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Single-cell RNA-seq, together with RNA velocity and metabolic labeling, reveals cellular 
states and transitions at unprecedented resolution. Fully exploiting these data, however, 
requires dynamical models capable of predicting cell fate and unveiling the governing 
regulatory mechanisms. Here, we introduce dynamo, an analytical framework that 
reconciles intrinsic splicing and labeling kinetics to estimate absolute RNA velocities, 
reconstructs velocity vector fields that predict future cell fates, and finally employs 
differential geometry analyses to elucidate the underlying regulatory networks. We 
applied dynamo to a wide range of disparate biological processes including prediction of 
future states of differentiating hematopoietic stem cell lineages, deconvolution of 
glucocorticoid responses from orthogonal cell-cycle progression, characterization of 
regulatory networks driving zebrafish pigmentation, and identification of possible routes 
of resistance to SARS-CoV-2 infection. Our work thus represents an important step in 
going from qualitative, metaphorical conceptualizations of differentiation, as exemplified 
by Waddington’s epigenetic landscape, to quantitative and predictive theories. 
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INTRODUCTION 

A hallmark of metazoans is the striking ability of a single zygote to differentiate into a multitude 
of distinct cell types while maintaining the same genomic sequence. To illustrate this process, in 
the 1950s, Waddington introduced the epigenetic landscape, a metaphor in which differentiation 
proceeds like a ball sliding downhill into various valleys (Waddington 1957). In this conception, 
developmental processes are depicted as autonomous and precisely controlled. The epigenetic 
landscape has been used to intuitively explain cell differentiation (Huang et al. 2007), and more 
recently transdifferentiation or reprogramming (Cahan et al. 2014); however, a central goal of 
the field remains to move beyond such a qualitative, metaphorical conceptualization toward 
more quantitative, predictive models. 

Mathematical modeling, especially in conjunction with dynamical systems theories (Brauer and 
Kribs 2015), provides a powerful tool for gaining mechanistic insights into how gene regulatory 
networks (GRNs) control various biological processes, including not only the current cell state 
but also the direction in which it might be headed (Elowitz and Leibler 2000; Alon 2006; Huang 
2012).  In a dynamical systems formalism, one can represent the state of each cell as a vector 
( ) in a multi-dimensional gene expression space in which the elements are the instantaneous 
concentrations of molecules (e.g., copies of mRNAs, proteins, etc. per cell). Ignoring cellular 
stochasticity, the evolution of the cell state over time, or its velocity ( ), is governed by a set 
of ordinary differential equations (ODEs) determined by the underlying GRN, expressed as 

, where  is a function of the instantaneous velocity of cell states. Although some 
efforts have been made to study structure-function relationships among network motifs such as 
the toggle-switch network (Huang et al. 2007) central to cell fate decisions (Fig. 1A), and to 
perform whole-cell simulations of bacteria such as Mycoplasma genitalium and Escherichia coli 
(Karr et al. 2012; Macklin et al. 2020), it remains a grand challenge to reconstruct the vector 
field function representing the time evolution of a genome-wide expression state in complex 
systems such as a mammalian cell from experimental data.  

Recent developments in single-cell genomics have enabled profiling of cell states at 
unprecedented resolution (Macosko et al. 2015; Klein et al. 2015; Cao, O’Day, et al. 2020). 
These advances provide new opportunities to infer the precise time evolution of cell fate 
transitions, in a way fundamentally related to vector field reconstruction. Single-cell profilings, of 
the transcriptome (scRNA-seq) or other genomic features [e.g., chromatin accessibility 
(Cusanovich et al. 2015; Buenrostro et al. 2015)], multi-omics [transcriptomic, proteomic, or 
epigenetic state (Stoeckius et al. 2017)], and spatial transcriptomics [e.g., MERFISH (Chen et 
al. 2015), seqFISH (Lubeck et al. 2014), Slide-seq (Rodriques et al. 2019), and ZipSeq (Hu et 
al. 2020)] provide complementary transcriptomic, epigenetic, multimodal, and spatial information 
about single cells. However, due to the destructive nature of these approaches, it is generally 
impossible to follow the same cell over time. On the other hand, live-cell imaging allows one to 
track the co-expression of a small number of molecular and cellular features (W. Wang et al. 
2020) in many cells over time, but it does not lend itself to visualizing the full transcriptomic 
states.   

Advances in single-cell profiling have fueled the development of computational approaches for 
inferring cellular dynamics from snapshot measurements. Chief among them are pseudotime-
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based methods (Trapnell et al. 2014; Saelens et al. 2019) first developed to infer the order of 
biological progression by learning a graph manifold of single cells based on transcriptome 
similarity. However, pseudotime ordering is limited to the analysis of central trends of biological 
progressions rather than the precise dynamics of individual cells over real time, and it is not 
generally suitable for resolving the directionality of biological processes (Saelens et al. 2019; X. 
Qiu et al. 2020). A second major advance has been the development of RNA velocity, which 
predicts the cell RNA expression states in the near future by explicitly exploring the intrinsic 
splicing kinetics incidentally captured by most scRNA-seq protocols. Efforts have been made to 
extend “RNA velocity” to “protein velocity” (Gorin, Svensson, and Pachter 2020) or non-
stationary states (Bergen et al. 2020). Such methods provide a vantage on the short-term 
evolution of individual cell states, but have intrinsic limitations (see RESULTS and MATERIAL 
AND METHODS) that make it challenging to predict the continuous evolution of historical and 
future states over a long period of time. Recently, several groups have adapted bulk RNA-seq 
based on RNA metabolic labeling to single-cell approaches (Erhard et al. 2019; Hendriks et al. 
2019; Cao, Zhou, et al. 2020; Battich et al. 2020; Q. Qiu et al. 2020). The ensuing ability to 
obtain time-resolved scRNA-seq (tscRNA-seq) provides further qualitative measures of cell 
state and its velocity by distinguishing “new” and “old” RNA molecules in an experimentally 
programmable manner. Thus, these methods in principle provide the data necessary for 
accurate reconstruction of transcriptomic vector fields. However, mathematical models and tools 
for integrating labeling-based tscRNA-seq and splicing-based conventional scRNA-seq 
(cscRNA-seq) toward properly inferring the RNA turnover rates and estimating RNA velocity 
remain undeveloped, as do methods for using such information to construct continuous vector 
fields. Finally, it remains unknown whether it is possible to leverage vector field functions to gain 
quantitative, predictive, and functional understanding of cell state transitions, and if so, how. 
Thus, despite striking advances in single-cell profiling, our ability to fully exploit these 
measurements is limited by the lack of an appropriate analytical framework for interpreting the 
data and guiding future experiments.   

Here, we introduce a comprehensive computational framework for constructing and interpreting 
single-cell transcriptomic vector fields. The framework addresses three challenges. First, by 
integrating RNA metabolic labeling and intrinsic splicing kinetics, we build an inclusive model of 
expression dynamics capable of accurately estimating genome-wide RNA turnover rates, as 
well as absolute RNA velocities. Second, we develop a general algorithm for robustly 
reconstructing the transcriptomic vector field functions from sparse, noisy single-cell 
measurements. Third,  we marry the scalability of machine learning-based vector field 
reconstruction methods with the interpretability of differential geometry analyses, including 
Jacobian, acceleration, and divergence, to gain further biological insights.  

Applications of the newly introduced computational framework to many metabolic labeling–
based scRNA-seq datasets that involve various labeling strategies, demonstrate its 
generalizability and robustness in accurately estimating RNA kinetic rate constants and absolute 
RNA velocities. Our framework permits us to go beyond discrete velocity samples, to a 
continuous vector field function in a high-dimensional gene expression space. We validated the 
vector field trajectory predictions over several days by using clone tracing with DNA barcodes 
and sequential capture of single cells during neutrophil lineage commitment of HL60 cells as 
well as during murine hematopoiesis. Differential geometry analyses further proved to provide 
functional insights into a variety of conventional and metabolic labeling–based scRNA-seq 
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experiments, ranging from zebrafish pigment cell differentiation (Saunders et al. 2019) to murine 
bidirectional transition between ESC pluripotent cells and a 2C-like totipotent state (Q. Qiu et al. 
2020). In addition, we show that our framework facilitates the discovery of potential viral–host 
interactions and mechanisms of resistance to SARS-Cov-2 infections. 

This new framework represents a significant advance from the metaphor of epigenetic 
landscape to a quantitative and predictive theory of the time evolution of single cell 
transcriptomics, applicable to many biological systems/processes and at genome-wide scale. 
We have made the associated computational framework as an open-source software, dynamo, 
available at https://github.com/aristoteleo/dynamo-release. 

RESULTS 

Differential Geometry Analyses of Velocity Vector Fields Yield Quantitative Information about 
Gene Regulation 

In principle, a velocity vector field (Box 1) provides a complete description of the way genes 
regulate each other. While our discussion of the vector field in this study focuses on 
transcriptomic space, vector fields can be generally applicable to other spaces, such as 
proteomic, or metabolic space. As a simple example, consider a two-gene toggle-switch motif 
(Huang et al. 2007) that appears frequently in cell differentiation such as the PU.1/Gata-1 motif 
that controls the bifurcation of hematopoietic progenitors into either the myeloid or erythroid 
lineage (Fig. 1A1). The vector field function for this motif is often formulated as a set of 
deterministic ODEs (i.e., ignoring biological stochasticity) (Fig. 1A1), which model the self-
activation and mutual inhibition between PU.1 and Gata-1, specify the instantaneous velocity of 
a cell at any given expression state, and predict the evolution of the cell state over time (Fig. 
1A2–4). One can further characterize the topology of this vector field in its gene expression 
space with separatrices that divide the space into three attractor basins, each containing a 
stable fixed point (the attractor) corresponding to a stable phenotype (Fig. 1A4). We illustrate 
three representative cells that start from different states of the same attractor basin of attractor 

, each propagating along a trajectory (streamline) defined by the vector field function to settle 
at the same attractor state  (Fig. 1A2–4, Fig. SI1A). By contrast, saddle points are unstable 
fixed points located on sepatrices connecting pairs of attractors. 

Analyses of the vector field can also yield deep insights and help generate hypotheses about 
how genes regulate cell states (Box 1, Fig. 1B, C). For example, the Jacobian can be used to 
investigate the cell state–dependent interactions because it is tightly related to the underlying 
regulatory network. Specifically, the th element  of the Jacobian matrix 
( ,  is the number of genes) indicates the change in the velocity of gene  with respect to 
an increase in expression of gene  at a given cell state , with a positive (or negative) value for 
activating (or inhibitory) regulation (Fig. 1B). Moreover, the maximum of  indicates where 
gene  has the strongest effect (activation or inhibition) on gene  (Fig. 1B, C, Fig. SI1B). In the 
toggle-switch model, the Jacobian analysis correctly identifies self-activation and mutual 
inhibition, with the strongest regulation taking place when  and  are about  (Fig. 1B, C, 
Fig. SI1B).  
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A number of additional differential geometric quantities provide complementary information of 
gene regulation dynamics and cell fate commitment. The acceleration field (Box 1, Fig. 1D) 
reveals gene expression subspaces (i.e., hotspots of cells states) where the velocities change 
dramatically, either in magnitude or direction, due to the alteration of dynamical regulations 
(e.g., the two symmetric regions in the bottom left corner where the expression level of either  
or  increases rapidly). When a cell leaves an unstable state (e.g., a progenitor) and moves 
toward a stable attractor state  (e.g., a mature cell type), its velocity tends to increase before it 
slows down in the attractor state (Fig. 1D). Therefore, it is possible to detect genes that have a 
large value for acceleration (in magnitude) in progenitor states, making key contributions to cell 
fate commitment, long before cells exhibit discernible lineage-specific gene expression 
differences. A related but different quantity is the curvature field (Box 1, Fig. 1D), which reveals 
gene expression hotspots where the velocity changes direction abruptly, e.g., in regions around 
unstable fixed points where one or more genes’ expression changes from induction to 
repression or vice versa (Fig. 1D, see especially the regions of the largest curvature, which 
coincide with the two saddle points). The genes that strongly contribute to the curvature are 
regulatory genes that steer the cell fate. Curl and divergence (Box 1, Fig. SI1C), respectively, 
characterize the infinitesimal rotation of a cell state in the vector field and the local flux exiting 
versus entering an infinitesimal region in the expression space – the “outgoingness”. The 
sources (sinks) of a dynamical system often have strong positive (negative) divergence. Thus, 
divergence of single cells can be used to identify the possible progenitors or terminal cell types 
of a differentiation system. 

The toggle-switch motif illustrates the significance of vector fields and various differential 
geometry analyses in studying the dynamics of a regulatory network. However, such simplified 
motifs are embedded within a complex but unknown genome-wide regulatory network. Thus, 
instead of constructing explicit kinetic functions that require gene interactions to be known as a 
prior, it is desirable to apply machine learning methods to reconstruct the transcriptomic vector 
field functions directly from single-cell measurements. To achieve this overarching goal (Fig. 1E) 
, we need 1) the capability to accurately measure the current gene expression state and some 
local dynamics of cell state, so that we can reliably estimate its velocity vectors; 2) a method 
that can learn the continuous transcriptomic vector field functions from sparse and noisy single-
cell state and velocity measurements; 3) an efficient framework for extracting the differential 
geometry features (e.g., the Jacobian) and relating them to the underlying mechanism of the 
biological system. Once those are met, we also need to demonstrate the generality of our 
method in a set of experimental datasets, as well as to validate our vector field prediction, 
especially the long-term dynamics of cell states, on well-designed experiments. 

An inclusive Model of RNA Labeling and Expression Kinetics Allows Genome-wide Estimation of 
RNA Synthesis and Turnover Rates  
Various types of single-cell transcriptomic profiling data can be used for RNA velocity 
estimation. The original RNA velocity method (La Manno et al. 2018) used incidentally captured 
intron reads from conventional scRNA-seq (cscRNA-seq) data and assumed a universal splicing 
rate constant. Mainly, the kinetics of RNA transcription, splicing, and degradation obey the 
following ODEs: 

, 
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where  and  are the copies of unspliced and spliced RNAs for a particular gene in the cell, and 
, , and  are the respective rate constants for transcriptional, splicing, and degradation  (See 

SUPPLEMENTARY METHODS for a discussion on the rate and rate constant and the units of 
those parameters). Assuming cells with extreme high expressions of unspliced and spliced RNA 
expressions (top right corner of the  phase plane) are at pseudo-steady state ( ), and 
using the substitution ,  can be estimated with a linear regression of cells at steady 
states. Thus, the conventional RNA velocity as defined in the original study (La Manno et al. 
2018) is given by: 

. 
The resultant degradation rate constants and velocities from conventional RNA velocity method 
are therefore relative, and scaled by the gene-specific splicing rate constant  (See MATERIAL 
AND METHODS). We reason that such limitations can be relaxed with scRNA-seq augmented 
with RNA metabolic labeling (time-resolved scRNA-seq or tscRNA-seq), which measures RNA 
turnover dynamics in a controllable, less biased, and time-resolved fashion (See MATERIAL 
AND METHODS). The first tscRNA-seq study, scSLAM-seq (Erhard et al. 2019), introduced a 
new form of RNA velocity, NTR (new to total ratio) velocity, by replacing unspliced and spliced 
counts with new and total RNA to analyze the response of mouse fibroblast cells to 
cytomegalovirus (CMV) infection. However, a comprehensive estimation framework that allows 
genome-wide estimation of RNA synthesis and turnover rates for both cscRNA-seq and 
tscRNA-seq has not yet been established.  

To develop a unified framework for extracting RNA dynamics information from cscRNA-seq and 
tscRNA-seq datasets, we constructed an inclusive model (Fig. 2A) that considers on-off 
switching of promoter state, RNA metabolic labeling (when using tscRNA-seq data), RNA 
splicing and degradation, and even translation and protein degradation when transcriptomic–
proteomic coassay data are available. To account for different data types and experiments, we 
further implement three reduced models: Model 1 considers RNA transcription, splicing and 
degradation, but not RNA metabolic labeling, and is tailored for cscRNA-seq, whereas both 
Models 2 and 3 are tailored for tscRNA-seq with metabolic labeling, with the difference that only 
Model 3 considers RNA splicing (Fig. SI2A).  

When only cscRNA-seq data are available, or when one needs to use splicing data from 
tscRNA-seq experiments (which also capture intrinsic splicing kinetics), dynamo can be used to 
estimate the relative degradation rate constant ( ) and relative spliced RNA velocity (Fig. 
2B, top). The estimation methods built upon Model 1 from Fig. SI2A include both the original 
method (La Manno et al. 2018) and the generalized method of moments (GMM). The GMM, in 
turn, consists of  the stochastic splicing method, which relies on a master equation formulation 
of RNA kinetics (see MATERIAL AND METHODS) and is equivalent to the stochastic method 
developed recently (Bergen et al. 2020), and a new approach, the negative binomial (NB) 
method, which additionally models the gene expression at steady state as a negative binomial 
(NB) distribution, in the same vein as in previous studies (Grün, Kester, and van Oudenaarden 
2014).  
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By comparison, from a tscRNA-seq experiment, one can estimate the absolute kinetic 
parameters ( ) and calculate unspliced, spliced, new, or total RNA velocity, depending on 
the exact labeling strategy and underlying model used (Fig. 2B, bottom). We suggest three 
general labeling strategies, namely one-shot, kinetics/pulse, and degradation/chase 
experiments, which cover most labeling methods in published tscRNA-seq experiments, aimed 
at estimating different RNA kinetic parameters (Fig. 2C). It is possible to extend or combine 
these three general labeling strategies to more complicated labeling schemes, e.g., the fourth 
type in (Fig. 2C), which consists of a time-series of multiple kinetics experiments, or a mixture 
experiment as in scEU-seq study (Battich et al. 2020), in which a variable initial kinetics 
experiment and later accompanying degradation experiment are conducted but kept in a fixed 
time period.  

Estimating the parameters and RNA velocities with labeling data involves some technical 
subtleties, which we took into account when developing the corresponding algorithms tailored 
for each labeling strategy. Overall, we estimate absolute splicing and degradation constants 
( ) by first estimating the degradation rates from labeling data and then the scaled 
degradation rate constant ( ) from splicing data, followed by obtaining a confident 
splicing rate constant  (See MATERIAL AND METHODS and SUPPLEMENTARY 
METHODS for details).  

To demonstrate the effectiveness of our approach, we applied our framework to two previously 
reported datasets: a degradation dataset obtained by scNT-seq of murine ESCs (Q. Qiu et al. 
2020) and a kinetics dataset obtained by scEU-seq of RPE-1 cells (Battich et al. 2020) (Fig. 
2D–I and Fig. SI2B–I). In both datasets, the values of  estimated from the degradation 
experiment, or those from the kinetics experiment using the two-step method (see MATERIAL 
AND METHODS), show no apparent correlation with . This indicates that the universal 
splicing rate  for all genes, as assumed in the original velocity method, does not generally hold 
(Fig. 2D, left and middle). Unsurprisingly, the splicing rates are generally much higher than the 
degradation rates, indicating that splicing kinetics are faster overall than degradation kinetics 
(Fig. SI2B left and middle, C). Still, certain genes have extremely fast degradation rates (Fig. 
SI2B left and middle, C). For example, Slc25a32 degrades quickly, with a half life 
( ) of just 14 minutes, 81 times faster than Ank2 (  of 18.6 hours) (Fig. SI2D). 
Housekeeping genes tend to be spliced quickly and degraded more slowly than other genes 
(Fig. SI2E).   

In the scEU-seq cell-cycle data (Battich et al. 2020), genes with either fast splicing or fast 
degradation rates were enriched in cell-cycle–related pathways (Fig. SI2F). Interestingly, 
splicing and degradation rates of mouse genes are correlated with, but generally higher than, 
those of their human orthologs (Fig. 2D right, Fig. SI 2B right). This result complements the 
conclusion of (Matsuda et al. 2020; Rayon et al. 2020), which was based on a small set of 
human proteins (Battich et al. 2020) that have half-lives roughly twice as long as their mouse 
counterparts. Log-likelihood and R-square values (see MATERIAL AND METHODS) calculated 
based on observed data and estimated values from the curve-fitting and linear regression, 
respectively, confirm that parameter estimations confidently fit the data for the degradation and 
kinetics experiments (Fig. 2E, H, I and Fig. SI2D). In particular, the new and total RNAs show 
the expected strong linear relationship, with slope increasing with the labeling time during the 
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kinetics experiment (Fig. 2E, G–I; see also MATERIAL AND METHODS). Analysis of the 
transcription and degradation rates for the mixture experiment (Battich et al. 2020) (Fig. SI2G–I) 
revealed that the genes with the highest transcription rates are all mitochondrially encoded 
(ATP8, MT-RNR2, ND2, TRMT2B) (Fig. SI2H), likely reflecting a high demand for energy 
production and the presence of multiple copies of the mitochondrial genome in a single cell.  

The spliced RNA velocity reflects splicing and degradation kinetics, whereas labeling-based 
total RNA velocity reflects transcription and degradation kinetics (Fig. 2B, bottom; see also 
MATERIAL AND METHODS). Thus, for a kinetics experiment, we can plot the unspliced/spliced 
velocity on the “phase plane” (La Manno et al. 2018) of spliced and unspliced RNAs, as well as 
the new/total velocity on the “phase plane” of total and new RNAs. For example, the splicing 
rate of HMGB2 is greater than its degradation rate (Fig. 2F, G), and across cells its unspliced 
RNA is less abundant than its spliced RNA (Fig. 2F, G). By contrast, HMGA2 exhibits the 
opposite dynamic: Spliced RNA velocities of both genes are close to zero near the line fitted by 
the steady-state model, and positive above the line (Fig. 2F). The new RNA velocities are 
always non-negative, as the levels of labeled RNAs generally increase during a short labeling 
experiment. In comparison, total RNA velocities do not exhibit any particular structure on the 
total-new RNA phase plane (Fig. 2G). Thus, these results reveal the relationship between the 
ratio of unspliced and spliced RNA levels and the ratio of the splicing and degradation rates, as 
well as some subtleties distinguishing different types of velocities in the phase plane. 

The analysis described above illustrates the generality of our inclusive estimation framework 
across multiple platforms, labeling strategies and biological systems, which also reconciles the 
programmable labeling kinetics and intrinsic splicing kinetics to achieve accurate quantification 
of RNA synthesis and turnover rates, enabling functional biological discoveries.  

RNA Metabolic Labeling Improves Accuracy of RNA Velocity Estimation 

scSLAM-seq studies demonstrated that NTR-velocity outperforms splicing-based RNA velocity 
in revealing the directionality of velocity (Erhard et al. 2019). Reanalysis of those data with 
dynamo yielded good separation of CMV-infected and mock murine fibroblast cells in the 
UMAP space (Fig. 3A). To determine which data type offers more consistent vector flow, and is 
therefore numerically more stable for vector field reconstruction, we use the cosine correlation 
between the velocity vectors of each individual cell and those of its nearest neighbors in the 
PCA space to quantify velocity vector consistency (Fig. 3B). Considering only the scSLAM-seq 
data, velocity vectors were more consistent when using labeling data than when using the 
corresponding splicing data, implying that unbiased measurement of new RNA by RNA 
metabolic labeling is a superior approach because it does not depend on the “mis-priming” of 
introns in conventional scRNA-seq (Fig. 3B). Interestingly, the velocity flow from droplet based 
scRNAseq with 10x Chromium platform was even more consistent than that from the labeling 
data of the scSLAM-seq experiment. Downsampling suggested that this result arose due to the 
improved statistical power gained by using a  much larger number of cells  (~1000 cells in 10x 
vs. ~ 100 cells in the splicing data), and because the PCR-duplicates-removed unique 
molecular identifier (UMI) counts instead of read counts enabled by the 10x Chromium platform 
(Fig. 3B). These analyses suggest that moving forward large-scale, UMI-based metabolic 
labeling datasets will be optimal for velocity analysis and vector field reconstruction.  
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To assess dynamo’s ability to deconvolve orthogonal cellular processes, we analyzed datasets 
from sci-fate in which cell cycle progression and glucocorticoid receptor activation are explored 
(Cao, Zhou, et al. 2020). In that study, Cao et. al also proposed an interesting linkage analysis 
(See DISCUSSION) in which they observed the cell-cycle transition from G1 phase to S phase, 
and then the transition to G2/M phase, as well as the transition from no GR (glucocorticoid 
receptor) response to a high–GR activity state, whereas they did not observe such patterns from 
either splicing-based or NTR-based RNA velocity analysis (Cao, Zhou, et al. 2020). We revisited 
those transitions and performed time-resolved total RNA velocity analysis on combined or 
individual set(s) of cell-cycle and GR response genes detected by the original study. A 
streamline plot of the first two PCA components of the combined analysis (or the UMAP space 
of the separated analysis with only GR-response-related genes) revealed a smooth sequential 
transition from untreated cells at time point 0 to 2, 4, 6, and 8 hours after the initial DEX 
(dexamethasone) treatment, indicating progressive activation of the GR response (Fig. 3C GR 
response, Fig. SI3A). Similarly, an acyclic loop matching the cell-cycle progression from G1 to 
S, from S to G2M, and from M to G1 was revealed from the second two PCA components of the 
combined analysis (or the UMAP space of the separated analysis with only cell-cycle-related 
genes) (Fig. 3C Cell cycle, Fig. SI3A). Interestingly, when projecting cells onto the UMAP 
space, combined analysis revealed both a linear progression of the GR response and a circular 
loop indicative of cell cycle (Fig. 3C combined). Next, we analyzed datasets from the scEU-seq 
study (Battich et al. 2020) and observed a sequential transition from M to M-G1, G1-S, S, G2-M 
for the RPE1-FUCCI cells (shown from left to right in Fig. 3D, left column) as well as a 
bifurcation (Fig. 3D right column) from intestinal stem cells into the secretory lineage of 
enteroendocrine, goblet, and paneth cells (left) and the enterocyte lineage of TA, tuft and 
enterocyte cells (right) for the intestinal organoid data.  

Next, we investigated the mESC dataset from the scNT-seq study (Q. Qiu et al. 2020). We first 
analyzed the mESC degradation experiment and detected a transition from the intermediate cell 
state into either the dominant pluripotent ESCs or rare 2C-like totipotent cells that manifest as a 
tip in the UMAP embedding from our velocity results (Fig. 3E top). We then analyzed the Tet 
1/2/3 triple knockout (TetTKO) dataset. Both splicing-based and labeling-based velocity 
revealed an outgoing flow from the pluripotent ESCs, with a considerable fraction of cells 
moving towards the intermediate and ultimately the 2C-like totipotent cell state in the tip (Fig. 3E 
middle and bottom, F, Fig. SI3B, C). To unify these results, we proposed a bistable switch 
model consisting of ESC pluripotent and 2C-like totipotent cell states (Fig. 3F, G). In wild-type 
cells, the intermediate cell state is an unstable transition state (saddle point) that can 
automatically transition into the totipotent state or the pluripotent state, the latter of which 
occupies the predominant attractor basin. On the other hand, in TetTKO cells, pluripotent cells 
are perturbed, lowering the barrier between the pluripotent and intermediate cell states and 
easing the transition from pluripotent to totipotent cells.  

In summary, these findings reveal an optimal experimental strategy for recovering RNA velocity 
information and demonstrate the generalizability and accuracy of our approach in resolving the 
time-resolved RNA velocity across various single-cell protocols, labeling strategies, and 
biological systems. A similar analysis can be also applied to cscRNA-seq datasets for robust 
RNA velocity analysis (Fig. SI3D–H).  
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Robust Reconstruction of Vector Field Functions of Single Cells 

Proceeding from improved single-cell velocity estimates, we will now describe how to go beyond 
discrete, sparse, and local measures of velocity samples to continuous vector field functions in 
the full gene expression state space. We start with a theoretical discussion of the recoverability 
of vector field functions (See Fig. SI4A and SUPPLEMENTARY METHODS) ((Y. Kim et al. 
2000; Weinreb et al. 2018). Successful reconstruction of the vector field function from 
transcriptomic data depends on whether the input datasets capture sufficient dynamical 
information and whether hidden variables such as proteomic and epigenetic states are 
redundant in specifying cell dynamics. To test this, we examined a dataset (Kimmerling et al. 
2016) in which sisters/cousins from primary activated murine CD8+ T cells were captured and 
measured using a specifically designed microfluidics platform (Fig. SI4B). Because sister or 
cousin cells are generated from the same cell through one or two cell divisions, respectively, 
they should explore the expression space in a similar manner (Fig. SI4C). Indeed, the 
transcriptomic distances between sisters and cousins are both significantly lower than those of 
random cell pairs (Fig. SI4D). Moreover, the distances between transcriptome-wide spliced RNA 
states of cells are highly correlated with those of estimated RNA velocity, and even more so for 
the unspliced RNA states (Fig. SI4E). In addition, cells close in transcriptome state shared 
similar RNA velocity vectors, and neighbor cells that also happened to be sisters or cousins did 
not exhibit higher similarity (Fig. SI4F). These results indicate when hidden variable effects are 
not apparent in the system, as in this case, one may predict velocity  via a vector field function 
 once the the transcriptomic state  is known, namely, . 

To construct the vector field function (Fig. 1A), we adopted a machine learning approach that 
takes advantage of recent advances in vector-valued function approximation to scalably, 
efficiently, and robustly learn the transcriptomic vector field (see Box 2) from noisy and sparse 
samples of single-cell states and velocity estimates (Fig. 4A). The framework employs 
sparseVFC (sparse approximation of Vector Field Consensus) (J. Ma et al. 2013), which uses a 
vector-valued kernel method built on RKHS (reproducing kernel Hilbert space) to learn the 
vector field, which is expressed analytically as a weighted linear combination of a set of vector-
valued kernel basis functions (Fig. 4A Output). The learning process relies on sparse 
approximation to estimate the coefficients (weights) of a selected number of basis functions, 
each associated with a control point, that is often much smaller than the number of data points, 
without loss of accuracy (Fig. 4A Output). With sparse approximation, the vector field 
reconstruction scales linearly with the number of data points in both computational time and 
memory requirements (J. Ma et al. 2013), allowing accurate reconstruction of a high 
dimensional vector field, e.g. in 30 principal components (PCs), using only a few hundred 
control points for more than 100,000 cells in a matter of minutes with a modern workstation. To 
account for the noise and outliers of velocity measurements, sparseVFC relies on an EM 
algorithm to iteratively optimize the set of inliers as well as the optimized coefficient set for 
each basis function corresponding to each control point (Fig. 4A), further improving the 
robustness of vector field reconstruction. With the continuous vector field function, we also 
derived analytical formulas of its Jacobian, acceleration, curvature, divergence, curl, etc. 
Although we used the two-gene system (See below) to illustrate the vector field reconstruction 
procedure, our reconstruction works in either high-dimensional PCA space or lower space after 
nonlinear dimension reduction (like UMAP), or directly in the full gene-expression space. The 
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vector field reconstructed in low-dimensional space can then be projected back to the full 
transcriptomic space for gene-specific velocity and differential geometry analyses.  

To demonstrate the power of the vector field reconstruction, we first tested the efficacy of our 
reconstruction on a simulation dataset with 5000 randomly sampled points on the state space of 
the toggle-switch model introduced in Fig. 1. The estimated streamlines of the reconstructed 
vector field, as well as the fixed points, nullcline, etc., were nearly indistinguishable from the 
analytical ones (Fig. 4B). Moreover, we could accurately recover the Jacobian matrix across the 
state space, although the agreement deteriorated at boundary regions with far fewer sample 
data points (Fig. 4C). The estimated higher-order vector calculus quantities closely matched the 
true analytically computed quantities, but with diminishing consistency (Fig. 4D, E, Fig. SI4G). 
The analytical formulae of vector calculus that we derived provide a tremendous increase in 
speed, enabling analysis that was nearly 1000x faster than highly-optimized state-of-the-art 
numerical approaches such as numdifftools (Fig. SI4H).  

Pseudotime analysis has been routinely used to recover a sequence of events from single-cell 
genomics data, e.g., how progenitor cells differentiate into a terminal cell state (Fig. SI4D). 
Because a vector field function can be decomposed into a gradient or curl part, one can use the 
gradient part to define a scalar potential (canonically defined only for closed physical systems) 
even if the vector field system is open, e.g., a biological system (Ao 2009). Hence, we tested the 
idea of using the scalar potential from a reconstructed vector field through the Hodge 
decomposition as a new type of pseudotime analysis based on a vector field (Maehara and 
Ohkawa 2019). Because this method utilizes velocity fields that consist of the direction and 
magnitude of cell dynamics, it is intrinsically directional and arguably more relevant to real time 
than other pseudotime methods.  As expected, the vector field–based pseudotime revealed a 
smooth cell state transition from states far from attractor states (Fig. 4B bottom). Similar 
analysis for the wild-type and TetTKO murine ESCs further confirmed an automatic transition 
from the intermediate cell states to pluripotent and 2C-like totipotent cell states, as well as an 
increased transition rate from pluripotent cells to the intermediate and 2C-like totipotent cell 
states in TetTKO cells (Fig. SI4I). We further performed vector field reconstruction analysis on a 
variety of published cscRNA-seq datasets, demonstrating the robustness, generalizability of our 
vector field reconstruction as well as the downstream differential geometry analyses (Fig. SI4J–
N).   

Vector Field Trajectory Predictions are Concordant with Sequential Clone Tracing of HL60 
Neutrophil Lineage Commitment and Murine Hematopoiesis  

Once a vector field is learned, one immediate application is to predict the historical or future 
state of a cell in a manner analogous to Newtonian mechanics, i.e., if one knows the position of 
a cell in the state space and the function of the state evolution, one can predict where it is and 
how fast it is moving through the state space, here the gene expression space, at any point in 
time (SUPPLEMENTARY ANIMATION). We tested the accuracy and limitation of this prediction 
by comparing the single-cell trajectory prediction with gene expression in clonal cells (cells 
arising from the same progenitor through cell division) measured sequentially, which 
approximates the dynamics of a single cell over time (Fig. 5A). 
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To validate single-cell trajectory prediction, we integrated metabolic labeling based scRNA-seq 
and sequential capture of uniquely barcoded clone cells over time (Fig. 5B). We applied this 
strategy to study ATRA (all-trans-retinoic acid)-induced neutrophil lineage commitment of a 
human leukemia cell line (HL60). To provide a baseline for the differentiation protocol and the 
vector field reconstruction, we also performed a 10x scRNA-seq experiment in which 
differentiation was initialized at different days, so that we could harvest all samples on the same 
day (Fig. 5B). For the tscRNA-seq experiment, we infected cells with the GBC (gene barcode) 
library originally designed for Perturb-seq (Adamson et al. 2016), so that randomly synthesized 
barcode sequences were genomically integrated to barcode cells and each of their 
descendants. Importantly, the DNA barcodes are transcribed so they can be measured during 
scRNA-seq. After infection, cells were rested for 3 days before the neutrophil differentiation 
process was initialized by administration of ATRA. On days 0, 1, 2, 3, and 5, we split the cells 
into two halves: one half was subjected to 4sU labeling, followed by flow sorting of cells with 
barcodes expressing the blue fluorescent protein (BFP) reporter into 96-well plates; the other 
half continued differentiation until the next round of splitting or were collected at the final time 
point for sorting. We then used a protocol modified from scSLAM-seq/NASC-seq (Erhard et al. 
2019; Hendriks et al. 2019) to obtain a tscRNA-seq dataset (see MATERIAL AND METHODS).  

Both of the splicing-based RNA velocities from the 10x and clone-traced tscRNA-seq dataset, 
as well as the labeling-based RNA velocity from the same tscRNA-seq experiment, revealed a 
smooth transition from day 1 to day 5, although as expected it was less smooth in the spliced-
based RNA velocity from the tscRNA-seq experiment (Fig. 5C, Fig. SI5A, B). FACS analysis of 
CD11b (ITGAM) and CD14 revealed that at day 1, > 6% of cells were already CD11b+, whereas 
more than 83% cells were CD11b+ at day 5, indicating that ATRA treatment induces 
differentiation of HL60 cells with high efficacy (Fig. SI5C). The neutrophil markers ITGAM or 
Fut4 were progressively turned on after ATRA treatment, whereas the progenitor markers CD38, 
FGR, and LCP2 were turned off  (Fig. 5D, Fig. SI5A-D).  

We used customized scripts to process the clone barcodes in single cells, first assigning each 
cell to a set of clone barcodes, next removing spurious clonal linkages processed at nearby 
wells on the plate (Fig. 5E), and finally building a “cell linkage” graph (Fig. 5F). In the end, we 
obtained 41 pairs of linkages among 944 cells, of which 6 were same-day linkages (cells that 
are clonally related but appears from the day), 14 were next-day linkages (cells that are clonally 
related but appear from two consecutive days) and 21 were skip-day linkages (cells that are 
clonally related but appear from two different days that are more than one day apart) (Fig. 5F). 
Next, we took cells at earlier time points from confident next-day or skip-day linkages and 
predicted their cell states over time in either the spliced- or labeling-based vector field. We then 
calculated the minimal distance (prediction distance) from clone cells at later time points to the 
vector field–predicted trajectory, and the distance between random cell pairs on the 
corresponding day (random-cell distance). We found that the predicted distances were 
significantly smaller than the random-cell distance (Fig. 5G). These results indicated that our 
vector field could predict cell trajectory reasonably well over several days in the HL60 neutrophil 
differentiation system.  

To further test the general applicability and potential limitations of our vector field trajectory 
predictions, we applied our method to data from a recently published study in which the clonal 
fate of barcoded hematopoietic stem cells (HSCs) was tracked by sequential profiling of the cell 
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population over time (Weinreb et al. 2020). This study includes three major experiments: in vitro, 
cytokine perturbation, and in vivo studies (See SUPPLEMENTARY METHODS). For each 
experiment, although roughly 100,000 cells were sequenced, the sequencing depth was shallow 
(only 600 genes were captured per cell on average). To improve RNA velocity estimation for 
such shallowly sequenced datasets and correct unexpected backward flow, we developed a 
heuristic approach that relies on a gene-wise velocity confidence metric based on the pattern of 
a gene in the phase plane according to broad cell type hierarchy priors [(Fig. SI5E), see more 
discussion in SI]. After removal of genes with less confident velocity estimations, RNA velocity 
flow from dynamo revealed a smooth hierarchical transition from murine HSCs to each of the 
expected lineages in all three experiments (Fig. 5H). The erythroid lineage from the in vivo 
study was still mixed with the wrong backward flow, indicating possible batch effects between 
different animals or possible in vivo micro-environment differences across cells belonging to the 
same clone (i.e., hidden variables). We also applied the same correction approach to another 
study of endothelial to hematopoietic transition (Zhu et al. 2020), and found that it could readily 
correct the backflow from the pre-HE cell type to the HE bottleneck (Fig. SI5E).  

We next used the corrected RNA velocity estimates to reconstruct the vector field and predict 
the fate of individual cells over a long period during hematopoiesis, and to compare the fate with 
the clone barcode information. After estimating the cell fate probability distribution of cells with 
the same clone barcodes on day 6, we found that the majority of clones were biased to a 
specific lineage, whereas a considerable number of clones remained in the undifferentiated 
state even at day 6 (Fig. 5I). Focusing on clones whose day 0 cells were undifferentiated but 
day 6 cells were differentiated, we numerically integrated the trajectories of these cells in the 
vector field based on either the PCA space, or the SPRING embedding from the original study. 
By comparing the distribution of fates assigned by the predicted single-cell trajectories (see 
SUPPLEMENTARY METHOD) to observed cells in each clone and the gold-standard clone 
barcode-based fate distribution, we found that our vector field–based prediction outperformed 
the methods used in the original study (PBA, WOT, and fateID) (Fig. 5J). Our prediction worked 
similarly well across vector fields based on SPRING or PCA space, and just the vector field 
based on only part of undifferentiated and the neutrophil/monocyte cells, as used in the original 
study or the full cell fates of the entire in vitro dataset (Fig. 5J, Fig. SI5F). However, the 
predictions were significantly worse for the cytokine dataset and even more so for the in vivo 
dataset (Fig. SI5F). These results suggested that leveraging both spliced and unspliced data, 
instead of merely total RNA information, allows better predictions of cell state dynamics than 
using only total RNA information, especially in conjunction with our vector field approach. In 
addition, perturbations by cytokines may overshadow intrinsic cell fate dynamics. Lastly, from 
the in vivo experiment, we concluded that the unmeasured environmental cues or other hidden 
variables that each cell experiences makes it questionable to assume a time-invariant vector 
field and to predict cell fates (See SUPPLEMENTARY METHODS).  

To demonstrate the robustness of vector field trajectory prediction, we investigated the velocity 
vectors of two randomly chosen progenitors and its predicted trajectories for the in vitro data on 
the SPRING space. Interestingly, although the velocity vectors of those progenitors pointed in 
the wrong direction, our vector field prediction could still provide the correct cell fate predictions, 
as evidenced by the location of day 6 cells on the SPRING space (Fig. 5K). This may be 
because our vector field reconstruction relies on information from the entire dataset, and thus 
tolerates random noise from the input measurements. Lastly, the minimum distances from clone 
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cells at later time points to the vector field–predicted trajectories were similar to the distances 
between cells from the same clones at later time points but significantly smaller than the 
distances of random cells from the same later time point, again confirming our ability to predict  
predicting single-cell trajectories with vector field functions reasonably well over several days 
(Fig. 5L).  

Together, these results demonstrate that the vector field predictions can reliably predict the 
single cell fate trajectories over several days, allowing us to infer the life history and future fate 
of single cells from transcriptomic data.  

Vector Field Analysis Reveals Topological and Geometric Properties across a Variety of 
Dynamical Processes 

Having demonstrated the validity of single-cell trajectory prediction of the vector field function, 
we next applied differential geometric analyses (Fig. 4A, 6A) to a variety of csc- or tscRNA-seq 
data to reveal predictive information about gene regulation underlying various biological 
processes. In general, we performed differential analyses and gene-set enrichment analyses 
based on top-ranked acceleration or curvature genes, as well as the top-ranked genes with the 
strongest self-interactions, top-ranked regulators/targets, or top-ranked interactions for each 
gene in individual cell types or across all cell types, with either raw or absolute values (Fig. 6A). 
Integrating that ranking information, we can build regulatory networks across different cell types, 
which can then be visualized with ArcPlot, CircosPlot, or other tools (See example of ArcPlot 
and CircosPlot in Fig. 6A). 

For the main demonstration, we chose a high-quality cscRNA-seq dataset of zebrafish post-
embryonic pigment cell differentiation because it involves a multitude of cell states and decision 
points (Saunders et al. 2019). The phase plane of the melanophore cell marker dct exhibited 
both high spliced and unspliced gene expression, as well as strong positive velocity only in 
melanophore cells (Fig. 6B). The RNA velocity on the UMAP embedding revealed a smooth 
transition from proliferating progenitors to pigment progenitors, which then ramified into various 
differentiated cell types (Fig. 6C).  

To further analyze the cell fate transitions during pigment cell differentiation, we learned the 
vector field function (in the top 30 PCA or UMAP space), and then characterized the topological 
structure of the 2D UMAP vector field (Fig. 6D). We identified a number of fixed points with 
varying stability, with half circles indicating saddle points and full circles indicating stable fixed 
points (see MATERIAL AND METHODS). Node 6 is an emitting fixed point representing a 
destabilized progenitor state, whereas nodes 44, 70, 72, and 14 are absorbing (i.e., stable) fixed 
points corresponding respectively to the iridophore, melanophore, and xanthophore terminal cell 
types and a cell type not identified in the original study. Lastly, nodes 20 and 29 are unstable 
fixed points (saddle points) corresponding to the bifurcation point of the iridophore and 
melanophore lineages or that of the neuron and satellite glia lineages. The vector-field-based 
pseudotime (Fig. 6E, F) revealed that the progenitor marker mitfa, melanophores markers, dct 
and tryp1b, and iridophore marker alx4b all processively turned off or switched on along 
pseudotime, as expected.  
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Differential geometry analyses provided complementary and in-depth mechanistic insights about 
pigment cell differentiation (Fig. 6G). Analyses of cell speed (the length of velocity vectors) and 
acceleration magnitude (the length of acceleration vectors) revealed that progenitors generally 
have low speed, reflecting a metastable cell state, whereas transitions of pigment progenitors 
and proliferating progenitors speed up when committing to a particular lineage, e.g., iridophore/
melanophore/Schwann lineage, etc. Cell divergence analysis indicated that those pigment 
progenitors and proliferating progenitors function as sources with high positive divergence, 
whereas differentiated cell types such as melanophores, iridophores, chromaffin, and Schwann 
cells function as sinks with strong negative divergence. Analysis of cell curvature magnitude 
(length of the curvature vectors), which measures the deviation of a single cell’s trajectory from 
being straight in the gene expression space at any point on this trajectory, revealed that large 
curvature emerges when a cell makes a fate decision (e.g., at the bifurcation point of the 
iridophore and melanophore lineages or of the neuron and satellite glia lineages).  

Differential geometry analyses also lead to functional predictions. Genes with the highest 
acceleration in early progenitors tended to be highly expressed in terminal cell types (Fig. 6G). 
Interestingly, the top-ranked genes with the highest absolute acceleration from the previously 
unknown cell type were enriched in chondrocyte-related pathways, indicative of a potential 
chondrocytic origin (Fig. 6H). Furthermore, Jacobian analysis revealed potential regulation of 
the chondrocyte marker slc36c2 by the pigment regulator erbb3, consistent with previous 
reports that EGFR (erbb3) signaling is critical for maintaining the chondrocyte lineage (Fisher et 
al. 2007). In addition, this analysis revealed a strong connection between chondrocyte-specific 
markers col6a3 col6a, col6a2, and vwa1 (Fig. 6I). In iridophore cells, pnp4a, fhl12a, crip2, etc., 
are hub regulators (Fig. 6J first row, left), and pnp4a was potentially activated by tfec in the 
progenitors of iridophore lineage (Fig. 6J first row, middle) (Petratou et al. 2021), with possible 
repression occurring when tfec expression level was high in the mature iridophore cells (Fig. 6J 
first row, right).  

Next, we extended our Jacobian analysis to other cell types or other published tsc- or cscRNA-
seq datasets in order to identify key regulators and cell type (state)-specific regulatory networks 
(Fig. 6J, Fig. SI6A–G). In the cell-cycle-related vector field analysis of the sci-fate dataset, we 
found that the cell cycle-related gene MT2A (Lim et al. 2009) is a hub regulator whose 
expression is potentially repressed by TOP2A at the S stage when TOP2A expression is high 
(Fig. 6J second row). Furthermore, based on datasets from either the sci-fate or the scEU-seq 
study, E2F7 appears to repress BRCA1 expression around the G1-S stage (Fig. SI6D, F) 
(Westendorp et al. 2012). For the GR response-related vector field analysis of the sci-fate 
dataset, we found that the GR response-related gene SERPINE1 is a hub gene whose 
expression is potentially activated by JUNB (Sundqvist et al. 2018), especially at the later time 
points of the GR response, although this activation saturates when JUNB expression is high 
(Fig. 6J third row, right). Strong putative repression from GTF2IRD1 to CEBPB was also 
observed at a later stage of the GR response (Fig. SI6E). Our Jacobian analysis formally 
validated that there were no strong interactions between the cell-cycle progression and GR 
response in the sci-fate dataset, although there were strong interactions among cell cycle–
related components (Fig. SI6A-C). For the intestinal organoid dataset, we found that Lgals4, 
Dmbt1, Krt8, etc., are hub genes of the Jacobian-based regulatory network (Fig. 6J fourth row, 
right). Alphi also appears to repress the intestinal stem cell marker Lgr5 (Clevers 2017) when 
expressed at a low level, but starts to activate Lgr5 expression at moderate expression, 
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ultimately saturating when Alphi expression is high. From the mESC dataset, we found that the 
heat shock gene Hsp90b1 is a hub gene of the mESC-specific regulatory network. Hsp90b1 
appears to weakly activate Smc4 (Fig. 6J fifth row) (Bradley et al. 2012). Finally, analyses of a 
pancreatic endocrinogenesis dataset (Bastidas-Ponce et al. 2019) (Fig. SI6G) revealed 
differentiation dynamics and key gene interactions. The acceleration and divergence accurately 
highlight hotspots, including a saddle point in ductal cells (negative divergence), exit from this 
state to early endocrine progenitors (high positive acceleration), the bifurcation point for late 
progenitors to differentiate into stable cell types (high acceleration and positive divergence), and 
stable cell types (negative divergence). Jacobian analyses of several key genes agreed with 
previous experimental findings: 1) Ngn3 activates Pax4 in progenitors to initiate pancreatic 
endocrinogenesis (Arda, Benitez, and Kim 2013), 2) the toggle switch formed by the mutual 
inhibition between Pax4 and Arx at the bifurcation point (Arda, Benitez, and Kim 2013), and 3) 
the activation of Ins2 in beta cells by Pdx1 (Arda, Benitez, and Kim 2013). 

Our extensive analyses demonstrate that vector field reconstruction and differential geometric 
analysis enable quantitative discovery of regulatory mechanisms across various single-cell 
technologies, conditions, and biological systems.  

Vector Field Analyses Reveal Potential Host-virus Interaction and Resistance Mechanism of 
SARS-CoV-2 Infection  

The ongoing COVID-19 (coronavirus disease 2019) pandemic, resulting from infection with 
SARS-CoV-2 (severe acute respiratory syndrome coronavirus 2), has prompted intense interest 
in the mechanisms of host-virus interactions and host resistance to viral infection. We wondered 
whether the vector field analysis we developed provides insights into the pathogenicity of 
SARS-CoV-2. To explore this possibility, we reanalyzed data from a study that investigated the 
single-cell response of SARS-CoV-1/2 infection in the permissive human epithelial cell line 
Calu-3 (Emanuel et al. 2020). Our analysis of the scRNA-seq data confirmed previous reports of 
transient early interferon signaling followed by a secondary nuclear factor-kappa B (NF-kB) 
response in cells infected by either virus, with SARS-CoV-2 triggering a stronger response (Fig. 
SI7A-F). Our vector field analysis also revealed host genes (NFKB1A, HSP90AA1, PLAU, etc.) 
and pathways (viral gene expression and interferon-gamma related pathways, etc.) related to 
virus infection in a time-dependent manner (Fig. SI7G-J). 

The SARS-CoV-2 virus does not have introns. Hence, to detect putative interactions between 
host and virus genes, we designed a strategy for estimating viral RNA velocity by treating the 
3’UTR level as the “unspliced RNA” for all viral genes, and the amount of each viral gene as 
“spliced RNA” (See MATERIAL AND METHODS). Using this approach, we observed typical 
activation patterns as seen in regular RNA velocity phase plots for both structural (Fig. 7A, B) 
and nonstructural genes (Fig. SI7K). With the reconstructed composite host–virus vector field, 
we next investigated the top-ranked “regulators” and “effectors” from the host genome for each 
viral gene across time (Table SI1). We identified LSM8, RAB21, RBPJ (TNFSF10, NFKBIA, 
PARP14) as the top negative (positive) regulators (effectors) shared by viral genes in cells that 
are infected by SARS-CoV-2 for 12 hours (12-h cells) (Fig. 7C, Fig. SI7L). By compiling the top 
regulators and effectors of each viral gene/feature, we built networks of interactions between 
host and virus genes at each time point (Fig. 7D, Fig. SI7M, Table SI1). The majority of those 
genes were reported previously to be associated with SARS-CoV-2 infection (Fig. 7E, Fig. 
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SI7M, Table SI1). For example, the MX1 antiviral effector is activated after SARS-CoV-2 
infection (Bizzotto et al. 2020), and the ADP-ribose binding sites of14 of PARP share sequence 
homology with SARS-CoV-2 ADRP (Webb and Saad 2020). Enriched GO terms for those genes 
were associated with viral life cycle, regulation of tumor necrosis factor secretion, response to 
cytokines, etc. (Fig. 7E, Fig. SI7N). Those results collectively support the validity of our 
approach for identifying interactions between host and virus genes.  

SARS-CoV-2 infected cells exhibited considerable heterogeneity in their temporal dynamics, 
with some 12-h cells exhibiting delayed expression of viral genes (i.e., they were resistant to 
viral infection) (Fig. SI7A middle). We hypothesize that such resistant cells with moderate viral 
infection should exhibit an overall lower acceleration for transcriptomic RNA, but higher 
acceleration of antiviral genes, than non-resistant cells. Intuitively, one may make an analogy 
that the virus is the force that changes the global transcriptome of the host cell (i.e., 
transcriptome velocity), whereas the antiviral and immunological response of host cells provide 
friction against the virus infection by attenuating the change in the transcriptome velocity 
vectors. We first identified a group of 12-h cells with viral loading >30% of its maximum and with 
global acceleration magnitudes larger than those of most other 12-h cells (Fig. 7F). On the 
UMAP embedding, those cells are far away from most other 12-h cells and interestingly locate 
to a gap in UMAP space near 4h cells (Fig. 7F, Fig. SI7O, P). Genes in these cells with higher 
acceleration values than those in other 12-h cells were enriched in cytokine-mediated or 
interferon-related pathways (Fig. 7G, H). We treated the cells collected at 4 h that were nearest 
neighbors to these putative resistant cells as the possible initial cell states of the latter. These 4-
h cells also exhibited considerably higher expression (Fig. 7I, J) and acceleration (Fig. SI7Q) of 
genes related to antiviral pathways than other 4-h cells. Fig. SI7R provides a plausible 
mechanistic explanation. In infected cells, antiviral responses race against virus proliferation, 
and the responses are likely sigmoidal, a pattern that appears ubiquitously in signal transduction 
and gene regulation (Alon 2019); this is supported by the existence of self-activation among 
antiviral genes (Fig. SI7S). A characteristic of these sigmoidal dynamics is that response time is 
sensitive to the initial conditions, i.e., the basal levels of the antiviral response genes, as much 
of the response time is spent at the initial accumulation stage (Fig. SI7R) (Zhang NPJ Syss 
Biol).  Resistant cells with initially high antiviral-related gene expression can quickly turn on (with 
positive acceleration) and reach a plateau (reflected by close to zero or negative acceleration) 
to block or delay the effects of viral infection and virus accumulation, consistent with the gap 
between the 4-h cells with higher antiviral gene expression/acceleration and other cells, as well 
as the delayed progression of the putative resistant 12-h cells based on the streamline plot (Fig. 
SI7A).  

In summary, our vector field approach allowed us to identify putative host–virus interactions and 
resistance to SARS-CoV-2 infection. Thus, this method has the potential to shed light on the 
mechanisms of many other diseases, including viral infections and cancers. 

DISCUSSION 

In The Strategy of the Genes, Waddington explained the formation of the epigenetic landscape 
using the “guy-rope” model, in which genes and the interactions between them determine the 
topography of the landscape (Waddington 1957). Our vector field framework provides an 
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important mathematical realization of this model, not only revealing the transitions between cell 
states but also providing testable hypotheses regarding the governing mechanism of biological 
processes. 

Our analytical framework consists of three integral stages. First, we estimate genome-wide 
kinetic rate constants and RNA velocity vectors from single-cell data. Next, we use RNA 
abundance as well as velocity vectors to reconstruct the single-cell vector field functions. Finally, 
we apply single-cell differential geometry analyses made possible by the analytical vector field 
function, thereby obtaining biological insights. In the first stage, we explicitly model metabolic 
labeling while integrating it with splicing dynamics in metabolic labeling–based scRNA-seq or 
time-resolved scRNA-seq (tscRNA-seq) data to accurately infer the kinetic parameters 
governing each step in the RNA’s life cycle. Our estimated kinetic rate constants, which are 
more accurate than those obtained using the original RNA velocity method, provided multiple 
functional insights, including the high synthesis rates of mitochondrial genes and the global and 
proportional increase in RNA stability of human genes relative to their mouse orthologs. The 
latter observation expands on recent findings that biochemical reactions, especially protein 
degradation, are consistently slower in human cells than in their mouse counterparts during both 
embryonic segmentation (Matsuda et al. 2020) and motor neuron differentiation (Rayon et al. 
2020). By jointly analyzing intron/exon and labeling information from tscRNA-seq experiments, 
we reconcile the kinetics obtained by metabolic labeling with those obtained with RNA splicing, 
unexpectedly revealing a subset of RNAs with slower splicing than degradation. Because our 
estimation approach implements a universal modeling system, the approach is compatible with 
all existing single-cell RNA metabolic labeling strategies, as well as new labeling protocols that 
may be developed, such as dual labeling with 4sU and 6-thioguanine (6-TG) to directly measure 
RNA acceleration (Kiefer, Schofield, and Simon 2018). This comprehensive approach to 
estimate absolute kinetic parameters will therefore have broad application in RNA biology. 
Finally, the total RNA velocity estimated from tscRNA-seq data using our framework significantly 
improves the consistency of RNA velocity flow between a cell and its neighbors while 
simultaneously providing absolute velocity vector quantification, thereby alleviating the 
limitations of conventional RNA velocity analyses.  

In the second stage, we take the discrete, sparse, and noisy single-cell velocity vectors as input 
to robustly learn a continuous vector field function. Early efforts in pseudotime ordering, which 
recovers central trajectories of cell populations (Trapnell et al. 2014), RNA velocity, which 
estimates local velocity direction of sampled cells (La Manno et al. 2018), and sci-fate, which 
builds linkages that connect the most likely historical and current states sequentially over time 
(Cao, Zhou, et al. 2020), constitute key developments in dynamics inference. However, it has 
taken until now to reconstruct analytical and continuous vector field functions in transcriptomic 
space, as we have described in this work. Our vector field reconstruction takes advantage of the 
power of advanced machine learning (ML) to scalably and accurately learn the vector field 
functions even for datasets with hundreds of thousands of cells (e.g., murine hematopoiesis). 
With the reconstructed continuous vector field function, we can predict the cell states over an 
extended time period in the past or future, as evidenced by our analysis of sequential 
transcriptomic profiling and clone fate tracing for neutrophil differentiation or murine 
hematopoiesis. Our method is also capable of in silico tracing the transcriptomic dynamics of 
cell ensembles over time, which may provide an important complement to live-cell imaging 
(Baker 2010) or lineage tracing (McKenna et al. 2016; Frieda et al. 2017; Chan et al. 2019). 
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In the third stage, we enable the interpretation of our vector field function by applying predictive 
dynamical systems methods and differential geometry analyses that extract regulatory 
information from the vector field function. The differential geometry analyses reveal features, 
including fixed points, Jacobians, acceleration, curvature, and divergence, that are only made 
possible by the reconstructed differentiable vector field functions. These features, in turn, 
provide insights into regulatory mechanisms in various biological processes that are not 
otherwise transparent. For example, in the analysis of the zebrafish dataset, the stable and 
unstable fixed points corresponded to progenitors and terminal cells, respectively; the top-
ranked acceleration genes pointed to a chondrocyte lineage origin that was not apparent from 
total RNA analysis; and the Jacobian analyses revealed a plausible interaction between the the 
pigment cell regulator erbb3 and the chondrocyte marker gene slc35c2. Interestingly, our vector 
field analyses revealed that high initial expression levels of antiviral genes may lead to 
resistance to SARS-CoV-2 virus infection, reflecting the nonlinear dynamics nature of the innate 
immune responses. These findings in disparate systems point to our framework’s general 
ability to reveal regulatory mechanisms across various types of single-cell technologies, 
conditions, and biological processes.  

Although this work establishes a general and powerful framework, important directions remain 
for further development. First, our vector field learning approach focuses on the deterministic 
part of the dynamics, i.e., the convection part of a convection–diffusion process (Cho and 
Rockne 2019) in transcriptome space. Biological systems are, however, intrinsically stochastic; 
accordingly, future work should seek to reconstruct the (stochastic) diffusion part of the model 
as well. Second, one limitation of single-cell data is the low RNA capture rate. As RNA capture 
sensitivity, sequencing depth, and sample size increase, our framework will further facilitate the 
discovery of regulatory mechanisms by decreasing the uncertainty from the measurements and 
estimation (Chapman et al. 2020). Third, the reconstructed vector field functions can be 
confounded by unobserved hidden variables, e.g., environmental cues from surrounding cells, 
their epigenetic states, or protein abundance. Incorporating datasets from the recent 
developments of single cell multi-omics (Cao 2020; S. Ma et al. 2020),  spatial transcriptomics 
(Moffitt et al. 2018; Rodriques et al. 2019), or both (Liu et al. 2020) into our framework will 
provide the opportunity to address the hidden variable problem in our vector field analysis. 
Finally, in the current form of this approach, we use the Gaussian kernel in vector field learning 
because of its simplicity and effectiveness. An interesting future direction would be to express 
the vector field in a form with a direct biological interpretation, e.g., the sigmoid functions widely 
used in mathematical modeling of biological networks, which could further facilitate 
interpretation of the reconstructed vector field.  

In summary, we have built a general framework for the interpretation of expression kinetics that 
can be applied to numerous systems compatible with single-cell genomic profiling. For example, 
vector field reconstruction and differential geometry analysis may help fully resolve the 
regulatory cascade associated with infections by viruses (Hein and Weissman 2021; Emanuel et 
al. 2020) including CMV, SARS-CoV-2, and others; dissect the complicated differentiation 
hierarchy of hematopoiesis; and pinpoint the precise regulatory mechanisms underlying normal 
or rare hematopoietic lineage bifurcation or switches, etc. With the rapid expansion of RNA 
metabolic labeling methods, especially those that can explore large numbers of cells (Q. Qiu et 
al. 2020), dynamo will be an increasingly important tool for using those technologies to study 
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RNA kinetics specific to developmental stages or species, or relevant to particular diseases, as 
well as their coordination and regulatory logic, across a variety of labeling strategies and 
biological systems. More broadly, the general and scalable framework of kinetic parameter 
estimation and vector field function analysis developed in this study, especially when coupled 
with RNA metabolic labeling, lineage tracing (McKenna et al. 2016; Frieda et al. 2017; Alemany 
et al. 2018; Chan et al. 2019), RNA age (Rodriques et al. 2020), signal pathway recording 
(Sheth and Wang 2018), as well as genetic perturbations (Adamson et al. 2016; Dixit et al. 
2016), will enable us to move towards holistic kinetic models and theories of the entire organism 
for cell atlas projects (Cao, O’Day, et al. 2020) comprising many cell types and encompassing 
many conditions or species.  
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Figure 1: Modeling and Interpreting Single-cell Gene Expression Dynamics using Velocity 
Vector Field Functions and Differential Geometry Analyses.  

A. Cell state transition under dynamical systems framework. 1) A canonical toggle-
switch motif of two genes (whose instantaneous expression levels, e.g. RNA copies in a 
single cell, are denoted as )  and one of their downstream targets (with expression 
level of ) are embedded in a complex regulatory network. The toggle-switch network 
motif is used throughout this figure and Fig. 4. 2) Cell fate transitions as trajectories in a 
high-dimensional state space spanned by state descriptors (e.g. expression of RNA or 
protein). The regulatory network determines the possible trajectories and final fates. A 
three-dimensional state space captures the dynamics of the highlighted three-gene 
system from 1. Any point in this space represents a network state  at 
time . Three example states , , and , are shown. As in most states, the three 
states do not necessarily represent stable network states; therefore, they are driven by 
the network interactions to move along trajectories (red solid lines, i.e. streamlines) that 
converge to the stable attractor state, . Note that the red and black segments of the 
trajectories correspond to past and future cell states, respectively. 3) Global view of cell 
dynamics via vector field functions. 4) Topological features of the vector field. Important 
features include: steady states [including attractors (filled circles, ), 
and saddle points (unfilled circles, ], attractor basins (domains where 
all points will be eventually attracted to a particular attractor state, shaded with different 
colors), separatrices (lines or planes that set the boundary between attractor basins, 
shown as a red line), and nullclines (lines or planes where the velocity of one particular 
dimension is 0).  

B. Velocity and Jacobian along the horizontal dashed line indicated in A4. Calculating 
the derivative of the velocity of ,  (first panel) or that of ,  (third panel) along the 
indicated line gives rise to the Jacobian terms  or , which reveals the self-
activation of gene , and inhibition of  by , respectively.  

C. The Jacobian (the matrix , where the th element is  (left), 
of a vector field function reflects state-dependent gene interactions in the state space, 
represented as a heatmap (right).  

D. Acceleration and curvature vector fields of single-cell gene expression. Color of the 
heatmaps corresponds to length of the acceleration and curvature vectors at each point 
in the state space. For C/D, see more details in Box 1.  

E. Summary of the task of mapping the vector field functions from transcriptomic data, 
formulated as a machine learning problem, with downstream validations and analyses. 
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Figure 2: Inclusive Model of Expression Dynamics Incorporates RNA Metabolic Labeling in 
Single Cells.  

A. A comprehensive model of gene expression kinetics that includes promoter state switch, 
RNA metabolic labeling, RNA transcription, splicing, translation, and RNA/protein 
degradation. , and  are respectively unspliced unlabeled, unspliced labeled, 
spliced unlabeled, and spliced labeled RNA. Note that unspliced ( ) and spliced ( ) RNA are 
the sums of  and , respectively.  Similarly, labeled RNA ( ) and total  RNA are the 
sums of  and , respectively.  

B. Dynamo’s comprehensive estimation framework of kinetic parameters for time-resolved 
metabolic labeling–based scRNA-seq or tscRNA-seq experiments, and conventional scRNA-
seq experiments without metabolic labeling (cscRNA-seq). GMM: generalized methods of 
moments; NB: negative binomial; SS: steady state; velocity_N: new RNA velocity; velocity_T: 
total RNA velocity; velocity_U: unspliced RNA velocity; velocity_S: spliced RNA velocity.  
Description of Model 1/2/3 can be found in Fig. SI2A. 

C. Typical RNA metabolic labeling strategies and their application in published tscRNA-seq 
studies. On the left, One-shot labeling experiments (an experiments with a single RNA 
labeling period): estimating  with labeling data and  when combining labeling and 
splicing data; kinetics labeling experiments (a time-series of 4sU or other nucleotide analog 
treatment): same as one-shot labeling; degradation labeling experiments (a time-series 
with an extended 4sU or other nucleotide analog treatment period, followed by chase at 
multiple time points): estimating  with labeling data and  when combining labeling and 
splicing data; Multi-time-series labeling experiments (single cell samples are collected at 
multiple time points, each with a kinetics experiment): same as one-shot labeling. The table 
on the right summarizes the main labeling strategies used in all published tscRNA-seq 
studies.  

D. Comparing degradation rate constants ( ) calculated from tscRNA-seq data and the scaled 
degradation rate constants ( )  from the corresponding splicing data, and those from human 
cells or mouse cells. Scatter plot of the absolute degradation rate constants based on 
labeling data and the scaled degradation rate constants based on the corresponding splicing 
data in mouse ESC cells from scNT-seq study (left) or the human RPE-1 cells from the 
scEU-seq study (middle). Degradation rate constants from murine ESC cells tend to show a 
global increase compared to that from the human RPE-1 cells (right).  

E. Two-step method (see MATERIAL AND METHODS) of the kinetics experiment [data from 
scEU-seq study (Battich et al. 2020)]: 1) A strong linearity in the new–total RNA phase plane 
of gene UNG with ascending slope  for longer labeling times; 2) A strong linearity between 

 and labeling time period  for the UNG gene. “Smoothed” means that the 
expression was locally averaged based on a -nearest neighbor graph in the reduced 
principal component (PC) space across cells, the same applies to the F, G, H.  

F. Phase portraits of spliced-unspliced RNA planes of HMGB2 and HMGA2, genes for which 
splicing is faster or slower, respectively, than degradation.  

G. Same as above but for the phase portraits of total–new RNA planes.  
H. Strong linearity in the new–total RNA phase planes of HMGB2 and HMGA2, with ascending 

slope   for longer labeling time periods. 
I. Strong linearity between  and labeling time period  for HMGB2 and HMGA2. F-I 

all used the kinetics experiment dataset from scEU-seq study (Battich et al. 2020) 
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Figure 3: Metabolic Labeling Experiments Improve and Generalize RNA Velocity Estimation. 

A. RNA velocity streamline plots on the UMAP space for conventional and one-shot labeling–
based scRNA-seq datasets from mouse fibroblast cells of the 2-h CMV (cytomegalovirus) 
infection scSLAM-seq experiment. From left to right: streamline plots of the full 10x dataset, 
the downsampled 10x dataset [same cell number (96) as the rest two panels],  the intron-
exon dataset from the scSLAM-seq experiment, and  the labeling based dataset from the 
scSLAM-seq experiment. Cells are colored by status of infection (mcmv: infected by MCMV; 
mock: not infected). 

B. Density plot of velocity correlation of neighbor cells, indicative of local velocity consistency, 
across the four datasets shown in A. Unbiased nascent RNA labeling, and large-scale, UMI-
based scRNA-seq improves local RNA velocity consistency. 

C. RNA velocity streamline plots of one-shot labeling dataset from (Cao, Zhou, et al. 2020) 
reveal two orthogonal processes: GR response and cell cycle for the dexamethasone treated 
A549 cells. From left to right: streamline plot on the first two principal components (PCs), the 
second two PCs,  and the first two UMAP components that are reduced from the four PCs, 
respectively.  

D. Conventional (top) and kinetics labeling (bottom) RNA velocity analysis of the RPE1-
FUCCI cells (left) and murine intestinal organoid system (right) of the scEU-seq study.  

E. Conventional (top, middle) and degradation labeling (bottom) RNA velocity analysis of the 
TET-dependent stepwise pluripotent–2C bidirectional transition of murine ESC in the scNT-
seq study.  

F. Cells committed to 2C-like totipotent states showing strong local velocity consistency. Top 
right boxes are magnified versions of the corresponding insets in the bottom.  

G. A bistable switch model of ESC pluripotent and 2C-like totipotent cell states explains the 
increased commitment of TetTKO cells to the 2C-like totipotent state cells through the 
intermediate cell state. Y-axis corresponds to the metaphorical “potential” (the global stability) 
of cell states.  
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Figure 4. Mapping the Transcriptomic Vector Field, Quantifying its Topography, and Moving 
towards Differential Geometry of Single Cells. 

A. Functional reconstruction of the continuous and analytical velocity vector field from sparse, 
noisy single cell velocity measurements with sparseVFC (J. Ma et al. 2013) (see details in 
MATERIAL and METHODS and SUPPLEMENTARY METHODS). 

B. Reconstructed vector field and topological features of the simulated toggle-switch system. 
Top: Scatterplots of cells (x/y-axis: expression of / ) that are colored by vector-field based 
pseudotime, calculated via Hodge decomposition on simplicial complexes (a sparse 
directional graph) constructed based on the learned vector field function (Maehara and 
Ohkawa 2019). Full cycle nodes correspond to attractors while half-cycle saddle points. 
Streamline plot of the reconstructed vector field is superimposed on top of the scatterplot of 
cells. Bottom: x/y-nucline and separatrix, plotted on top the streamline plot of the 
reconstructed vector field.  

C. Scatterplots of cells (x/y-axis: expression of / ) with a frontier representing the expression 
boundary of sample cells (top). Cells are colored by the estimated values of the indicated 
Jacobian elements. Scatterplots of the estimated values of indicated Jacobian elements and 
corresponding analytical values across cells. In general, recovered Jacobian closely matches 
the ground truth but deteriorates at the boundary of the sample data points.  

D. Same as in C but for the recovered acceleration and curvature. Since acceleration and 
curvature are vectors, the streamlines of the recovered acceleration and curvature vector 
field are visualized. Cells are colored by the length of acceleration or curvature vectors 
across cells. 

E. Same as in C but for the recovered curl and curvature.  
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Figure 5. Vector Field–based Cell Fate Predictions are Validated by Clonally related Single 

Cells.  
A. Clonity of cells, which were sequentially sampled at different time points, is inferred based on 

the static barcodes (left) and is used to validate the vector field prediction (the red line, 
right). 

B. Experimental schemes of conventional 10x Chromium–based scRNA-seq (top) and plate-
based metabolic labeling scRNA-seq (scSLAM-seq or NASC-seq) coupled with sequential 
clonal cell tracking via lentivirus lineage barcodes (bottom) for neutrophil fate commitment of 
HL60 cells under ATRA treatment.   

C. RNA velocity streamline plot of UMAP embedding (same as in D) based on labeling data 
from the scRNA-seq experiment reveals neutrophil-lineage commitment over time.  

D. Progenitor marker (CD38) and neutrophil marker (CD11b or ITGAM) expression on UMAP 
space and streamline plot confirm the directionality of neutrophil lineage differentiation.  

E. Layout of an example 384-well plate and locations of clonally related cells.  
F. Forty confident clone-related linkages across different days among 944 cells from the 

integral-seq experiment.  
G. Boxplot of minimal distance of clone cells in later time points to the vector field prediction 

trajectory and the distance of random cells from the same day.  Mann–Whitney–Wilcoxon 
test (two-sided) was used to calculate the p-value between groups. ****: .  

H. RNA velocity streamline plot of SPRING embedding (same as in K, embedding is from 
(Weinreb et al. 2020)) reveals lineage hierarchy from murine hematopoietic stem cells to 
myeloid (megakaryocytes, erythroids, mast cells, basophil, eosphil, neutrophil, monocytes, 
dendritic cells, etc.) and lymphoid lineages for in vivo and in vitro systems.  Cells are colored 
by the cell type identity.  

I. A majority of cells from the same clone are biased towards a specific lineage or remain in the 
undifferentiated cell state. In the heatmap, row, column, and color correspond to a particular 
clone of cells, a particular cell lineage, and the probability that cells  eventually commit to a 
cell lineage (or maintain the undifferentiated cell state).  

J. Comparing vector field–based lineage fate predictions with other state-of-art methods. 
Smoothed clone fate (red dot) is the prediction based on clone barcodes. PBA, WOT, and 
fateID (black dots) are predictions based on other state-of-art algorithms that do not use 
velocity information. Those first four methods are from the original study (Weinreb et al. 
2020). Predictions for all cells (fifth and sixth items) or the same subset of cells (seventh and 
eighth items) from the original studies are presented. Both PCA embedding, and SPRING 
embedding from the vectors fields based on the original study were used for prediction.  

K. Predictions with vector fields tolerate noise from estimated single-cell velocities.  
L. Boxplot of minimal distances of day 6 clone cells to the vector field prediction trajectory, the 

distance between cells from the same clones, and the distances of random cells from day 6. 
Same statistical test is used as in G.  
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Figure 6: Vector Field and Differential Geometry Analysis of Zebrafish Pigmentation and other 
Dynamical Processes.  

A. Scheme for using Jacobian, acceleration, and curvature information to rank genes (either in 
raw or absolute values) across all cells or in each cell group, followed by gene set 
enrichment and regulatory network construction and visualization.  

B. Phase-portrait, conventional RNA velocity fitting (dashed line) of locally smoothed spliced 
and unspliced RNA (left), expression (middle), and velocity (right) scatterplots of the 
zebrafish melanophore marker dct on UMAP embedding (same as in C–E, G, J).  

C. Streamline plot of the estimated RNA velocity projected onto UMAP space reveals that 
multipotent pigment cell progenitors differentiate into pigment cells, peripheral neurons, 
Schwann cells, chromaffin cells, and other cell types.  

D. Reconstructed vector field and identified stable and unstable steady state points pinpoint the 
topological domains of progenitors, metastable states, and terminal cell types.  The color of 
digits in each node is related to the type of fixed points (Fig. 5C): black: absorbing fixed 
points; red: emitting fixed points; blue: unstable fixed points. 

E. Pseudotime derived from the vector field function corroborates the arrow of time of zebrafish 
pigmentation.  

F. Expression of the progenitor marker mitfa decreases from progenitors to terminal cell types, 
whereas expression of mature cell type marker, dct (melanophore), tyrp1b (melanophore), 
and alx4b  (Iridophore) increases in the corresponding lineages with the pseudotime. 

G. Acceleration, curvature, divergence, and curl analyses reveal, respectively, key cell-fate 
commitment–related hotspots, decision points, sources, and sinks, as well as regions with 
processes orthogonal to cell differentiation (e.g., the cell cycle).  

H. GO enrichment analysis of genes with top absolute acceleration in a previously “unknown” 
cell cluster reveals its potential chondrocyte origin.  

I. Key gene regulatory network in the “unknown” cell cluster, derived from the estimated cell-
wise Jacobian matrices of chondrocyte related genes with the reconstructed vector field 
function. Network is visualized as an Arcplot.  

J. Jacobian matrix analysis is generally applicable to reveal context-specific gene regulatory 
networks across different cell types or technologies: from top to bottom, iriphore cells (csc-
RNA-seq), cell-cycle response (sci-fate), GR response (sci-fate), cell-cycle (scEU-seq), 
intestinal organoid (scEU-seq), ESC (scNT-seq). Circosplots of top gene interactions 
identified via Jacobian analysis for each datasets are shown on the left. Jacobian values 
between an example regulator and its target across cells on UMAP embedding (middle) or 
their gene expression space (x-axis: regulator, y-axis: effector, right) are also shown for 
each system.  
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Figure 7: Vector Field and Differential Geometry Analyses of SARS-CoV-2 Infection Reveals 
Virus–host Interaction as well as Host Resistance Mechanisms.  

A. Pie chart of the UMI (unique molecular identifier) fraction of SARS-CoV-2 viral features/
genes among total viral UMI counts. 3’UTR, orf10, and N of SARS-CoV-2 occupy the 
majority of viral UMI counts (left). The remaining genes are visible upon magnifying the 
corresponding small portion of the pie chart (right). When making the pie chart, UMIs counts 
for each feature/gene were aggregated across all cells. 

B. Treating the 3’UTR, an indicator of viral load, as “unspliced RNA” and each structural gene 
[envelope (E), membrane (M), nucleocapsid (N), spike (S)] as “spliced RNA” reveals most 
cells are in the induction phase for all structural genes each with distinct kinetics (see phase 
plots for nonstructural genes in Fig. SI7K).  

C. Cell-wise Jacobian values of representative negative regulators (LSM8, RAB21, and RBPJ) 
of the SARS-CoV-2 S gene in the host cell, from 12-h cells, on the UMAP embedding (same 
as in I). 

D. Sankey diagram to visualize the putative host–virus gene interactions in 12-h cells. 
Interactions with average Jacobian values less than 1.05e-3 were filtered out in order to 
simplify  the diagram. Numbers after gene names indicate computed average Jacobian 
values for each associated interaction or sum of all relevant interactions.  “i”: input or 
regulator; “o”: output or effector based on the Jacobian analysis.  

E. Top effectors of each SARS-CoV-2 feature/gene from 12-h cells share commonly enriched 
GO pathways related to viral infections. For C, D, and E, see similar analysis for other time 
points and genes in Fig. SI7L, M, N.   

F. Scatterplots of global acceleration values of 12-h cells (left) and the location (right) of 
putative SARS-CoV-2–resistant cells on the UMAP embedding (see also Fig. SI7O, P).   

G. Differential acceleration analysis of putative resistant cells vs. background 12-h cells reveals 
that genes with  elevated acceleration in resistant cells are enriched in antiviral pathways. 
Mann–Whitney–Wilcoxon test (two-sided) was used to calculate the p-value between two 
groups: other (non-resistant cells) and resistant (resistant cells). ****: .  

H. Distribution of mean accelerations of genes related to antiviral pathways is up-shifted in 
putative resistant cells. 

I. Nearest neighbors of putative resistant cells among 4-h cells are enriched near the gap next 
to the regions dominated by 4-h cells on the UMAP embedding.  

J. Nearest neighbors of resistant cells among 4-h cells  show elevated average expression of 
genes related to antiviral related pathways. The same test as in G was used, but for two 
groups, other (non-neighboring cells) and neighbors (neighbors of resistant cells among 4-h 
cells). ****: .  
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Supplementary Figure 1: Various Ways to Quantify Expression Dynamics and additional 
Differential Geometry Analyses of Vector Fields.  

A. Gene expression dynamics along the indicated trajectories in Fig. 1A (4). 1) Gene 
expression quickly decreases, 2) while velocity rapidly approaches 0 over time. Taking the 
derivative of the expression or velocity with respect to time along the indicated trajectory 
gives velocity 1) or acceleration 2), respectively, represented by red arrows. 3) Increasing the 
expression of one gene linearly decreases the velocity of the other genes. 4) The velocity of 
gene  positively correlates with that of   , but with different strengths across the three 
trajectories.  

B. The Jacobian of  (left),  (right) along the horizontal dashed line indicated 
in Fig. 1 A4. Two other symmetric Jacobian elements,  (left), , are shown  
in Fig. 1C.  

C. Map of  the curl (defined only in two or three dimensions ) 

and divergence ( ) landscapes in the phase space of the 
two-gene system.  

35

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 9, 2021. ; https://doi.org/10.1101/696724doi: bioRxiv preprint 

https://doi.org/10.1101/696724


certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 9, 2021. ; https://doi.org/10.1101/696724doi: bioRxiv preprint 

Xiaojie Qiu
Fig SI2. P36

https://doi.org/10.1101/696724


Supplementary Figure 2: Comprehensive Expression Kinetics Estimation Framework in 
Dynamo and Global Analyses of Transcription, Splicing, and Degradation Rate Constants.  

A. Three main models of cscRNA-seq data (Model 1) and tscRNA-seq data that do not 
incorporate splicing (Model 2) or do (Model 3).  

B. Estimating RNA degradation and splicing rates with data from degradation or kinetics 
labeling tscRNA-seq experiments. Scatterplot of 1) degradation rates  estimated from 
labeling data, and slopes of the unspliced–spliced plane  estimated from splicing data from 
the scNT-seq study with mouse ESC cells on the left, and 2) degradation rates  and the 
splicing rate  from the human RPE-1 cells from the scEU-seq study in the middle. 
The murine splicing rate constant ( ) calculated based on scNT-seq data is generally higher 
than that for humans calculated based on scEU-seq data (right).  

C. Deterministic first-order decay model fitting of Ank2 (slow degradation) and Slc25a32 (fast 
degradation) chase data, using the ESC experiment data from the scNT-seq study (Q. Qiu et 
al. 2020).  

D. Splicing rate constants ( ) are in general much larger than the degradation rate constants  
( ) in both the scNT-seq (left) and scEU-seq (right) dataset analysis based on the density 
plot.  

E. Housekeeping genes tend to have faster splicing (left) but slower degradation (right) than 
other genes based on the cumulative distribution plot.  

F. The top 10% genes from the scEU-seq dataset with highest splicing (left) or degradation 
(right) are enriched in transcription and cell cycle–related pathways.  

G. Demonstration of estimating kinetic parameters from a mixture pulse-chase experiment from 
the scEU-seq study (Battich et al. 2020), using also its non-steady state model.  

H. Genes with highest transcription rates are all mitochondrially encoded. 
I. Degradation rates estimated from the non–steady-state model of the mixture pulse-chase 

experiment are consistent with those estimated from the degradation experiment.  
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Supplementary Figure 3: Dynamo Estimates RNA Velocity Robustly and Accurately across a 
Variety of tscRNA-Seq or cscRNA-Seq Experiments.  

A. Streamline plots with only GR-related genes (left), cycle–related genes (middle), and a 
combination of GR and cell cycle–related genes (right) for the sci-fate dataset on UMAP 
embedding. The right panel is the same as the right panel in Fig. 2C but is annotated with 
inferred cell-cycle stages.  

B. Cells with triple KO of Tet 1/2/3 (TetTKO) are biased to differentiate into 2C-like cells, based 
on the splicing RNA velocity streamline plot produced with dynamo.  

C. Cells with TetTKO are biased to differentiate into 2C-like cells, based on the labeling RNA 
velocity streamline plot produced with dynamo. Both B and C are the same as the middle 
and bottom panels from Fig. 2E but are annotated with cell genotype information.  

D. RNA velocity analyses of the BM dataset (Petukhov et al. 2018) with dynamo. First column: 
phase plot of the example gene Camp; second column: single-cell gene expression of Camp 
(normalized and locally smoothed) on UMAP embedding; third column: single-cell RNA 
velocity of Camp on the UMAP embedding; fourth column: streamline plot of the project RNA 
velocity on UMAP space.  

E. Same as above but for Chga in the chromaffin dataset (Furlan et al. 2017).  
F. Same as above but for Ptpm in the dentate gyrus dataset (Hochgerner et al. 2018). 
G. Same as above but for Cpe in the pancreas dataset (Bastidas-Ponce et al. 2019). 
H. Same as above but for ELAVL4 in the HG dataset (La Manno et al. 2018). 
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Supplementary Figure 4: Dynamo Enables scalable and accurate Reconstruction of Vector 
Field Functions and Characterization of Vector Field Topologies.  

A. Existence of hidden variables may confound vector field reconstruction. The averaging 
intervals (shaded box, left) at points  and   have single-peaked distributions along  
as well as the unmeasured  (shaded density plot, right), whereas the interval at point  
has a two-peaked distribution for unmeasured (shaded density plot, right). Vector field 
reconstruction is expected to perform well when hidden variables from the system correlate 
with the observed variables (e.g. at ), but less well when they are loosely coupled 
(e.g. ).  

B. Microfluidic platform design and experimental scheme to capture sisters/cousins from 
primary activated murine CD8+ T-cell. Adapted from Fig. 1 of (Kimmerling et al. 2016).  

C. RNA velocity streamline plot of cells on UMAP embedding. Cells are colored by lineage 
groups (i.e., sister or cousin cells) of single cells.  

D. Boxplot of the expression distance distribution (in the PCA space) of sister and cousin cell 
pairs, as well as that of random cell pairs. Mann–Whitney–Wilcoxon test (two-sided) was 
used to calculate the p-value between groups. ****: .  

E. Scatterplots of the distance of spliced RNA expression states of single cells vs. the distance 
of unspliced RNA expression states,  and vs. that of RNA velocity vectors of single cells 
show strong correlations. Distances were calculated in PCA space. R-squared value ( ) is 
shown for each panel.  

F. Distances between first-nearest neighbor cells show no difference among cells from the 
same or different linkages. Mann–Whitney–Wilcoxon test (two-sided) was used to calculate 
the p-value between groups. **: .  

G. Pairwise scatterplots of estimated and analytical Jacobian elements (indicated by the 
equations for each column) from corresponding cells (top) and the identified outlier cells on 
the gene expression space of  (bottom). Accuracy of estimated Jacobian deteriorates 
in boundary regions of sampled cells due to insufficient and biased sampling.  

H. Analytical differential geometric analyses enable nearly 1000x faster computation than state-
of-the-art numeric algorithms ( numdifftools).  

I. Fixed points and vector field–based pseudotime for wild-type or the Tet1/2/3-KO cells on 
UMAP space.  

J. Reconstruction of vector field and characterization of the topology of the BM dataset  
(Petukhov et al. 2018) with dynamo. First column: Topography plot of the system in UMAP 
space with cell colored by expression of Camp (normalized and locally smoothed); second 
column: gene expression of Camp vs. vector-field based pseudotime; third through seventh 
columns: single-cell vector-field based pseudotime, speed, divergence, acceleration,  and 
curl on UMAP spaces.   

K. Same as above but for Chga in the chromaffin dataset (Furlan et al. 2017).  
L. Same as above but for Ptpm in the dentate gyrus dataset (Hochgerner et al. 2018). 
M. Same as above but for Cpe in the pancreas dataset (Bastidas-Ponce et al. 2019). 
N. Same as above but for ELAVL4 in the HG dataset (La Manno et al. 2018). 
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Supplementary Figure 5: Vector Field Predicts long-range Cell Fate Commitments during 
Hematopoiesis.  

A. Expression of CD38, ITGM, and CD14 over days 1, 2, 3, and 5 during HL60 neutrophil 
lineage commitment, and streamline plot in the UMAP space (same for B, D) from the 10x 
dataset. 

B. Same as above but with the splicing data from the clonal tracing scSLAM-seq experiment. 
C. Contour plot of APC vs. PE-Cy7 on days 1, 3, and 5. APC: CD14 (monocyte marker), PE-

Cy7: CD11b (neutrophil/monocyte marker). Gate was used to select CD11b+ positive cells to 
indicate maturation of the neutrophil-like lineage.  

D. Same as in C but for gene CD14 and with the corresponding labeling data. 
E. Correcting RNA velocity flow with broad lineage hierarchy information in prehematopoietic 

stem cell formation (Zhu et al. 2020). See more discussion in SUPPLEMENTARY 
METHODS.  

F. Correlation of clone fate bias based on single cell fate predictions of the reconstructed vector 
field for the cytokine perturbation and in vivo datasets. 
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Supplementary Figure 6: Differential Geometry Analyses of the Reconstructed Vector Field 
Function with Dynamo Predict potential Gene Regulation Mechanism across a Variety of 
tscRNA-Seq or cscRNA-Seq Experiments. 

A. Jacobian matrix analysis of UMAP components across cells based on the vector field 
reconstructed in a 3-dimensional UMAP space (data from sci-fate study, same as B–C). The 
first UMAP component corresponds to the GR response, whereas the second and third 
components correspond to the cell cycle.  

B. Jacobian matrix analysis of PCA components across cells based on the vector field 
reconstructed in 4-dimensional PCA space. The first two PCA components correspond to the 
GR response, whereas the second two components correspond to the cell cycle.  

C. Boxplots of Jacobian between cell cycle–related or GR response–related components and 
that  between the cell cycle and GR response components, confirming that the cell cycle and 
GR response are independent of each other. Mann–Whitney–Wilcoxon test (two-sided) was 
used to calculate the p-value between groups. ****: .  

D. Interaction between BRCA1 and E2F1 during the cell cycle (sci-fate dataset).  First column: 
BRCA1 and E2F1 expression over vector field–based pseudotime. Second column: Phase-
plot, single-cell gene expression in UMAP embedding, and single-cell velocity in UMAP 
embedding. Third column: top, vector field of BRCA1, E2F1 gene state space; bottom, 
single-cell Jacobian of E2F1 to BRCA1 in BRCA1, E2F1 gene expression space. Fourth 
column: Jacobian matrix across single cells visualized in UMAP embedding.  

E. Same as above but for GTF2IRD1 and CEBPB and the GR response (sci-fate dataset).   
F. Same as above  but for GTF2IRD1 and CEBPB and the GR response (scEU-seq dataset). 

The Jacobian matrix plots in the rightmost column were replaced with the circosPlot of 
putative genes associated with the cell cycle.  

G. Dynamics and key gene interactions during pancreatic endocrinogenesis, revealed by 
differential geometry analyses. First column: 2D UMAP vector field topology shows stable 
fixed points (attractors) in alpha, beta, and ductal cells, and a saddle point at the branching 
point between ductal cells and early progenitors. The lower diagram illustrates the 
differentiation process of pancreatic endocrine cells and key regulatory genes/motifs. 
Second column: High acceleration is observed at the interface between early and late 
progenitors (magnitude change in velocity), and the bifurcation point where progenitors 
differentiate into stable cell types (direction change in velocity). Negative divergence is 
observed at the saddle point and attractors, and positive divergence at the bifurcation point 
and cell cycle of pancreatic buds. Third column: Jacobian analyses suggest that 1) Ngn3 
activates Pax4 in progenitors, initiating pancreatic endocrinogenesis; and 2) Pdx1 activates 
Ins2 in beta cells. Last four figures: Jacobian analyses reveal mutual inhibition of Pax4 and 
Arx at the bifurcation point in progenitors. Arcplot shows gene regulatory networks in 
progenitors and beta cells. 
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Supplementary Figure 7: Vector Field Analyses Reveal Virus–Host Interaction and Resistance 
to SARS-CoV-2 Infection.  

A. Streamline plots of all collected cells (top), colored by viral infection conditions (s1: SARS-
CoV-1 infection; s2: SARS-CoV-2 infection; mock: no viral infection), and SARS-CoV-2–
infected cells, colored according to viral infection time (middle) or SARS-CoV-2 virus loading 
(bottom). The embedding from (Emanuel et al. 2020) was used for all cells (top), whereas 
the UMAP embedding produced from dynamo was used for the other two plots. Group 
names are placed at the median coordinates of cells belonging to a particular group, and 
those cells are also depicted in the same color, as below.  

B. Cell-wise Jacobian values of representative  top-ranked self-interaction genes CEBPE, F3, 
and TOP2A in the “basal” cell cluster (cell groups enriched for mock cells and cells located at 
the infection stage, see Fig. SIA) on the UMAP embedding.  

C. Cell-wise acceleration values of representative  top-ranked positive acceleration genes 
NFKB1A, INHBA and ICAM1, in the “basal” cell cluster on the UMAP embedding (top). 
Bottom: Expression  (y-axis) dynamics are plotted as a function of viral loading (x-axis). 

D. Various differential geometrical analyses reveal commonly enriched GO pathways related to 
viral infections. 

E. Basal cluster, SARS-CoV-1 or SARS-CoV-2 branch, on UMAP embedding.  
F. Expression dynamics of antiviral response genes as a function of viral loading in cells 

infected with either SARS-CoV-1 or SARS-CoV-2, or in all cells.  
G. Cell-wise acceleration values of representative  top-ranked negative acceleration genes 

HSP90AA1, PTMA, and NUCKS1 in the “basal” cell cluster on the UMAP embedding.  
H. Kinetic heatmap of all host genes corresponding to proteins previously reported to bind to 

SARS-CoV-2 virus proteins (Gordon et al. 2020) as a function of viral loading. Genes are 
row-scaled and ordered based on the position of their maximal value on the x-axis (viral 
loading) across all cells from left to right, and independently for each quantity.  

I. Arcplot of the network between the top regulators for all host genes corresponding to 
proteins previously reported to bind to the representative SARS-CoV-2 virus protein Orf9c.   

J. Enriched pathways of top-ranked genes from various differential geometric measures across 
each time point (4, 8, and 12 h). 

K. The “spliced-unspliced” RNA phase plot of virus nonstructural genes after treating 3’ UTR, an 
indicator of viral load, as the “unspliced RNA”, and each nonstructural gene (orf1ab, orf3a, 
orf6, orf7a, orf7b, orf8, orf10) as “spliced RNA”  for each structural gene. See phase plots for 
structural genes in Fig. 7E.  

L. Cell-wise Jacobian values of representative top positive host effectors TNFSF10, NFKBIA, 
and PARP14, from 12-h cells for SARS-CoV-2 gene S on the UMAP embedding. 

M. Sankey diagram to visualize the putative host–virus gene interactions in 4- and 8-h cells. 
Interactions with average Jacobian values less than 1.05e-3 were  filtered out to simplify the 
diagram. Numbers after gene names indicate the computed average Jacobian values for 
each associated interaction or sum of all relevant interactions. “i”: input or regulator; “o”: 
output or effector based on the Jacobian analysis.  

N. Top regulators of each SARS-CoV-2 feature/gene from 12-h cells share commonly enriched 
GO pathways related to viral infections. 

O. Leiden clustering of SARS-CoV-2–infected cells. 300 cells with lowest global acceleration 
magnitude that overlap with clusters 0, 2, 4, 5, 6 were used to define putative resistant cells 
(see also Fig. 7F). 
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P. Distribution of putative resistant cells (colored with red) on UMAP embedding of all cells.  
Q. Distribution of mean acceleration values of genes related to antiviral related pathways is up-

shifted in 4-h neighbors of putative resistant cells. The same test as in  Fig. 7H is used for 
two different groups: other (non-neighboring cells) and neighbors (neighbors of resistant cells 
among 4-h cells). ****: .  

R. Cell-wise self-interaction Jacobian values of genes related to antiviral pathways, NLRC5, 
TRIM21, JAK2, TRIM38, IFNGR1, TRIM26, from 12-h cells for SARS-CoV-2 gene S on the 
UMAP embedding. 

S. A sigmoidal shape of the antiviral response that is sensitive to basal expression level may 
explain the putative mechanism of resistance to SARS-CoV-2 infection. : initial antiviral 
gene expression of background cells. :  initial antiviral gene expression of 
resistant cells with higher-than-background expression. : half-maximal of antiviral gene 
expression. : time delay between background and resistant cells because of initial 
difference in antiviral gene expression. : time delay between background and resistant 
cells when expression achieves half-maximum. 
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MATERIAL AND METHODS 

Cell Culture 
HL60 cells (ATCC® CCL-240™) were grown in RPMI 1640 medium (Gibco), with 20% FBS + 
5% Penicillin-Streptomycin) at  under  CO2, supplemented with  fetal bovine serum 
(Sigma) and  Penicillin/Streptomycin (HyClone). Cells were maintained below a density of 

. On the first day of the differentiation experiment, cells were seeded at 
 in 12well plates (unless stated otherwise) and treated with   ATRA (all-

trans-retinoic acid, Cat#R2625-100MG) to differentiate into either the neutrophil-like cells. Cell 
differentiation status was confirmed by flow cytometry analysis of CD14 (Biolegend, 
Cat#367117) and CD11b (Biolegend, Cat#301309).    

scRNA-seq with 10x Chromium 
HL60 differentiations were initialized on different days so that all samples could be harvested in 
a single scRNA-seq reaction to minimize batch effects. Cells were treated with 1 µM ATRA and 
differentiated for 0 (no ATRA treatment), 1, 2, 3, 4, or 5 days, with all differentiations performed 
in biological replicates. Samples were tagged or "cell hashed" (Stoeckius et al. 2018) with 
distinct BD sample tags (BD Bioscience, cat#PN 633780) to enable demultiplexing of cells, and 
then pooled for scRNA-seq. scRNA-seq was performed on one lane of the 10x Chromium™ 
Single Cell 3' v2 system following the standard library prep protocol (10x Genomics Single Cell 
3’ Reagent Kits v2 User Guide, CG00052). Libraries were amplified with 10 cycles of cDNA 
amplification and 15 cycles of Sample Index PCR. BD Sample Tags were size-separated by 
SPRI selection after cDNA amplification and amplified according to standard protocols (BD 
User-Demonstrated Protocol: BD Single-Cell Multiplexing Kit—Human Doc ID: 179682 Rev. 
1.0). Final cDNA and sample tag libraries were sequenced on a NovaSeq 6000 (Illumina). 

scSLAM-seq  
Our scSLAM-seq protocol was adapted from (Erhard et al. 2019; Hendriks et al. 2019). Before 
proceeding with the protocol using cells collected on particular days (see below), HL60 cells 
were labeled in medium with  4sU (Lexogen) for about  minutes at  and sorted 
into lysis buffer ( ,  U/!L Recombinant RNase Inhibitor (Takara Bio, 2313B),  

Triton X-100 (Sigma, 93443-100ML) in 96-well PCR plates. All plates were frozen at  
until use. After thawing the plates to room temperature, to the lysed cells,  of 10x PBS 
and  of alkylation mix (  IAA in 100% DMSO) was added for a final concentration of 

 IAA,  DMSO. Alkylation was stopped by addition of  of  DTT and 
incubating for  minutes at room temperature. Alkylated RNA was purified with  volume of 
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Ampure XP beads and two washes with fresh  ethanol, and eluted into an RNA elution 
buffer (4!L,  dNTP mix (Thermo Fisher, R0193),  Oligo-dT30VN 

(Integrated DNA Technologies, 5′AAGCAGTGGTATCAACGCAGAGTACT30VN-3′),  U/!L 
Recombinant RNase Inhibitor, 1:24million ERCC RNA spike-in mix (Thermo Fisher, 4456740)). 
cDNA and the remaining library preparation was performed according to a modified version of 
the protocol for Smart-seq2 (Tabula Muris Consortium 2020). The prepared libraries were 
sequenced on MiSeq and NovaSeq5000 platform (Illumina), generating paired-end reads with 

 PCR-cycle.  

scSLAM-seq with sequential lineage tracing 
To facilitate lineage tracing in scSLAM-seq libraries, cellular barcodes (GBCs) were introduced 
using a lentiviral transduction strategy (Adamson et al. 2016). Given that the success of this 
experiment critically depended on the uniqueness of barcode sequence to each cell at the start 
of the experiment, i.e. low barcode collision rate, and the capture of clone cells (clones with the 
same barcodes) across different days, we used an experimental scheme in which the starting 
population of the HL60 cells were infected at a low ( ) multiplicity of infection (MOI) . This 
scheme has two benefits: first, we obtained a small number of barcoded single cells (~2000 in 1 
ml of media in each well of a 24-well plate) so that we could capture clone cells via plate-based 
SLAM-seq (scRNA-seq augmented by metabolic labeling) characterized of low throughput; 
second, co-culturing the small number of infected cells with a large population of uninfected 
cells enabled us to differentiate infected cells more conveniently, as a small number of cells are 
difficult to grow and differentiate. Single cells carrying barcodes and expressing the blue 
fluorescent protein (BFP) reporter were sorted (Sony SH800) at five timepoints , days 0, 1, 2, 3, 
and 5, during differentiation in the presence of  ATRA. cDNA from single cells was prepared in a 
96-well format as previously described (Tabula Muris Consortium 2020) following alkylation and 
RNA cleanup (Erhard et al. 2019; Hendriks et al. 2019). Sequencing libraries were either 
reformatted into a 384-well format and prepared using TTP Mosquito automated liquid handlers, 
or in a 96- well format using a multichannel pipette. GBC sequencing libraries were prepared by 
dual PCR amplification to enrich for GBC cDNA and to add Illumina adapters and dual indexes 
complimentary to that cell's transcriptome sequencing library indexes. GBC sequencing libraries 
were spiked into transcriptome libraries at 1:10 and sequenced on the NextSeq or MiSeq 
platform (Illumina). Transcriptome libraries were sequenced separately using a NovaSeq5000 
S2 300-cycle kit.  

Dynamo: from velocity vector samples to continuous vector field 
functions and differential geometry analysis  

Our analytical framework, dynamo, consists of three integral stages: estimation of genome-
wide kinetic rate constants and velocity vectors, single-cell vector field functions with the 
resultant cell state and velocity samples, and  various differential geometry analyses.  
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As the core of the first stage, we develop a comprehensive parameter estimation framework that 
includes all key steps involved in expression dynamics. This complete model assumes that the 
promoter of a gene stochastically switches with switching rate  between an active state ( , 
with a high transcription rate ) and an inactive state ( , with a much lower transcription rate 

) (Golding et al. 2005) Next, we explicitly model the accumulation or decay of 4sU-labeled 
RNAs (Fig. 2A, B, also see below), which are subsequently captured by scRNA-seq augmented 

with RNA metabolic labeling. We denote the ratio between the true ( ) and estimated ( ) 
fraction of labeled reads for gene  as the labeling correction coefficient. Our model further 
incorporates RNA splicing dynamics with the splicing rate constant . The degradation of the 
spliced RNA is captured by the degradation rate constant . The protein translation rate 
constant  and degradation rate constant  are also modeled in dynamo for possible datasets 
from single-cell transcriptomic–proteomic coassays. For the purpose of simplicity, this work 
mainly focuses on RNA transcription, splicing, degradation, and metabolic labeling. We analyze 
various types of scRNA-seq data with and without metabolic labeling. For the former, we 
consider four possible experimental scenarios (Fig. 2B); for each case, one may or may not 
consider RNA splicing. We use three groups of models (Fig. SI2C) to describe these various 
types of scRNA-seq data. Details on how to estimate the RNA turnover rates and RNA velocities 
for each case are given below.  

Limitations of conventional RNA velocity methods for scRNA-seq 
experiments without metabolic labeling 

Most existing pseudotime ordering methods merely reveal the central trend of a population of 
cells. By contrast, RNA velocity (La Manno et al. 2018), an important recent development in 
inferring dynamics of single cells, explicitly models the RNA kinetics to offer a local 
extrapolation, for a period up to a few hours, of cell fate transitions of individual cells by 
exploring the intron or exon reads incidentally captured by most scRNA-seq platforms. The 
conventional RNA velocity method (La Manno et al. 2018) from the original paper exploits the 
kinetics of RNA transcription, splicing, and degradation with corresponding ODEs (ordinary 
differential equations) as follows: 

, 

 

where  and  are the copies of unspliced and spliced RNA for a particular gene in a cell, 
respectively; , , and  are the rate constants for transcriptional, splicing, and degradation (see 
SUPPLEMENTARY METHODS for a discussion of “rate” and “rate constant”, as well as their 
dimensions), respectively. In this study, we classify such a model system as Model 1. If we can 
estimate the kinetic parameters ( ), together with  measured by scRNA-seq, we can 
derive a measure of “RNA velocity” of unspliced ( ) or spliced RNA ( ) that reveals the direction 
and magnitude of rate of change of gene expression of each gene in each cell. Because in 
general  is not constant, but rather a function of the cell state and other variables (e.g., 
abundance of transcription factors, extrinsic signals, etc.), it is difficult to obtain the unspliced 
RNA velocity. On the other hand, splicing and degradation rate constants ( ) can in most 
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cases be approximated as constants for certain cell types. The question, then, is how to 
estimate those kinetic parameters. Assuming pseudo-steady state ( ) for cells with extreme 
high unspliced and spliced RNA expressions (top right corner of the  phase plane), one reaches 
the following linear relation between the spliced and unspliced RNA 

. 

Let , the above relation can be rewritten as: 

. 

A linear regression of cells at steady states can be performed to obtain . Thus, the 
conventional RNA velocity as defined in the original study is given by: 

. 

Note that  is equal to  up to the splicing rate constant , which is in general gene-specific as 
revealed in Fig. 2D.  Because velocity can be estimated for each gene in each cell, velocities of 
all genes in any cell form a high-dimensional vector, with each dimension corresponding to a 
gene. This high-dimensional velocity vector is often projected into a low-dimensional space for 
visualization using either pearson or cosine kernels (La Manno et al. 2018; Bergen et al. 2020; 
Li et al. 2020) to reveal the direction of cell fate transitions in low-dimensional space via 
projected velocities.  

Although conventional RNA velocity has been successfully applied to a variety of studies, it has 
several limitations: 

1) Because the intron reads are generated through mis-priming on polyA- or polyT- 
enriched intronic regions of nascent pre-RNA, conventional RNA velocity can be difficult 
to apply to most transcription factors, which are typically expressed at low levels, and 
genes with no polyA/T-enriched intron regions; 

2) The linear regression methods used by conventional RNA velocity ignores the 
distribution of unspliced and spliced RNA, which can be used to improve the estimation 
of kinetic parameters; 

3) For systems far away from the pseudo-steady state, using cells with extreme RNA 
expression levels for linear regression may lead to inaccurate velocity calculations for 
most cells; 

4) The time scale for conventional RNA velocity ( ) is scaled by  (since  is the 
ratio of  and ), which makes velocity a relative quantity. 

5) Conventional RNA velocity only estimates velocity for observed cells. Thus, it is a 
discrete, sparse, and local measure of cell dynamics and often merely used as a 
descriptive instead of a predictive tool.  

A great deal of effort has been devoted to improving conventional RNA velocity estimation (La 
Manno et al. 2018) in regard to challenges 2) and 3) and extend the concept to “protein velocity” 
(Gorin, Svensson, and Pachter 2020), but 1) and 4) are fundamental limitations that cannot be 
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resolved at the computational level without additional experimental information. In this section, 
we introduce our methods for analyzing conventional scRNA-seq data, addressing some of the 
issues with existing RNA velocity methods. In the next section we focus on computational 
methods for computing RNA velocity for metabolic labeling data, which reconciles the splicing- 
and labeling-based kinetics and overcomes other drawbacks of conventional RNA velocity 
methods. Finally, to address 5), we go beyond RNA velocity samples of single cells to map the 
continuous vector field functions in transcriptomic space and perform sophisticated differential 
geometry analyses to gain various functional vector field predictions and biological insights. 

Generalized method of moments (stochastic splicing and negative binomial 
distribution method) improves RNA velocity estimation for conventional 
scRNA-seq experiments 

Current scRNA-seq methods have low RNA capture rates that lead to frequent “dropouts,” in 
which individual RNA levels are not observed. In order to alleviate dropout effects and 
measurement noises as well as  to improve the robustness of the estimation, the original  RNA 
velocity method (La Manno et al. 2018) utilizes the mean expression (first moment) of each 
gene across cells, calculated based on the -nearest neighbor graph of cells, instead of the raw 
expression: 

, 

where  (30 by default in dynamo) is the set of -nearest neighbors of each individual cell, 
often constructed in the space of the top PCs (principal components) (e.g., 30 PCs), reduced 
from the original gene expression space of highly variable genes. These can be considered as 
estimators of the first moments of the distribution of unspliced and spliced RNAs. RNA velocity 
calculations performed on the first moments lead to a cleaner phase plane and therefore 
smoother velocity vectors (La Manno et al. 2018). However, higher moments of the distribution 
are ignored in the original linear regression method.  

Second moments (uncentered variances and covariances) provide information additional to first 
moments on the shape of the underlying distribution. It is thus desirable to also take advantage 
of the second moments to improve the estimation robustness and accuracy of the kinetic 
parameters, and thus that of the RNA velocity measurements. The second moments of 
unspliced and spliced RNA, as well as their mixed moments, also rely on the -nearest neighbor 
graph of cells, and can be computed as follows: 
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, 

With the first, second, and mixed moments of unspliced and spliced RNAs for each gene across 
cells, one can apply the generalized method of moments (GMM) to improve the estimation of 
kinetic parameters  (e.g. , , and ), in lieu of the linear regression on mean expressions as 
used in the original RNA velocity method. Instead of directly fitting the distribution, GMM seeks 
to solve the following equations of moments for , also known as moment conditions:  

 

where , , , ... are functions of the random variables  (e.g. the copies of spliced and 
unspliced RNA across cells) and parameters . The optimal  can be found by minimizing the 
Euclidean norm of the above expectations: 

 

where  is a vector-valued function consisting of the moment conditions, and  is a positive 
definite weighting matrix. 

Specifically, to apply GMM in the context of RNA velocity, one needs to find the moment 
conditions for first and second moments. By deriving the ODEs for first and second moments 
from master equations of Model 1 (Fig. SI2B), Berger et al. showed that the moment conditions 
are (Bergen et al. 2020): 

 

 

where . Given vector pairs  of the first and second moments computed from 
the conventional scRNA-seq data in  cells at pseudo-steady state, the optimal  is obtained by 
minimizing the following least squares: 
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where  is the covariance matrix and is computed as follows: 

 

We name this procedure as the stochastic splicing method, which has been proven to be more 
accurate and robust than the original linear regression method used in the conventional RNA 
velocity, possibly due to the inclusion of the additional moments (Bergen et al. 2020). Another 
major improvement to the RNA velocity methods from (Bergen et al. 2020) is the dynamical 
model, where Berger et al. derived the solutions for  and  under the assumption that the 
promoter has only two states: active and inactive. This assumption is reasonable and proven to 
be effective but not necessarily true; see above discussion of transcription rates. An EM 
algorithm is used to iteratively infer the state of the promoter and the latent time for each gene in 
each cell, and then the solutions are fit to the resulting pseudo-time course of unspliced and 
spliced RNAs to obtain the kinetic parameters. No steady state assumption is required in this 
method other than providing a reasonable guess about the initial values for kinetic parameters. 

We also developed an alternative procedure, the negative binomial (NB) distribution method, 
based on an observation that in most cases total RNA counts at steady state follow the NB 
distribution (Grün, Kester, and van Oudenaarden 2014). With this distribution the variance  
(second central moment) and the mean  satisfy  the following relationship: 

, 

where  is the reciprocal of the dispersion parameter of NB distribution. Because at the pseudo-
steady state, the first moment of spliced and unspliced RNA is related by , so the 
spliced RNA is proportional to the total RNA, making it an NB-distributed variable. The variance 
of spliced RNA satisfies: 

, 

where  is the estimator of  and is computed from: 

. 

Put all together, these give the moment conditions for the first and second moments: 
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A nonlinear least squares optimizer can then be used to solve for  with the above two 
equations. Note that the two assumptions applied here are: 1) there is a linear relationship 
between two random variables, which are not limited to the unspliced and spliced RNA, but can 
also be generalized to labeled or new and total RNA, and 2) one of the variables follows the NB 
distribution. Therefore, it is straightforward to generalize this method to one-shot labeling data, 
as will be detailed later. 

Estimating absolute RNA velocity for metabolic labeling–based scRNA-seq 
experiments across various labeling strategies 
Because metabolic labeling–based scRNA-seq (time-resolved RNA-seq or tscRNA-seq) 
measures the synthesis or degradation of labeled RNA within a known period of time in an 
experimentally programmable manner, it offers a more direct measurement of the kinetics of 
gene expression than cscRNA-seq. Thus, in principle, it also provides an opportunity to 
overcome some of the challenges of the cscRNA-seq in RNA velocity estimation. However, it is  
nontrivial to properly estimate kinetic parameters and compute RNA velocity for tscRNA-seq 
data with various metabolic labeling approaches, including three general labeling strategies 
given in Fig. 2C: one-shot (the simplest labeling strategy with a single RNA labeling period), 
kinetics or pulse (a time-series of 4sU or other nucleotide analog treatment to observe the 
accumulation of metabolically labeled RNA over time), and degradation or chase (a time-series 
after an extended 4sU or other nucleotide analog  treatment period, followed by chase at 
multiple time points after the wash-out to observe the decay of metabolic labeled RNA over 
time). Although the exact details of the resultant data vary across different labeling strategies, 
we found they can be uniformly treated with two different models, Model 2, which explicitly 
considers RNA labeling but not splicing, and Model 3, which considers both labeling and 
splicing (Fig. SI2B). In the following, we will first briefly introduce these two models, then 
provide the respective estimation procedures of the three general labeling strategies based on 
the corresponding models.   

In Model 2, we take into account labeling (with a labeling correction coefficient ) but not 
splicing. The total RNA has a synthesis rate constant  and a degradation rate constant . The 
labeled RNA has a reduced synthesis rate constant  but the same degradation rate constant. 
The ODEs for describing the dynamics of labeled ( ) and total ( ) are,  

. 

The general solution for the total RNA  over time  is: 

, 

where  is the initial concentration of the total RNA . For the labeled RNA, the solution is: 

. 
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Note that in this study we rely on a binomial mixture distribution model of background or 4sU-
introduced mutation rates, otherwise stated, to quantify the labeled or unlabeled RNA from the 
observed T-to-C mutation in the final sequencing reads (Jürges, Dölken, and Erhard 2018). 
Therefore, assuming labeled RNA ( ) is well corrected with the binomial mixture model (Jürges, 
Dölken, and Erhard 2018),  will is effectively 1 (same as in the following). Also see 
SUPPLEMENTARY METHODS for a detailed discussion on  labeling correction coefficient. 

In Model 3, we consider both the labeling and the splicing processes. The solutions for labeled, 
unspliced RNA ( ) and labeled, spliced RNA ( ) are equivalent to those for unspliced and 
spliced RNA in Model 1, with an additional  modifying the effective transcriptional rate of the 
labeled RNA: 

, 

. 

When , the solution for  is instead: 

. 

We will omit this special scenario for simplicity in the following sections, although it is included in 
dynamo for the sake of completeness and robustness for kinetic parameter estimations.  

Below, we detail the respective estimation procedures of the four labeling scenarios given in 
Fig. 2B based on the corresponding models. 

Labeling  
strategy

One-shot Kinetics (pulse) Degradation

Model Model 2/3 Model 2/3 Model 2/3

Has splicing With or without With or without With or without

Time points Single time point Multiple time points Multiple time points

Steady state 
assumption

Yes Yes or No Yes or No

Estimation “One-shot” method 
(without splicing); 

NB method (with or 
without splicing); 

“Two-step” 
method (without 

splicing); NB 
method (with or 
without splicing); 

curve fitting (with or 
without);

Curve fitting (with 
or without splicing)
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Table 1: Available estimation algorithms for each labeling strategy.  

Now we will introduce the respective estimation procedures and the corresponding models for 
each of the three general labeling strategies  given in Fig. 2B.  

One-shot experiment 

In “one-shot” experiments, there is only one labeling time point, and the splicing process is not 
explicitly considered. The solution for new RNA in Model 2 is: 

, 

where  is the labeling time and we denote . When the dynamics of total RNA is 
at steady state ( ), 

. 

Then the parameter k can be obtained through a simple linear regression with zero intercept of 
the first moments of labeled and total RNAs ( , ), for cells with extreme high expressions of both 
,  (top right corner of the  phase plane). This approach effectively replaces ,  in the original 
RNA velocity method with , , and was previously reported as the “NTR”  (New to Total Ratio) 
velocity method (Erhard et al. 2019).  Although not fully explained in the literature, the NTR 
velocity can be calculated as: 

. 

Because we used corrected labeling RNAs, i.e. , the degradation parameter  can be 
calculated from  and the labeling duration : 

. 

Because we obtain , not the relative  as in the original velocity of spliced RNA, we can 
calculate the velocity of total RNA with a physical time unit (Q. Qiu et al. 2020): 

. 

Velocity Velocity_N/T/S/U if 
integrated with 

conventional RNA 
velocity, 

Velocity_N/T 
otherwise

Velocity_N/T/S/U if 
integrated with 

conventional RNA 
velocity, 

Velocity_N/T 
otherwise

Velocity_S if 
splicing is 

considered, none 
otherwise
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Note that the NTR velocity proposed in (Erhard et al. 2019) is very similar to this method, but 
scaled by , a factor that can differ for individual genes and cancels the unit of time, so it only 
approximates the true kinetics. 

Because in one-shot experiments the labeled and total RNAs are linearly correlated with a slope 
of , and at steady state the total RNA follows the negative binomial distribution, 
one can easily incorporate second moments using the negative binomial method: 

, 

where, 

. 

Then one obtains a more accurate slope , and can be used to compute the velocity of total 
RNA. 

Kinetics (pulse) experiment 

Two approaches were developed to estimate the RNA turnover rates for the datasets obtained 
from the kinetics experiment. The first method is a generalization of the “one-shot” method to 
multiple time points, whereas the second uses a curve fitting strategy which can be also applied 
to datasets obtained for the degradation experiment. We introduce these two approaches in 
order:  

1) The “two-step” approach (Fig. 2C Case 2-4, multi labeling time points/with or without 
splicing) 

With data collected at multiple labeling time points in a kinetics (pulse) experiment, on the phase 
plane of labeled and total RNA, we find that cells from the same labeling period are distributed 
on a line whose slope increases as the labeling period increases. We realize that this 
phenomenon can be explained by the fact that the slope  is a monotonically increasing function 
of the labeling time  (see the “one-shot” method): 

. 

We then take advantage of this discovery and develop the “two-step” approach, which relies on 
two consecutive linear regressions to estimate the degradation rate constant  based on Model 
2 (Fig. SI2B), and the steady state assumption that . The first step computes the slope  
for the labeled ( ) and total ( ) RNA for different labeling time , based on the linear relationship 
(see the “one-shot” method): 

. 
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When labeling correction coefficient is close to one, from , it is apparent that the 
slope increases with longer labeling time and asymptotically approaches one. Rearranging this 
equation, we have: 

 

A linear relationship exists between the labeling time  and the quantity . In the second 
step, we then estimate the parameter  using a simple linear regression of  and . The 
total RNA velocity is again: 

. 

Note that the “two-step” approach can be regarded as a generalization of the above “one-shot” 
method for one-shot labeling experiments to kinetics experiments with multiple labeling time 
points. The negative binomial method can also be applied here in the first step to achieve a 
more robust estimation of the slope . We note that not every single gene in the dataset may 
follow this kinetics, and in general we use R-square of the “two-step” model fitting to select 
genes with confident fittings for downstream analysis.  

2). Curve fitting methods (Fig. 2C Case 2-4, multi labeling time points/with or without 
splicing) 

When single-cell kinetics (pulse) or degradation (chase) data using RNA metabolic labeling 
[e.g., scEU-seq or scNT-seq  (Battich et al. 2020; Q. Qiu et al. 2020)]), at multiple time points 
are available (Fig. 2B Case 2), it is possible to estimate the kinetic parameters (i.e. , , ) for 
each gene using nonlinear least-squares methods. In general, given  experimental data points 

, at time points , the least-squares fitting method finds a set of 
parameters  that minimize the following loss function: 

, 
where  is the solution of the ODEs at the time point , given parameters . When there are 
multiple species (i.e., unspliced labeled , spliced labeled , unspliced unlabeled , or spliced 
unlabeled  RNAs) quantified from the experiment, we cast the ODEs into a matrix form while 
the composite loss function is the summation for loss function of all species, and weights can be 
added to the loss function to adjust the importance of each species (e.g., a higher weight is 
assigned to the labeled than the unlabeled species (default is 2:1) for the kinetics experiment 
because the unlabeled species does not strictly follow the degradation kinetics due to imperfect 
labeling): 

 

This general procedure is applied to all following curve-fitting methods; the key is to find 
solutions of each species for various RNA labeling strategies. 
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We used Latin hypercube sampling to randomly initialize a set of values of  in a predetermined 
range (see SUPPLEMENTARY METHODS) as the initial guesses for the parameters  required 
by the nonlinear least squares optimizer. 

In kinetics experiments, the samples are collected after a short period of 4sU (or other 
nucleotide analogs) labeling. At the beginning of the experiment, the concentrations for labeled 
RNA, unspliced labeled and spliced labeled RNA, are zero ( , , and 

). During the labeling process, because we assume that the labeling period is 
much shorter than the time scale of the biological process of interest, transcriptional rates are 
treated as constant in all cells. Therefore, based on the solutions of Model 3, the abundance of 
labeled, unspliced labeled and spliced labeled RNA increase over time: 

, 

. 

With sufficient sampling of the labeling time points (at least three), all three kinetic parameters 
can be estimated in theory. Because cells at different states may have different transcription 
rates, clustering can be performed first and the fitting is done for each cluster to derive cluster or 
cell-type specific kinetic rates (Battich et al. 2020; Q. Qiu et al. 2020). The above solutions are 
often insensitive to variations in , and the read counts for the unspliced RNA are unreliable for 
genes with fast splicing rates, so it is optional to provide further constraints by including the 
kinetics of unlabeled or old, unlabeled spliced and unlabeled unspliced RNA, in the curve-fitting 
procedure. The unlabeled RNA in kinetics experiments mostly follow the degradation kinetics, if 
the labeling efficiency is close to 1 (see SUPPLEMENTARY METHODS), and the solutions are 
more sensitive to  and  than those of the labeled species: 

, 

. 

The spliced RNA velocity can be computed as before: 

. 

This also allows us to compute the velocity for unspliced RNA in individual cells: 

 

If no splicing data are available, the solution for Model 2 can be used: 

. 
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The total RNA velocity can be computed either for each cluster, where  denotes the 
transcription rate constant of cluster : 

, 

or for individual cells: 

. 

The velocity for new RNA can be computed in a similar way: 

 

There is, however, a practical issue when using curve-fitting methods with Model 1 for data 
obtained from the kinetics experiments. Because the current labeling time of a tscRNA-seq 
kinetics experiment typically requires at least 1 hour (because of the low sensitivity of single- 
cell methods), which is much longer than the time scale of RNA splicing (usually on the scale of 
minutes), the labeling kinetics do not have sufficient time resolution for reliable estimation of the 
splicing rate constant . We can circumvent this by first computing  from the total 
unspliced ( ) and spliced RNA ( ) using the conventional RNA velocity 
method. Then, we can use either model to estimate the actual degradation rate constant , and 
the splicing rate constant is simply given by: 

. 

With this, we can then estimate absolute RNA velocities for total, spliced, unspliced, and new 
RNAs according to the model and data available. Note that a similar procedure can also be 
applied to relative kinetic parameters estimated with the dynamical method from  (Bergen et al. 
2020) that generalize to non–steady-state assumption, and used to scale them to absolute 
values.  

Degradation (chase) experiments 

In degradation experiments (Case 3 in Fig. 1B), samples are chased after an extended 4sU (or 
other nucleotide analog) labeling period and the wash-out to observe the decay of the 
abundance of the (labeled) unspliced  and spliced  RNA decay over time. The process can 
be formulated as below (the zero in the subscript indicates the initial condition): 

, 

. 

These two equations can be substituted into the loss function, and we obtain splicing rate 
constant  and degradation rate constant  using the nonlinear least squares. The (labeled and 
unlabeled) spliced RNA velocity is then given by: 
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. 

Although the unlabeled RNAs ( , ) indeed increase over time due to transcription, cell-wise 
transcriptional rates  cannot be directly estimated from such experiments because each cell 
has different transcription activity. However, with a promoter two-state stochastic expression 
model, we can assume a universal  and  for all cells, similar to the dynamical model 
(Bergen et al. 2020). 

For degradation experiments without splicing data, the solution of Model 2 is used. The 
abundance of labeled RNA ( ) follows the first-order decay kinetics (Q. Qiu et al. 2020): 

. 

Note that this method has the same drawback as the curve-fitting method for experimental 
kinetics data, i.e., the estimation of  can be unreliable if the chasing time resolution is much 
larger than the time scale of splicing. Again, one may combine the curve fitting with the 
conventional RNA velocity method and obtain a more accurate splicing rate constant  and RNA 
velocities. 

Robust reconstruction of continuous velocity vector field functions from 
sparse single cell transcriptomic measurements 

In the second and third stages of our dynamo model framework, we robustly learn a continuous 
vector field function of single cells from the input discrete, sparse, and noisy single-cell velocity 
vector samples. We also bring in predictive dynamical system methods and differential 
geometry analyses to improve the interpretability of the “black box” machine learning powered 
vector field functions, thus marrying the power of advanced machine learning (ML) approaches 
in functional approximation with the interpretability of dynamical systems formulations.  

Vector field of expression space in single cells 

In classical physics, including astronomy, fluidics and aerodynamics, velocity and acceleration 
vector fields are used as fundamental tools to describe motion or external force of objects, 
respectively. In general, a vector field can be defined as a vector-valued function  that maps 
any point (i.e. expression state of a cell)  in a (subset of)  dimensional (gene expression) 
space to a vector  (e.g. the RNA velocity vectors) in the same space, i.e., . Thus, RNA 
velocity estimates (La Manno et al. 2018; Bergen et al. 2020) from single cells can be formally 
treated as samples in the velocity vector field. In two or three dimensions, a vector field is often 
visualized as a quiver plot, where a collection of arrows with a given magnitude and direction is 
drawn. Assuming an asymptotic deterministic system, the trajectory of the cells travelling in the 
gene expression space follows the vector field and can be calculated using numerical 
integration methods, e.g.,  the Runge–Kutta algorithm. In two or three dimensions, a streamline 
plot can be used to visualize those integration paths. For high-dimensional vector fields, it is 
challenging to present all information at once, and multiple quantities are required to reveal 
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different features of the vector field. As we will show later, differential geometry offers many such 
quantities, each allowing us to capture some but not all dynamical features of the vector field.  

Vector field reconstruction from sparse, noisy single-cell expression and velocity 
samples  

With csc- or tscRNA-seq data and the computational framework mentioned above, in principle 
we can obtain vector field samples in either the unspliced, spliced, new, or total RNA space, 
depending on the exact experiment, labeling strategy, and estimation method. High-dimensional 
velocity vectors are often projected onto top PCA (principal component analysis) space or two- 
or three-dimensional UMAP (Uniform Manifold Approximation and Projection) space (La Manno 
et al. 2018; Bergen et al. 2020). In order to go beyond sparse velocity samples to continuous 
vector field functions in full gene expression space, we build on some recent advances in vector 
valued function approximation to scalably, efficiently, and robustly learn the transcriptomic vector 
field (see Box 2 and below) from noisy and sparse samples of single-cell states and velocity 
estimates. Our reconstruction works in projected PCA or UMAP space, or even in the full gene-
expression space. When it is reconstructed in low-dimensional space, the learned vector field 
can be projected back to the original transcriptomic space for gene-specific velocity and 
differential geometry analyses. 

Vector Field Reconstruction in the Reproducing Kernel Hilbert Space 

To formally introduce the problem of velocity vector field learning in the context of scRNA-seq, 
we consider a set of pairs of cell expression states  and RNA velocities 

, i.e. , where  is the number of cells, and  is the 
dimension (i.e. number of genes or number of principal components) of the cell state space. We 
suppose that the measured single-cell RNA velocity is sampled from a smooth, differentiable 
vector field that assigns each cell expression state  with a RNA velocity vector . Normally, 
single-cell RNA velocity measurements are results of biased, noisy, and sparse sampling of the 
cell expression state space. Therefore, the goal of velocity vector field reconstruction is to 
robustly learn a mapping function , which outputs an RNA velocity vector  given any cell 
expression state , based on the observed data , under certain 
smoothness constraints (J. Ma et al. 2013). Ideally, the mapping function  should recover the 
true velocity vector field on the entire domain  and can be used to predict the true dynamics in 
regions of expression space that are not sampled. The discussion introduced above is based on 
velocity vector field but it can be similarly extended into any general vector field, e.g., an 
acceleration vector field (Gorin, Svensson, and Pachter 2020). 

Intuitively, the loss function for the search of an optimal vector field function  can be written in 
a least-squares fashion: 

, 
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where  is a weight deciding the importance of the -th data point in the loss function. However, 
It is not a trivial task to minimize the above loss function with respect to a function . 
Approximating vector-valued functions in a sparse reproducing kernel Hilbert space (RKHS) has 
been shown to be effective in learning vector field functions for 2D applications, and can be 
easily generalized to high dimensional data (J. Ma et al. 2013). For a function in the RKHS 
space, i.e. , The function can be evaluated at any point in , as a summation of 
Gaussian kernels centered on the so-called “control points”: 

 

where  is the number of control points and  is the coordinate of the control point. ’s are 
coefficient vectors in , where  is the dimension of the vector field. The reproducing kernel is 
chosen to be a Gaussian function: 

 

where  is a width parameter. In addition, a norm of functions can be computed on  (J. Ma et 
al. 2013): 

 

In this representation, the loss function can be optimized with respect to the coefficient vectors 
, and a vector-valued  regularization term can be introduced to it: 

  

  

The sparseVFC (sparse vector field consensus) algorithm (J. Ma et al. 2013) improves this loss 
function for better outlier identification and rejection by formulating the weight  as a likelihood 
function (See details in SUPPLEMENTARY METHODS). The final loss function has an 
additional parameter  accounting for inlier noise: 
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If we let , it can be shown that the solution  to the following linear 
equation contains the coefficient vectors for the optimal vector field function : 

 

where  is an -by-  matrix whose elements are , and  an -by-  Gram matrix 
consisting of . The  matrix is a diagonal matrix of the weights , and 

. 

The sparseVFC algorithm (J. Ma et al. 2013) consists of 1) an E-step: calculation of the 
diagonal matrix  based on the likelihood function for outlier rejection (see SUPPLEMENTARY 
METHODS), and 2) an M-step: Solving the above linear system for , and updating the vector 
field function evaluations at sample points  with the optimal ’s. Other parameters, for 
example , are also updated accordingly in this step. The algorithm finishes when the loss 
function converges or the number of optimization steps surpasses the designated maximum 
iterations. 

Topological analysis of single-cell vector field 

In this study, we focus on calculating fixed points and nullclines in our topological analysis of 
vector fields. The fixed points are defined as points where the value of the vector field function is 
zero: 

, 

and the solution can be obtained using any nonlinear equation solver (scipy fsolve is used in our 
case). Because the solver can only find fixed points closest to an initial guess , we simply 
randomize  such initial points in a domain containing all data points. We used Latin hypercube 
sampling technique (Iman, Helton, and Campbell 1981) to sample initial points effectively. To 
characterize the stability of a fixed point, the Jacobian is evaluated at the point and we simply 
categorize fixed points into three types, based on the signs of its Jacobian’s eigenvalues: 

1) Stable fixed point (attractor): all eigenvalues are negative; 
2) Unstable fixed point (repulsor): all eigenvalues are positive; 
3) Saddle point: The eigenvalues are a mixture of positive, negative values, or even zero. 

If one is interested in fixed points of a specific order (i.e., with a given number of positive 
eigenvalues), one may use a quasi-Newton conditional root-finding algorithm developed by 
Wang et al.  (P. Wang et al. 2014).  

Nullclines are lines (in 2D) or surfaces (in higher dimensions) when at least one component of 
the vector field is zero. For example, for a 2D vector field , the x-
nullcline consists of points where: 

. 
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Because it is computationally expensive to compute nullclines in higher dimensions, in our study 
we limit to 2D vector fields. In the 2D case, fixed points are intersections of x- and y-nullclines, 
so we compute nullclines using a pseudo-arclength continuation method (Seydel 1988) starting 
at a certain fixed point. As an example, to find the next point  on the x-nullcline, given a known 
point  and a tangent vector of the nullcline , one simply finds the initial guess for  by: 

, 

where  is an incremental increase in the arclength.  can then be found using a nonlinear 
equation solver for: 

 

This guarantees that the solution  is  away from the known point  on the nullcline. The 
tangent vector for the next iteration is approximated as , and the first 
tangent vector at the fixed point is a random normalized vector. 

Differential geometry analysis of the reconstructed single-cell vector field 

We derive the analytical formula of Jacobian of the vector field which improves the 
computational efficiency tremendously than numerical approaches. The vector field function 
obtained from the sparseVFC algorithm has the following form (See Box 2 for details): 

 

where  is the Gaussian kernel,  are the control points, and  are the combination coefficient 
vectors. Because the vector field is a linear combination of Gaussian kernels, whose derivative 
is: 

 

The Jacobian of the vector field function is then: 

 

Let: 

 , 

, 
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 . 

Then, the above analytical form of the Jacobian can be vectorized into: 

 

The divergence, acceleration, and curvature are calculated as follows, respectively: 

  

 

 

In 2D, the curvature formula has an equivalent but simpler form: 

 

where  is the velocity vector. The curl is only computable in 2D or 3D, and is computed as 
follows for a 3D system: 

 

Because the vector field function is often learned in a PCA-reduced space, and to acquire gene-
specific information, a transformation of the Jacobian from the PCA space to the original gene 
expression space is needed. Suppose the first k principal components form a d-by-k matrix , 
where d is the dimension of the original gene expression space, then the gene-specific Jacobian 

 is: 

 

Thus, the th element of  is the partial derivative of the velocity of gene  with respect to the 
expression level of gene . The obtained Jacobian  here is only an approximation of the true 
gene-specific Jacobian, as only  principal components are used.  
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Vector field simulation and benchmark of the two-gene bifurcation 
system  
We use the simple canonical self-activating and mutual-inhibiting two-gene motif that frequently 
appears in a variety of cell fate bifurcation systems to introduce key concepts in dynamical 
systems and differential geometry employed in this study (Fig. 1A). The vector field function of 
this system is adapted from Qiu et al. (X. Qiu, Ding, and Shi 2012): 

 

, 

where . In the following two subsections, we will 
describe how the demonstration of the vector field analysis and the benchmarking of our vector 
field reconstruction with this two-gene system are performed.   

Mapping the topological and geometry feature of the two-gene system 
To make the quiver plot of the two-gene system, we first set the expression range of  to be 

 and plot the velocity values calculated with the above vector field function on a 25-by-25 
grid with even spacing in this space. The velocity values on the grid are also used to create the 
streamline plot. Individual trajectories associated with states 1, 2, 3 are obtained via numerical 
integration of the vector field function. Attractor and saddle points are directly solved from the 
vector field function. To obtain the separatrices, we start with unstable fixed points, calculate the 
eigenvalues at those points, and then move forward a tiny step along the direction of the 
negative of the eigenvalues. In the end, we integrate the vector field function backwards in time 
to generate the separatrices. Next we calculate the analytical Jacobian of this system: 

  
Because our model system is symmetric, we only need to calculate, for example, the elements 
from the first column, denoted in the following:  

, . 
With the analytical Jacobian, we can then also obtain the analytical formula for the acceleration, 
curvature, divergence, and curl. We use heatmaps to plot the four elements of Jacobian, 
divergence, and curl on the same space used in the quiver or streamline plot. For acceleration 
and curvature, because they are vectors like velocity, we thus plot their magnitudes together 
with the corresponding vector fields (i.e., acceleration or curvature vector field). To enhance the 
presentation of the plottings for the above differential geometry quantities, higher than 25x25 
grids, 2-D gaussian kernel smoothing on those grid values as well as different colormaps are 
used as needed.  
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Benchmarking the reconstruction of the vector field and the calculation of 
differential geometry quantities 
To generate the benchmark dataset, we randomly select 5000 points within the same domain 
used in the above plots and calculate the corresponding velocity vectors for those points.  
Those cell states and velocity vector pairs are then used as inputs to reconstruct vector field 
function with dynamo using default parameters. Attractor, saddle points, and nullclines are 
estimated with the reconstructed vector field function and plot with the streamline plot that is 
also based on the reconstructed vector field function via dynamo. We used the reconstructed 
vector field function to calculate analytical Jacobian, acceleration, curvature, curl, and 
divergence with dynamo. Scatterplots from dynamo, including a frontier showing the boundary 
of all those cells, are used to plot the 5000 sampled cells, colored according to either four 
elements of the Jacobian, divergence, or curl at those points. Dynamo is also used to estimate 
the acceleration and curvature for those sampled cells, and then plot their magnitudes together 
with the corresponding vector fields (i.e. acceleration or curvature vector field). We calculate the 
analytical Jacobian, acceleration, curvature, divergence, and curl with the true vector field 
function at those sampled data points and compare the corresponding values estimated from 
dynamo with scatterplots (Fig. 4C–E).  

To demonstrate the efficiency of our vector field reconstruction, we compare the time used 
either by the numeral approaches that build upon the numdifftools or by the analytical 
approaches, both implemented in dynamo. Note that numerical approaches for those 
differential geometry quantities are only possible with the analytical vector field function we 
learned, especially in the high-dimensional gene expression space.   

Estimating RNA velocity for SARS-CoV-2 genes 

SARS-CoV-2 is a positive-sense, single-stranded RNA virus (D. Kim et al. 2020). As an RNA 
virus, SARS-CoV-2 does not have introns; thus, we cannot rely on RNA splicing and 
degradation to estimate RNA velocity for SARS-CoV-2 viral genes. Upon cell entry, two open 
reading frames (ORFs), ORF1 and ORF2, are directly translated from the viral genomic RNA 
(gRNA) to respectively produce 11 and 15 nonstructural proteins (nsps) through protein 
cleavage (D. Kim et al. 2020). Then, RNA-dependent RNA polymerase (RdRP), mediated by the 
translated nsp12, uses the gRNA as a template for virus replication and transcription (D. Kim et 
al. 2020). During this process, the negative-sense RNA intermediates are generated; these then 
serve as templates for synthesis of both gRNA and subgenomic RNAs (sgRNAs), including 
those encoding spike protein (S), envelope protein (E), membrane protein (M), and 
nucleocapsid protein (N), as well as a few accessory proteins through a mechanism called 
discontinuous translation (D. Kim et al. 2020). The gRNA and structural proteins are then 
packaged in Golgi apparatus to form virion progeny and be released through exocytosis to 
induce further infection (D. Kim et al. 2020). Because of their characteristic discontinuous 
translation, all sgRNAs share the same leading sequence as well as the 3’UTR sequence, 
which are also shared with the initial and replicated genomic RNAs (D. Kim et al. 2020). On the 
other hand, the 3’ single-cell RNA capture protocol used in (Emanuel et al. 2020) always 
captures the 3’UTR sequence as well as the other regions enriched with poly-A/T motifs. 
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Therefore, we hypothesize that the 3’UTR, which indicates the total viral load, can be used as a 
surrogate of viral RNA progeny to obtain an analog of RNA velocity for SARS-CoV-2 viral genes. 

Once the precursor for each SARS-CoV-2 gene is defined, a composite vector field that 
includes both SARS-CoV-2 genes and host genes can be reconstructed by considering both 
virus and host genes as a whole. Similarly, all differential geometry qualities (e.g. Jacobian, 
acceleration, curvature, divergence and curl) can be calculated for both virus and host genes. In 
particular, we can identify the top regulators or effectors from the host for each SARS-CoV-2 
gene to produce host–virus gene interaction maps.  

CODE AVAILABILITY 

Dynamo (version: 1.0) is implemented as a Python package and is available through GitHub 
(https://github.com/aristoteleo/dynamo-release). Notebooks, tutorials for reproducing all figures 
in this study, and tutorials of dynamo usage cases are also available through GitHub (https://
github.com/aristoteleo/dynamo-notebooks, https://github.com/aristoteleo/dynamo-tutorials).  

DATA AVAILABILITY 

The following public cscRNA-seq datasets are used in this study: the bone marrow (Petukhov et 
al. 2018), chromaffin (Furlan et al. 2017), dentate gyrus (Hochgerner et al. 2018), and fetal 
forebrain (La Manno et al. 2018) datasets; the scSLAM-seq study’s 10x dataset (Erhard et al. 
2019), the pancreatic endogenesis dataset (Bastidas-Ponce et al. 2019) and the hematopoiesis 
clone tracing dataset (Weinreb et al. 2020). The following public tscRNA-seq datasets are used 
in this study: scSLAM-seq (Erhard et al. 2019), scNT-seq (Q. Qiu et al. 2020), sci-fate (Cao, 
Zhou, et al. 2020), and scEU-seq (Battich et al. 2020). All datasets can be directly downloaded 
with dynamo. The raw and processed data for the 10x scRNA-seq and the scSLAM-seq clone 
tracing experiment will be accessible via GEO upon publication of this study.  
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Single-cell RNA-seq, together with RNA velocity and metabolic labeling, reveals cellular 
states and transitions at unprecedented resolution. Fully exploiting these data, however, 
requires dynamical models capable of predicting cell fate and unveiling the governing 
regulatory mechanisms. Here, we introduce dynamo, an analytical framework that 
reconciles intrinsic splicing and labeling kinetics to estimate absolute RNA velocities, 
reconstructs continuous velocity vector fields that predict future cell fates, and finally 
employs differential geometry analyses to elucidate the underlying regulatory networks. 
We applied dynamo to a wide range of disparate biological processes including 
prediction of future states of differentiating hematopoietic stem cell lineages, 
deconvolution of glucocorticoid responses from orthogonal cell-cycle progression, 
characterization of regulatory networks driving zebrafish pigmentation, and identification 
of possible routes of resistance to SARS-CoV-2 infection. Our work thus represents an 
important step in going from qualitative, metaphorical conceptualizations of 
differentiation, as exemplified by Waddington’s epigenetic landscape, to quantitative and 
predictive theories. 

*Corresponding authors: 
X.Q. (xqiu@wi.mit.edu -  @Xiaojie_Qiu - https://www.devo-evo.com/) 
J.X. (xing1@pitt.edu - @jhxing001 - https://www.csb.pitt.edu/Faculty/xing/) 
J.S.W (weissman@wi.mit.edu - @JswLab - https://biology.mit.edu/profile/jonathan-weissman/) 

KEYWORDS: dynamo, RNA metabolic labeling, vector field reconstruction, differential 
geometry analysis, RNA Jacobian, acceleration, curvature, divergence and curl, cell fate 
transitions, whole-cell kinetic models, mathematical modeling, dynamical systems theory, 
systems biology 
INTRODUCTION 

certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (which was notthis version posted February 9, 2021. ; https://doi.org/10.1101/696724doi: bioRxiv preprint 

https://doi.org/10.1101/696724


THEORY Box

Box 1: Di↵erential Geometry of Vector Fields

In this work, we introduced dynamical systems theory and di↵erential geometry analysis to single-cell

genomics. A dynamical system describes the time dependence of a point in a geometrical space, e.g., planetary

motion or cell fate transitions, whereas di↵erential geometry uses the techniques of di↵erential/integral

calculus and linear/multilinear algebra to study problems in geometry, e.g., the topology or geometric features

along a streamline in vector field of the gene expression space. A vector field function f , a fundamental

topic of dynamical systems theories, takes spatial coordinate input x (e.g., single-cell expression in gene

state space) in a -dimensional space (each gene corresponds to a dimension) as input and outputs a vector v

(e.g., corresponds to gene expression velocity vector from a single cell) in the same space, i.e. v = f(x). In

this study, we specifically discuss velocity vector fields that can be used to derive acceleration and curvature

vector fields (see below). With analytical velocity vector field functions, including the ones that we learned

directly from data, we can move beyond velocity to high-order quantities, including the Jacobian, divergence,

acceleration, curvature, curl, etc., using theories developed in di↵erential geometry. The discussion of the

velocity vector field in this study focuses on transcriptomic space; vector fields, however, can be generally

applicable to other spaces, such as morphological, proteomic, or metabolic space.

Because f is a vector-valued multivariate function, a d⇥dmatrix encoding its derivatives, called the Jacobian,

plays a fundamental role in di↵erential geometry analysis of vector fields:

J =

2

666666666664

@f1
@x1

@f1
@x2

· · ·
@f1
@xd

@f2
@x1

@f2
@x2

· · ·
@f2
@xd

...
...

. . .
...

@fd
@x1

@fd
@x2

· · ·
@fd
@xd

3

777777777775

.

A Jacobian element @fi/@xj reflects how the velocity of xi is impacted by changes in xj .

The trace of the Jacobian is divergence:

r · f =
dX

i=1

@fi
@xi

= trJ .

Divergence measures the degree of “outgoingness” at any point, summarized in Box Fig. 1A.
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Box Fig. 1. Divergence, curl, acceleration and curvature of vector field.

By definition, an attractor (repulsor) converges (diverges) in any direction. Note that it is possible to have

a point where the vectors converge in one direction but diverge in another, a case that is not depicted in the

diagram above. This means that although an attractor (repulsor) always has negative (positive) divergence,

the opposite does not necessarily hold.

Curl is a quantity measuring the degree of rotation at a given point in the vector field. It is well-defined

2
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only in two or three dimensions (e.g. two or three reduced principal components or UMAP components):

r⇥ f =

2

66666664

@fz
@y

�
@fy
@z

@fx
@z

�
@fz
@x

@fy
@x

�
@fx
@y

3

77777775

.

The behavior of curl is summarized in Box Fig. 1B.

Many di↵erential geometry quantities are defined on streamlines, which are curves everywhere tangent to

the vector field. The streamlines can be parametrized with time t, denoted x(t), as they are essentially tra-

jectories of cells moving in the vector field. In practice, they are often calculated using numerical integration

methods, e.g., the Runge–Kutta algorithm. The acceleration is the time derivative of the velocity, as shown

in Box Fig. 1C (orange shade), and can be defined as:

a =
dv

dt
=

d

dt
f
⇣
x(t)

⌘
=

dX

i=1

@f

@xi

@xi

@t
= Jv .

The curvature vector (Box Fig. 1C, green shade) of a curve is defined as the derivative of the unit tangent

vector ( d
dt

v
|v| ), divided by the length of the tangent (|v|):

 =
1

|v|

d

dt

v

|v|
=

Jv(v · v)� v(v · Jv)

|v|4
.

In the context of velocity vector fields and streamlines, the unit tangent vector is the normalized velocity.

By definition, acceleration measures the rate of change of velocity in terms of both its magnitude and

direction. Curvature, on the other hand, measures only the change in direction, as the velocity vector is

normalized. Box Fig. 1C (green shade) illustrates how the acceleration can be decomposed into a tangential

and a radial component, and the latter is connected to the curvature:

a = at + |v|2 .

Although acceleration and curvature are mathematically defined on streamlines, the actual calculation, as

shown above, can be done pointwise using only the velocity and the Jacobian evaluated at the point of

interest. Because the acceleration or the curvature can be calculated for any point in the state space, one

obtains the acceleration or curvature vector field.

Other relevant di↵erential geometric analyses, including torsion (applicable to three dimensional vector field),

vector Laplacian, etc., can also be computed using vector field functions, although they were not extensively

studied in this work.

3
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Box 2: Vector Field Function Learning in Reproducing Kernel

Hilbert Space

The overall goal of vector field function learning is to find a vector-valued function f in the function space

H consisting of all possible vector field functions, such that, trained by a sparse set of coordinate–velocity

data pairs {xi,vi}
n
i=1, f(x) gives the velocity v at an arbitrary coordinate x as schemed in Box Fig. 2A.

Box Fig. 2. Learning vector field function that is expressed a summation of a set of basis

functions in the function space.

The coordinates xi in the gene expression space are fed into vector field functions (g, h, and q) in the function

space H, which output a vector, also in the gene expression space, for each coordinate. To distinguish the

output vectors from the velocity vectors from the data, these vectors from the vector field functions are

called “evaluations”. As shown in the rightmost panel in Box Fig. 2A, intuitively h is best when one

compares its evaluations h(xi) to the velocity data vi. This comparison can be formally evaluated with a

loss functional (a function of functions) �(f) that measures how close the evaluations of the vector field

functions and the velocity data are.

4
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In general, a function space may have an infinite number of functions, and the learning procedure involves

singling out one function through variational analysis,

f⇤ = argmin
f2H

�(f) .

One example of the loss functional assumes a sum-of-squares form with a regularization term to reduce the

risk of overfitting,

�(f) =
nX

i=1

kvi � f(xi)k
2 + �kfk2

H
.

The last L2 regularization term is an abstractly defined inner product of f in the function space H (kfk2
H

=

hf ,fiH). It is nontrivial to minimize the above loss functional computationally with respect to functions in

the function space H. Note that f is an object defined in the function space, whereas f(x), the evaluation

of f at point x, is an object in the gene expression space, an Rd vector space, the same space in which the

velocity vectors v lives. The diagram in Box Fig. 2B outlines the relationships of the vector space and

the function space. We need a mathematical tool to 1) represent the vector field function f in a way that

its evaluation f(x) can be computed analytically, so that the loss function minimization can be performed

computationally; and 2) compute kfkH without actually calculating the inner product in the function space,

as this is often hard to achieve.

One such tool is the reproducing kernel Hilbert space (RKHS). “Hilbert space” is e↵ectively the function

space (see MATERIAL AND METHODS), and the “reproducing kernel” is a function that takes in two

coordinates from the Rd vector space and outputs a d⇥ d matrix. A key elegant feature of the reproducing

kernel is that it both encodes all the “options” in the function space and determines how the functional inner

product is performed.

In RKHS, one evaluation of the vector field function f is given by,

f(x) =
nX

j=1

�(x,xj)cj ,

where c is a combination coe�cient vector in the Rd space, and �(·, ·) the reproducing kernel. A simple but

e↵ective choice of the reproducing kernel is the Gaussian kernel:

�(xi,xj) = G(xi,xj)I = exp
⇣
� �(xi � xj)

2
⌘
I ,

where I is the identity matrix, and � a width parameter of the Gaussian function G(·, ·). This reduces the

representation to a simpler form:

f(x) =
nX

j=1

G(x,xj)cj .

Because G(x,xj) is only a scalar, the evaluation becomes a superposition of coe�cient vectors cj ’s, whose

weights decay as their distances to the point of interest x increase, as shown in the Box Fig. 2C. The three

data points each have an associated coe�cient vector, and the evaluation at x is a combination of them,

5
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weighted by the Gaussian kernel (yellow radial gradient).

Also, the functional inner product in RKHS can be computed as:

kfk2
H

= hf ,fiH =
nX

i=1

nX

j=1

D
G(xi,xj)ci, cj

E

=
nX

i=1

nX

j=1

G(xi,xj)hci, cji .

Note that the inner product h·, ·i without the subscript is defined on the Rd vector space, and a common

choice is the dot product, i.e. hu,vi = uTv. With both the functional form of the vector field and its

norm explicitly defined, the loss function can be optimized with respect to the coe�cient vectors c. For

further steps involved in minimizing the loss function, see the corresponding sections in MATERIAL

AND METHODS and SUPPLEMENTARY METHODS.
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