges) between 460 

the root and the node of the most recent common ancestor (MRCA) of a pair of clones. For all 461 

pairs of clones, the Euclidean metric between inferred and true counts was computed. We used 462 

the treespace software [64] to compute this advanced TreeVec distance.  463 

Robinson and Foulds (RF) distance [65]. We also computed RF tree distance, because it 464 

is widely applied in the evaluation of species phylogenies. We used PhyloNET software [66] to 465 

count the number of partitions that were common and different between the true and the inferred 466 

phylogeny. The RF distance is the number of differing partitions divided by the total number of 467 

partitions in the two phylogenies. Note that RF distance computation requires that both the 468 

inferred and the true clone phylogenies contain the same number of tips (clones). However, 469 

inferred clone phylogenies may contain more tips than the respective true phylogenies, when 470 

more than one tip is assigned an identical clone annotation (i.e., more than one inferred clone 471 

genotype was similar to a true genotype). When there were too many tips in the inferred tree, we 472 

retained only those tips that showed the highest similarity to the true clone genotypes, such that 473 

each true clone genotype was matched with exactly one inferred genotype.  474 

Empirical data analyses 475 

We obtained an empirical dataset (patient A7 dataset [30]; https://github.com/raphael-476 

group/machina), which contained genotypes for 478 copy-neutral SNVs. This dataset contains 477 
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SNV frequencies of one primary tumor sample (breast) and four metastatic tumors (lung, liver, 478 

rib, and brain), for which clone phylogenies and clonal composition of each sample have been 479 

previously reported [30]. For real data, true clone genotypes are not available, so we annotated 480 

each clone on the inferred phylogeny based on the sample(s) that contained it (Fig. 9a) in order 481 

to compare the reported phylogeny [30] with those inferred by the clone prediction methods listed 482 

in Table 1.  483 

 484 

  485 
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Table 486 

Table 1. Error rates of methods in inferring sequential, parallel, and concurrent mutations. 487 

    Method 

Mutation type CloneFinder MACHINA TreeOmics LICHeE MixPhy PhyloWGS Cloe 

G7 dataset               
 Sequential 4% 7% 5% 17% 9% 15% 10% 
 Parallel 3% 6% 4% 19% 9% 25% 12% 
 Concurrent 2% 4% 10% 20% 10% 13% 14% 
G12 dataset        

 Sequential 1% 7% 6% 5% 38% 37% 44% 
 Parallel 0% 4% 4% 3% 15% 34% 49% 
 Concurrent 1% 5% 12% 0% 0% 27% 62% 
P10 dataset        

 Sequential 10% 15% 11% 7% 17% 21% 32% 
 Parallel 3% 5% 1% 1% 6% 9% 21% 
 Concurrent 11% 17% 13% 10% 11% 13% 47% 
MA dataset        

 Sequential 19% 12% 18% 21% 32% 28% 64% 
 Parallel 5% 4% 6% 5% 7% 11% 21% 
  Concurrent 20% 14% 20% 17% 20% 21% 86% 

  Average 6% 8% 9% 11% 15% 21% 38% 

 488 

Note.- See the Methods section for details about the calculation of error rates.   489 

      490 
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Figures 491 

 492 

Figure 1. Simulated clone phylogenies and tumor composition. (a and b) A phylogeny, and clone 493 

frequencies of seven clones and seven tumor samples (T1-T7) derived from EV005 tree (G7 494 

datasets) [44]. (c and d) A phylogeny and clone frequencies of twelve clones and eleven tumor 495 

samples (T1-T11) derived from RK26 tree (G12 datasets) [44]. (e and f) One of thirty phylogenies 496 

and its tumor composition from P10 datasets [35]. (g and h) One example of MA datasets (out of 497 

the 60) with primary tumor (PSec1 and PSec2) and metastatic tumors (M1-M5) [13]. Note that 498 

tumor purities are 100% for all the samples. 499 
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 500 

Figure 2: Clone phylogenies used for simulating MA datasets. All clone phylogenies were 501 

different. 502 
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 504 

Figure 3: A mutational tree with concurrent (e.g., C and D), sequential (e.g., A and B), and parallel 505 

(e.g., E and F) mutations. Dots depict mutations. Order of mutations on a branch (e.g., C and D) 506 

cannot be determined based on the clone phylogeny alone.  507 
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 509 

Figure. 4. Performance of seven methods measured by (a) MLTED, (b) TreeVec, and (c) RF 510 

distances. MLTEDs show the accuracy of inferred mutation orders, whereas TreeVec and RF the 511 

accuracy of inferred clone phylogenies (small values indicate higher accuracy).  512 
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 514 

Figure 5: The average number of ancestral clones that were identified per dataset for the P10 515 

datasets. We grouped P10 datasets based on the true number of ancestral clones in a dataset. 516 

For each dataset, we counted the number of ancestral clones identified by a clone prediction 517 

method. We then computed the average across the dataset. Dashed lines are the correct count. 518 

Error bars represent standard deviation values. 519 
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 521 

Figure 6: Accuracy of ordering mutations and inferring branching patterns, when a dataset 522 

contained various number of of ancestral clones. P10 datasets were used and were grouped 523 

based on the true ancestral clone count in a dataset. Each point shows the average of tree 524 

distance across the datasets. (a) The average error rate of ordering mutations and MLTED. (b) 525 

RF distances and TreeVec.  Cloe method was excluded because both MLTED scores and 526 

average error rates were very high (Fig. 4 and Table 1). 527 
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 529 

Figure 7: Accuracy of identifying different lineage clones within a tumor for the MA datasets. (a) 530 

The average count of metastatic tumors with polyclonal seeding events that were not predicted. 531 

(b-g) MLTED, error rates of ordering mutations, TreeVec, and RF distances. The x-axis for panels 532 

b-e is the same as those in panels f and g. We excluded Cloe because its MLTED score was 533 

very high, i.e., clone phylogenies were inaccurate.  534 
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 535 

Figure 8. Clone phylogenies inferred by six methods (Cloe method was excluded due to error-536 

prone) on an MA dataset. True clone phylogeny is given in Figure 1g. MACHINA produced two 537 

solutions (b and c). Inferred clones are annotated, and colors correspond to clones in Figure 1g. 538 

All the method produced either clone lineage M or lineage C/D, which were found in the M5 tumor 539 

(Fig. 1h). The first solution of MACHINA (b) produced clone D, and LICHeE produced clones C 540 

and D (e). The other methods produced clone M.   541 
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 543 

Figure 9: Empirical data analysis for the A7 dataset. The color of clones in the phylogeny 544 

corresponds to the location of clones’ samples. (a) Clone phylogeny reported by Hoadley et al. 545 

(2016). (b-i) Inferred clone phylogenies by using (b-e) MACHINA, (f) CloneFInder, (g) Treeomics, 546 

and (h and i) PhyloWGS. MACHINA and PhyloWGS produced more than one phylogeny.  547 

 548 
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