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Biological networks are often heterogeneous in their connectivity pattern, with degree distributions
featuring a heavy tail of highly connected hubs. The implications of this heterogeneity on dynamical
properties are a topic of much interest. Here we introduce a novel approach to analyze such networks
– the lumped hub approximation. Based on the observation that in finite networks a small number
of hubs have a disproportionate effect on the entire system, we construct an approximation by
lumping these nodes into a single effective hub, and replacing the rest by a homogeneous bulk. We
use this approximation to study dynamics of networks with scale-free degree distributions, focusing
on their probability of convergence to fixed points. We find that the approximation preserves
convergence statistics over a wide range of settings. Our mapping provides a parametrization of
scale free topology which is predictive at the ensemble level and also retains properties of individual
realizations. Specifically for outgoing scale-free distributions, the role of the effective hub on the
network can be elucidated by feedback analysis. We show that outgoing hubs have an organizing
role that can drive the network to convergence, in analogy to suppression of chaos by an external
drive. In contrast, incoming hubs have no such property, resulting in a marked difference between the
behavior of networks with outgoing vs. incoming scale free degree distribution. Combining feedback
analysis with mean field theory predicts a transition between convergent and divergent dynamics
which is corroborated by numerical simulations. Our results show how interpreting topology as a
feedback circuit can provide novel insights on dynamics. Furthermore, we highlight the effect of a
handful of outlying hubs, rather than of the connectivity distribution law as a whole, on network
dynamics.

I. INTRODUCTION

Complex networks, their structure and dynam-
ics, have become an indispensable tool for inves-
tigating biological systems [1–3]. Networks pro-
vide a mathematical model for a system of many
interacting components; such models are a cor-
nerstone of computational neuroscience and are
widely used in cell biology to describe genetic
networks, protein interactions, metabolism and
more. Motivated at least partly by these ap-
plications, the mathematical theory of network
analysis has gained general and fundamental in-
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terest and has advanced tremendously in the
past decades. Topics of interest include network
structure and topology; dynamic behaviour such
as fixed points, their stability and their scaling
with network size; robustness of these dynamic
properties to noise and to evolution; and net-
work controllability and information processing
properties [4–7].

One important property of biological networks
that has raised much interest is their hetero-
geneous topology. Analyses of metabolic, pro-
tein interaction, gene regulatory and neural net-
works all show heterogeneous connectivity dis-
tributions, including heavy tails and modular
structure [8–14]. Heterogeneous networks, such
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as those with a broad connectivity distribution,
are generally more difficult to analyze; inferring
their detailed topology requires exceedingly high
statistics. Power-law distributions often provide
a good approximation to such networks, but sta-
tistical difficulties have led to some debate con-
cerning their adequacy [15].

Understanding how heterogeneous connectiv-
ity profiles relate to properties of the associ-
ated dynamical system is a non-trivial theoreti-
cal challenge [16]. One of the main tools to un-
derstand the dynamics of homogeneous random
networks is the use of mean field approximations
[17, 18], which rely on two assumptions – homo-
geneity and a large network size. Corrections for
finite size were made as perturbations around the
thermodynamic limit [19]. Heterogeneity was
approached by dividing networks into homoge-
neous sub-networks [20–23]. It might be benefi-
cial to develop a complementary approach that
does not rely on the usual mean field approxima-
tion or its extensions. We shall see that two com-
mon difficulties of realistic, far-from-ideal net-
works – their heterogeneous structure and finite
size – perhaps surprisingly work together to shed
light on the relation between their structure and
dynamics.

We focus on the probability of random net-
work ensembles to converge to attractors, and
how this probability is modulated by ensemble
topology. Convergence to fixed points is one of
the simplest dynamical behaviors, and hence a
suitable starting point for analysis. Moreover,
stable fixed points have traditionally been linked
to fundamental functional properties of networks
[24–26].

We were specifically motivated by a recent ob-
servation linking topological properties of gene
regulatory networks to their probability of con-
vergence, and to the ability of cells to adapt
to challenges [27]. In this work, Schreier and
colleagues demonstrated in a random network
model, that convergence probability is dramat-
ically larger in networks with Scale-Free Out
(SFO) degree distributions than in their trans-
posed counterparts with Scale-Free In (SFI) de-
grees. This is an intriguing result since the
two transposed ensembles of interaction matri-

ces share the same eigenvalue statistics. The
difference in the probability of convergent dy-
namics therefore must depend on properties be-
yond the spectrum. This is in contrast to ho-
mogeneous random network ensembles, where
dynamic properties are well predicted from the
spectrum (e.g. the transition between chaotic
and dissipative dynamics [17]).

Here we develop a novel approximation for net-
work ensembles with a broad connectivity distri-
bution, based on the dominant role of a hand-
ful of hubs in a finite network. Identifying such
hubs [28], understanding their impact on net-
work functionality [29], and advancing the re-
lated theory [30] are all active research areas.
By approximating a few hubs at the tail-end of
the distribution by a single effective hub, we map
the problem of heterogeneous network dynamics
to that of a homogeneous network coupled to a
single external node: each SF network is approx-
imated by a single lumped-hub connected to a ho-
mogeneous network of the remaining nodes (the
bulk). Despite the simplification, this mapping
retains many of the properties of the original net-
work ensemble. The new network is parameter-
ized by hub strength and bulk connectivity.

The lumped-hub ensemble can be analyzed by
a combination of mean field approximations and
feedback analysis. This analysis predicts a phase
transition between converging and diverging dy-
namics as a function of the balance between hub
strength and bulk connectivity, which is verified
by numerical simulations. We show that the pre-
diction holds on average for scale-free networks
in a range of parameters relevant to real net-
works. Thus, the role of outgoing hubs can be
considered analogous to that of an external in-
put in overcoming recurrent activity, suppress-
ing chaotic dynamics, and ultimately driving the
system to a stable fixed point.

The success of our mapping suggests that the
existence of dominant hubs and their relative
strength is a predictive property of a given net-
work’s dynamics, possibly more so than the pre-
cise scaling of the distribution from which the
connectivity was sampled. Deviations from the
theory stemming from large variability in scale-
free ensembles as well as corrections to the mean
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field assumption are discussed.
Our results offer a novel framework for analyz-

ing heterogeneous networks, which links insights
from two different angles – internal dynamics of
complex networks and the response to external
input of simpler networks. This approach high-
lights the crucial role of a small number of hubs
in a finite network, in contrast to other quanti-
tative features of the connectivity distribution,
and identifies robust parameters that affect dy-
namics.

II. DYNAMICS WITH SCALE-FREE
NETWORKS: MOTIVATING OBSERVATIONS

In what follows we analyze a model of nonlin-
ear dynamics, often used to describe biological
interactions such as in neuronal or genetic reg-
ulatory networks [24, 31]. Binary dynamic vari-
ables, si (1 ≤ i ≤ N), approximate the activity
of N individual elements as being in one of two
states: expressed (+1) or repressed (−1) genes,
firing or quiescent neurons. The effect of ele-
ments on one another is described by a weighted
sum of all incoming links:

s(t+ 1) = sign
(
Ws(t)

)
, (1)

where W is the N ×N connectivity matrix with
real entries giving the strengths of interactions,
drawn from some random network ensemble. It
is a special case of the widely studied Boolean
networks [24, 32, 33], with the Boolean function
chosen here to be the sign of the inputs’ weighted
sum.

The ensemble from which W is drawn is a cru-
cial ingredient of Eq. (1). To study the effects of
topology on the dynamics, we define W = T ◦ J
as a Hadamard (element-wise) product between
a random topology matrix T and a random in-
teraction strength matrix J . The 0/1 adjacency
matrix T defines a directed graph, whose edges
are sampled from specified distributions of in-
coming and outgoing connections (see Methods).
The strengths J are i.i.d. Gaussian variables
with zero mean and standard deviation of unity.

For networks described by a directed graph, in
general, incoming and outgoing degree distribu-
tions, Pin(k), Pout(k), need not be the same. In

one case of special interest, gene regulatory net-
works, an empirical observation of such dissimi-
larity was reported. Outgoing connections were
found to have a broad distribution consistent
with a power-law: Pout(k) ∼ k−γ, a scale-free
(SF) distribution, while incoming connections
were much more narrowly distributed around the
average [34]. These statistical properties rep-
resent the biological observation that while any
given gene is regulated by at most a handful of
others, some transcription factors can regulate
the expression of up to hundreds of genes in the
cell. These ’master regulators’ are of much in-
terest in cell biology, and have been at the focus
of specific molecular biology studies [35].

In a recent work describing gene regulatory
networks by random interaction matrices, it was
found that networks drawn from ensembles with
outgoing hubs have a much larger probability to
converge to attractors under exploratory adapta-
tion [27]. Ensembles that showed efficient ability
for adaptation also exhibited a high probability
of convergence to a fixed point attractor in their
intrinsic dynamics.

Particularly noteworthy in this context is the
observation that for the transpose random net-
work ensemble, where incoming connections are
broadly distributed whereas outgoing connection
are not, the abundance of fixed point attractors
is decreased dramatically. This result is illus-
trated for the model of Eq. (1) in Fig. 1A
(open circles). For each of the two ensembles
– Scale-Free Out degree distribution (SFO) and
the transposed SFI – the fraction of simulations
converging to a fixed point after a given time
interval was computed; this is used as an esti-
mate of the convergence probability across the
ensemble. The result is presented as a function
of network size for both ensembles. For SFO net-
works a considerable convergence probability is
maintained up to the maximal network size of
N = 5000, whereas for SFI networks this proba-
bility decreases rapidly and is negligible for net-
works with N > 1000. These results are con-
sistent with those of [27], where a model with
continuous dynamics were used, extending the
observation on the two transposed ensembles to
Boolean dynamics.
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FIG. 1. Dynamic properties of Scale-Free-Out (SFO, blue) vs. Scale-Free-In (SFI, red) network ensembles (A)
Convergence probability is shown as a function of network size. Filled circles and solid lines show convergence to frozen cores
larger than 90% of the network; open circles and dashed lines show convergence to fixed points. Each data point represents
an ensemble of 600 networks with random T , J and initial conditions. (B) Distribution of frozen core sizes (FC) relative to
network size, across the SFO ensemble for N=1500. The distribution is further zoomed near FC=1. SF parameters for both
panels are γ = 2.2 and kmin = 1, Binomial parameters are N and p = k/N with k ∼ 5 (exact value of k is determined by the
realization of SF distribution. See methods for details).

When simulating these Boolean dynamics, we
noticed that networks often converge to a state
where the vast majority of the nodes are fixed –
“frozen”, while the rest continue to change (Fig.
1B). From a biological perspective these are of
interest as partially fixed states, and mathemat-
ically they have been studied in the context of
general Boolean networks [33]. In what follows
we define a quasi-fixed-point (QFP) as a state in
which most (> 90%) of the nodes are frozen. Fig.
1A (filled circles) demonstrates that the proba-
bility of convergence to a QFP behaves quali-
tatively similar to the corresponding probability
for fixed points over the two ensembles: the re-
markable difference between SFO and SFI en-
sembles and its dependence on network size re-
main the same. This shows that the constraining
effect of outgoing hubs on network dynamics is
not a unique feature of fixed points, but is also
present for weaker notions of convergence.

Our empirical observations rely on conver-
gence of dynamics – and hence is affected both
by the existence of fixed points and by their sta-
bility. In Appendix C we show that networks
from both SFO and SFI ensembles typically have
O(1) fixed points. This suggests that the re-
ported differences between ensembles stem from

stability of fixed points. In the following sec-
tions we develop an approach which enables to
better understand the stability properties of the
two ensembles.

III. THE LUMPED-HUB APPROXIMATION

A finite realization of a power-law connectivity
distribution is dominated by a handful of hubs
connected to a macroscopic fraction of the net-
work. Fig. 2A shows an empirical histogram
of the outgoing connections in an SFO network
with N = 1500, where the largest hubs each con-
nect to ∼ 1000 nodes. To capture the properties
of such a network we divide it into a small group
of leading hubs, and the “bulk” – the rest of the
network. The m largest hubs are lumped into
one node preserving its connection to the bulk;
the remaining nodes are substituted by a ho-
mogeneous network with binomially distributed
incoming and outgoing degrees, preserving the
average connectivity. We call this mapping the
“lumped hub approximation”; the resulting net-
work is characterized by the bulk mean connec-
tivity kb and the pattern of connections from the
hub, which depend on both the original network
topology and the lumping parameter m.
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FIG. 2. The lumped-hub approximation. (A) In a finite network with SFO degree distribution, the m largest hubs (gray
shading) are connected to a macroscopic fraction of the network. The histogram shows the number of outgoing connections
from each node. (B) In the lumped-hub approximation of the same network, these are substituted by one effective hub and
the rest of the nodes are approximated by a Binomial network. The connection strengths of the single hub to the bulk are
determined by summing the strengths of the m lumped hubs. The mean degree of the bulk, kb, is retained in the mapping.

FIG. 3. Dynamic properties of SFO/SFI lumped-
hub approximation. Probability of convergence to a Quasi
Fixed Point (QFP), for SFO and SFI (blue and red filled
circles respectively; same data as in Fig. 1A). Their corre-
sponding lumped-hub approximations are shown in blue and
red open circles, with lumping parameter m = 4. Statistics
and parameters as in Fig. 1.

Despite the crudeness of the lumping approx-
imation, we find that it preserves the dynamic
properties of SF networks at the ensemble level.

Fig. 3 shows that the probability to converge to
a QFP in the approximated networks follows the
same dependence on network size as the original
SF ensembles. In particular, the significant dif-
ference between SFO and SFI, mapped to either
an outgoing or incoming lumped hub, is cap-
tured by the approximation. These results are
presented for a specific SFO ensemble, charac-
terized by a fixed set of parameters (see figure
caption for details).

We next ask whether our lumping approxima-
tion can reproduce the range of different behav-
iors across SFO ensembles with various power-
law distributions. To answer this question we
map a broad range of SFO ensembles to lumped-
hub networks and compare their dynamic prop-
erties. Fig. 4 shows a scatter-plot of conver-
gence probabilities for SFO networks vs. their
lumped-hub approximations. Each point repre-
sents a specific SFO topology realization T , and
the convergence probability is estimated as an
average over realizations of connection strength
J . It is seen that the convergence probability is
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largely retained in the mapping across a range of
SF scaling parameter γ (Fig. 4A). In addition,
Fig. 4B shows that the distribution of frozen
core (FC) sizes, exhibiting a bi-modal shape de-
pendent on ensemble parameters, is also very
well captured by the lumping approximation.
These results demonstrate that our lumped-hub
approximation describes dynamic properties of
the SFO network ensembles across a broad range
of parameters.

IV. FEEDBACK ANALYSIS FOR THE
LUMPED-HUB NETWORK ENSEMBLE

We have seen that despite its coarseness,
the lumped hub approximation somehow cap-
tures an important feature of SF networks that
strongly affects their dynamics. Can it be har-
nessed to gain a deeper understanding of these
networks?

In particular we are interested in the sig-
nificantly larger convergence probability in the
SFO ensemble compared to the corresponding
SFI. The essence of this difference becomes intu-
itively clear in the lumped-hub approximation.
In lumped SFO networks, the hub coherently
drives a macroscopic fraction of the bulk nodes.
In contrast, in lumped SFI the hub receives a
large number of inputs but only drives a small
fraction ( ≈ kb) of the nodes. Previous work
showed that intrinsically chaotic dynamics of ho-
mogeneous random networks can be suppressed
by a coherent external drive [36]. Although here
the hub is not external to the network, we argue
that a similar suppression effect underlies con-
vergence in SFO networks.

The lumped-hub network is described by two
coupled equations of the bulk and the hub (Fig.
5):

s′(t+ 1) = sign
(
W ′s′(t) + uh(t)

)
(2)

h(t+ 1) = sign
(
vT s′(t)

)
(3)

where s′ and W ′ denote the bulk activity and
connectivity respectively, the scalar h is the hub
activity and the vectors u, v are the connections
between the bulk and the hub.

To facilitate the analysis, we consider a sta-
tistical ensemble characterized by three param-
eters: the lumped hub defines a sparseness α,
the fraction of the network covered by its out-
going connections; and a standard deviation σh
of the strengths of these connections. The bulk
in turn is characterized by the binomial param-
eter kb, derived from its average connectivity. In
this simplification we lose the precise connectiv-
ity from the hub, which depended on the spe-
cific details of the original SF network. We shall
see that several key properties are nevertheless
captured by the simplified lumped hub ensemble
with the three parameters (α, σh, kb).

Consider first an auxililary setting – the “open
loop” setting – where the hub is held at a fixed
value. Effectively, connections from the bulk of
the network to the hub are discarded, and it re-
mains connected only through its outgoing links
(Fig. 5A). The hub then acts as an input to the
rest of the network, a simple situation that can
be analyzed by mean field theory. Formally, we
replace the dynamic variable h by a fixed value
(+1 without loss of generality), namely Eq. (3)
is substituted by h(t + 1) = 1. In this open
loop setting, the regularizing effect of the fixed
input competes with the recurrent dynamics of
the bulk, and we ask under what conditions the
system converges to a fixed point. Later, we
connect the open-loop results back to a fully re-
current network including the hub as a dynamic
variable [37].

To determine whether or not the system con-
verges to a fixed point under input, we consider
the time-evolution of the Hamming distance d(t)
between two bulk trajectories s′1(t) and s′2(t). In
the thermodynamic limit N →∞, this evolution
is deterministic and given by some function f(d)
(see Ref. [18] and Appendix A here for deriva-
tions):

d(t+ 1) = f
(
d(t)

)
. (4)

The external drive h can suppress chaotic activ-
ity and drive the network to a stable state s′∗ if
and only if d∗ = 0 is a stable fixed point of the
mapping (4). This, in turn, requires the deriva-
tive of d at the origin, denoted by ∇d, to be
smaller than one. We show in Appendix A that,
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FIG. 4. Lumped approximation captures SFO network properties for a range of power-laws. . (A) Probability
of converging to QFP for SFO networks and their respective lumped approximations. For each SFO parameter γ (color
coded), 100 topology realizations T were drawn, and the convergence probability was estimated from 50 realizations of the
connection strength J and initial conditions x(0). Longer lines denote the direction of the linear fit to each γ, and the size of
the perpendicular segment is the remaining variance after the fit. The line y = x is added for reference (dashed black). (B)
Distributions of frozen core sizes for SFO networks and their lumped approximations for two power-law exponents. All SF
distributions have kmin = 1 and the figure legend shows γ (see Methods for more details).

FIG. 5. Feedback analysis for the lumped-hub network ensemble. (A) conceptual scheme of feedback analysis. The
lumped-hub network contains a single hub (gray) connected to a homogeneous network representing the bulk (green). In the
open loop setting, the hub is clamped to a fixed value while its incoming connections from the bulk are disabled (X). (B)
Mean field theory predicts a threshold value of σh above which chaos in the bulk network is suppressed and the system is
driven to a stable fixed point. The transition lines are plotted in the (kb , σh) plane for various values of hub sparseness α.
(C) The Probability of converging to a QFP for lumped-hub network ensembles computed as a function of hub strength σh,
for open-loop (top graphs, converging to 1) and closed-loop (bottom, converging to 1/2) settings. Two values of average bulk
connectivity and sparseness are shown: kb = 3, α = 0.5 (blue) and kb = 5, α = 1 (red). Mean field theory predicts a phase
transition at σcrit(kb, α), depicted by vertical lines of the corresponding color. The numerical results (symbols) confirm both
the transition point and the factor of half due to closing the loop. N = 1500, and statistics is obtained from 239 realizations.

within Mean Field Theory (MFT), the condition
for this can be expressed as a threshold on the
hub strength,

σh > σcrit(kb, α) (5)

with σcrit depending on the average bulk connec-
tivity kb and the sparseness α. Fig. 5B shows
this critical line for two values of α in the (σh, kb)
plane. Importantly, the lines are distinct for dif-
ferent hub sparsity α, demonstrating that input
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strength cannot compensate for coverage; these
are two separate properties of the hub that need
to be accounted for correctly in the lumping ap-
proximation.

Fig. 5C illustrates the accuracy of our theory.
Blue and red × symbols show simulated prob-
ability of convergence rising from zero to one
for increasing σh for two value sets of (kb, α),
with the critical values predicted by Equation (5)
(vertical lines in corresponding colors). These
results demonstrate both the qualitative predic-
tion – a (smoothed) transition from zero to one
in convergence probability, and the correct loca-
tion of the transition at the predicted σcrit. We
therefore conclude that MFT adequately mod-
els the open-loop convergence probability. Note
that the critical driving strength increases indef-
initely for large kb, in agreement with previous
results [17, 18].

Returning now to the closed-loop network dy-
namics (2),(3), where feedback to the hub is re-
stored and it is a dynamic variable with incoming
and outgoing connections, we ask whether a sta-
ble attractor under external drive is consistently
maintained as an attractor of the recurrent dy-
namics. Intuitively one may argue that, with
probability 1/2 with respect to the random con-
nections in the ensemble, the clamped value will
be consistent with the hub’s input and the driven
steady-state will also be an attractor of the dy-
namics. However, this intuitive argument only
refers to existence of a closed-loop fixed point,
and does not guarantee its stability. Therefore,
beyond the open-loop stability criterion (5), the
closed-loop setting requires to consider the re-
current dynamics of the hub. As long as the hub
does not flip from its clamped value (h changes
from +1 to −1), open and closed loop system
dynamics coincide.

Consider a state s′, a small distance d = δ > 0
away from the fixed point s′∗. For a stable fixed
point we expect exponential convergence with a
rate ∇d. Taking into account the finite size of
the network, we estimate that convergence to a
distance of less than one node (d < N−1) takes

approximately

Tconv ≈ −
log(Nδ)

log∇d
. (6)

Preserving this stability in the full closed-loop
network requires that the hub does not flip its
sign during the time of convergence:

Tconv < Tflip. (7)

In Appendix D we show that the typical hub
flipping time Tflip is approximately:

Tflip ≈
N√
khδ

(8)

which implies that (7) holds for ∇d far enough
from the phase transition. Furthermore, it is ar-
gued in the Appendix that even in the proximity
of the critical value ∇d ≈ 1− the corrections due
to closing the loop are smaller than the error of
the mean field approximation made in the open
loop analysis. Taken together, these arguments
show that all effects of closing the loop will re-
duce the probability of the system converging to
a stable fixed point by half. Fig. 5C shows this is
indeed the case. Circles depict closed-loop simu-
lations of lumped-hub networks, and the match-
ing lines show the smoothed result for open-loop
divided by two.

V. APPLICABILITY OF FEEDBACK
ANALYSIS TO FINITE SFO NETWORKS

We now return to evaluate the accuracy of our
mean field approximation on the original SF net-
work ensembles. Making the connection between
the theoretical results and empirical simulations
entails two steps: first, for each SF network re-
alization we define the lumped-hub parameters
(k, σh, α); second, these parameters are used to
compute ∇d in MFT (Appendix A), predicting
convergence for values smaller than one. Impor-
tantly, the first step is not a one-to-one transfor-
mation between the parameters of the SF ensem-
ble and those of the lumped-hub ensemble: due
to the large heterogeneity of SF networks, differ-
ent realizations generally result in widely vary-
ing lumped-hub parameters and consequently in
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broadly distributed values of ∇d. An example of
this distribution is shown for one SFO ensemble
in Fig. 6A. In particular, lumped-hub param-
eters across the ensemble are such that ∇d is
distributed on both sides of the phase transition
(dashed vertical line, ∇d = 1).

Pooling together realizations of different
power-law parameters opens a broader range of
∇d such that comparison to the theory is more
meaningful. We simulated many SFO networks
with a range of underlying power-law parame-
ters and tested the prediction of a transition as
a function of ∇d. Fig. 6B compares the theoret-
ical prediction for the convergence probability
(dotted black line) with the pooled simulation
results (blue symbols); despite the pooling of a
highly variable set of simulations, ∇d is revealed
as a crucial determinant of convergence. The
smooth sigmoid obtained follows the transition
around the predicted value of ∇d = 1. For one
SFO ensemble, the simulations follow the pre-
diction but cover only a small range of ∇d (red
symbols). A decrease in convergence probability
is found for very low∇d values, in contrast to the
prediction; this effect will be discussed below.

Empirical convergence probabilities for SF net-
works also depend on network size (Fig. 1).
This dependence can be partially explained by
the lumped-hub approximation: for a given SF
ensemble, we can follow the lumped-hub param-
eters averaged over the ensemble as a function
of network size N . Fig. 6C shows that the av-
erage (kb, σh) values progress towards the unsta-
ble regime as the network size increases, while
the sparsity α is much less sensitive to network
size; both these effects are consistent for sev-
eral SF ensembles (colors). The implications of
this trend can be seen in the dependence of con-
vergence probability on network size, shown in
Fig. 6D. Simulation results of SF networks and
their corresponding lumped-hub approximations
are shown together with the theoretical predic-
tion, showing that most of the N -dependency is
captured correctly.

VI. LIMITS TO THE LUMPED HUB
APPROXIMATION

The lumped hub approximation relies on the
possibility of decomposing the network into a
hub and bulk nodes. In turn, the phase tran-
sition predicted for lumped-hub networks relies
on this decomposition and its relation to homo-
geneous networks driven by an external input.
This approximation holds for a range of param-
eter values of practical interest. To understand
the limits of validity for which the approxima-
tion breaks down, we consider several conditions
that are required to hold.

First, the most highly connected nodes are be-
ing lumped together to one effective hub. The
approximation thus neglects their internal dy-
namics, which should therefore be of little im-
portance for convergence of the system. Ide-
ally there should exist an interval of lumping
numbers m across which ∇d remains largely un-
changed. Fig. 7A shows that this is the case
for SFO networks with γ ≥ 2.4. For γ = 2.2
we see that ∇d depends more strongly on the
choice of m, compromising the stability of the
approximation. Indeed, Fig. 7B shows a large
discrepancy between SF and lumped-hub behav-
iors for γ = 2.2.

Second, the network must remain globally con-
nected. For very small mean connectivity, net-
works tend to split into a number of discon-
nected components. In this situation, the prob-
ability of an individual realization converging to
a fixed point drops, while realizations with mul-
tiple fixed points emerge (Appendix C). We be-
lieve that this effect is responsible for the drop
in convergence probability observed at extremely
low ∇d (Fig. 6B).

In addition, for the approximation to be rele-
vant, the effective external drive by the hub must
be strong enough. As indicated in Fig. 5B, for
a sparsely connected hub (α = 0.1) the transi-
tion between convergent and chaotic regimes is
almost independent of hub strength. This can
explain the failure of the theory for low α val-
ues, that arise for high γ values, as exemplified
for γ = 2.8 in Fig. 7B.

Finally, by lumping m > 1 dominant hubs into
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FIG. 6. Comparing lumped-hub MFT prediction with SFO simulations. (A) Variability of lumped-hub parameters in
a single SF network ensemble: histogram shows the distribution of ∇d as computed by MFT from the lumped-hub parameters,
for a SF ensemble with γout = 2.4, kmin = 1. Location of MFT predicted phase transition, ∇d = 1, is depicted by a black line.
(B) Transition in convergence probability predicted by MFT (black dashed line) and empirical calculation of Pqfp (colored
symbols) with different kmin values in range 0.5 ≤ kmin ≤ 2 and γ = 2.2, 2.4, 2.6. For each set of parameters 256 network
realizations of size N = 1500 were simulated. Simulation results were then binned by ∇d with bin width of 0.05. Bins with less
than ten samples were omitted from the plot (restricting the standard error to 0.16 per point). A short red line shows the same
data for the one ensemble with γ = 2.4, kmin = 1 only. (C) Effect of network size on average lumped hub parameters k and
σh. Increasing network size causes a gradual shift towards the unstable phase (see Fig. 5B). Sparseness remains approximately
constant (inset). Colors show different γout. (D) Effect of network size on convergence probability: comparing simulation,
lumped-hub approximation and theory. Empirical data points represent 256 Monte-Carlo realizations for SF with γout = 2.4,
kmin = 1.

a single node, we are limited to a single fixed
point of the open-loop system (up to symmetry
of the hub activation). If several combinations
of the m hubs’ states can stabilize the open-loop
system, the possibility of multiple fixed point
pairs in a single realization emerges. According
to [38] and Appendix C such a possibility should
reduce the probability of convergence. This can

partially explain the slight drop below the factor
of 1/2 at Fig. 6B.

VII. DISCUSSION

Broad connectivity profiles are a ubiquitous
feature of networks. Understanding the dynam-
ics arising from such topology, however, remains
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FIG. 7. A. Sensitivity of lumped hub approximation to the number of leading nodes being lumped is shown for 1000 realisations
of scale free topology with fixed parameters kmin = 1, N = 1500, and for three values of γout = 2.2, 2.4, 2.6. For each realization,
the ∇d at m = 1 is taken as reference, from which the subsequent decrease in ∇d is measured B. Figure 6D is replicated for
γout = 2.2, 2.8. In the large γout case, the lumped hub model holds, while mean field theory becomes invalid due to extreme
sparseness. For low gammaout it is model that becomes inaccurate, due to sensitivity to choice of m.

a great challenge. Guided by intuition from the
physics of phase transitions, much attention has
been given to the scaling of such distributions
with network size (e.g. power-law and scale-free
distributions). Real networks, however, are al-
ways of finite size – and our work highlights the
benefits of focusing on this aspect. Our main hy-
pothesis is that, for finite size networks, a small
number of nodes has a disproportionate effect
on the entire network. We suggest a simplified
model − the lumped-hub approximation − that
makes this hypothesis explicit by lumping these
nodes into a single hub and replacing the rest
of the network by a homogeneous bulk. This is
a novel approach to finite size effects, different
from the standard expansions around very small
or very large networks. As such, it is suitable
for intermediate network sizes, which are usu-
ally difficult to analyze. We showed that the
lumped-hub approximation predicts the behav-
ior of scale free networks at the ensemble level,
explaining the change in convergence probabil-
ity as a function of power-law exponent or net-
work size. Furthermore, the approximation is
also helpful at the single realization level, indi-
cating that a large part of the variability between
scale-free networks stems from the variability in
their effective lumped-hub strength and cover-

age, and in the average bulk connectivity. We
thus propose a three-parameter description of
topology that is more predictive than the gen-
erative SF parameters.

The simplicity of the lumped-hub network en-
semble, with a homogeneous bulk network and
a single hub connected to all other nodes, allows
analytic treatment of the problem. Specifically
we applied feedback analysis, based on interpret-
ing the hub as an external drive to the bulk, and
then devising a mean field theory to determine
convergence of the system. We then closed the
loop while requiring consistency, allowing us to
analytically estimate the probability for conver-
gence. This analysis explains simply and intu-
itively why networks with outgoing hubs, and
not those with incoming hubs, tend to converge
to fixed points. We showed that, perhaps sur-
prisingly, it is the stability of fixed points, rather
than their abundance that underlies this effect.

The analytic treatment was developed for bi-
nary dynamic variables, but the empirical con-
vergence properties and their dependence on
outgoing hubs are shared also for a continuous
variable model [27]. Therefore it is plausible that
these properties reflect more generally the abil-
ity of outgoing hubs to promote convergence and
to stabilize network dynamics.
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We note the comparison of our results with
previous work on Boolean networks with a ran-
domly chosen Boolean function at each node [39],
which found that the phase transition did not
differ between SFO and SFI networks. By spec-
ifying a threshold function in our work the ef-
fect of a hub becomes coherent among all the
nodes that it influences. In contrast, when ran-
domizing over Boolean functions, the effect of
the hub has no such coherence; it is this coher-
ence which promotes convergence in recurrent
dynamics with large hubs.

Our analysis was based on scale-free connec-
tivity, but should apply for other topologies with
broadly distributed out degree. In fact, our re-
sults indicate that the existence of a small num-
ber of hubs connected to a macroscopic fraction
of the network nodes, rather than the precise
shape of the distribution tail, is a crucial factor
in shaping network dynamical properties. The
existence of one such outgoing (but not incom-
ing) hub was sufficient not only to induce in-
creased convergence to stable attractors, but also
to endow the ensemble with an extremely high
heterogeneity among realizations.

From a biological viewpoint, our results illus-
trate how outgoing hubs − master regulators −
can act as global coordinators of dynamics in
gene regulatory networks. This role is expected
to be realized under strong perturbations, in ad-
dition to the usual role of hubs as regulators
of local specific circuits. Indeed, recent exper-
imental work in bacteria suggests an organizing
role for hubs in the emergence of gene expression
patterns following strong rewiring perturbations
[40, 41]. This idea, suggesting a dual role for the
structure of gene regulation networks depending
on conditions, awaits further experimental and
theoretical investigation.

METHODS

Constructing Samples of Heterogeneous
Network Ensembles. To construct network
samples from an ensemble with a SFO dgree dis-
tribution, the adjacency matrix is constructed by
first randomly sampling a sequence of N degrees

from a scale-free distribution, and assigning a
degree, k, from that sequence randomly to each
node in the network. For each such node a set of
k random outgoing connection is chosen. This
procedure results in a scale-free outgoing dis-
tribution and Binomial incoming distribution as
there are no constraint on the incoming distribu-
tion and the choice of incoming degrees is purely
random. SFI ensembles where constructed by
transposing SFO networks created as described
above.

The scale-free sequences are obtained by a dis-
cretization to the nearest integer of the contin-

uous Pareto distribution P (k) =
(γ − 1)a(γ−1)

kγ
.

Binomial sequences are drawn from a Binomial

distribution P (k) = B
(
N, p

)
, with p =

〈k〉
N

, us-

ing MATLAB Binomial random number gener-
ator. Scale-free sequences are implemented by a
discretization of the continuous MATLAB Gen-
eralized Pareto random number generators with
Generalized Pareto parameters k = 1

/
(γ − 1),

σ = a
/

(γ − 1) and θ = a.

Probability of Convergence to fixed
points and quasi fixed points. The networks’
frozen cores were determined by running the net-
work dynamics for an initial convergence period
of 4000 time steps, with 10% of networks nodes
being updated at each step, and then measuring
the fraction of nodes which were frozen within
an additional time interval of 1000 steps (alto-
gether 5000 time steps). Some simulations were
run for double the time steps (a of total 10000
time steps, 2000 of which used for determining
frozen core). No detectable difference was ob-
served due to such longer times. Quasi fixed
points were defined as states with a frozen core
larger than 90%, while fixed points are networks
with a frozen core of 100%. The probability of
convergence to a fixed point or quasi fixed point
was calculated by simulating the dynamics of a
an ensemble of 500 networks, unless stated oth-
erwise, and measuring the fraction of networks in
the ensemble which reached the relevant frozen
core criterion.
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APPENDIX

Appendix A: Suppression of chaos in the open-loop
setting

We consider a lumped hub network ensemble
where the effective hub is clamped at a fixed
value and acts as an input to the rest of the
nodes. Formally, we determine whether the in-
put suppresses chaos by following the time evo-
lution of the normalized Hamming distance be-
tween two trajectories s1(t) and s2(t), denoted
by d(t). Suppose that d(t0) = 1/N , and assume,
without loss of generality, that the states of in-
terest s1, s2 differ at the first bit: s11 6= s21 while
s1j = s2j for 2 ≤ j ≤ N . At time t0 + 1 the
distance d will be determined by the number of
rows in W for which the first element changes its
sign:

d(t0 + 1) =
1

N

N∑
i=1

θ

(∣∣Wi1

∣∣− ∣∣∣∣ N∑
j=2

Wijsj + ui

∣∣∣∣).
(A1)

Equivalently, one may consider the derivative at
the origin of the normalized distance d, given by:

∇d = N Pr

{∣∣Wi1

∣∣ > ∣∣∣∣ N∑
j=2

Wijsj + ui

∣∣∣∣}, (A2)

with the condition for stability being ∇d < 1.
The inequality in curly brackets can be realized
only if Wi1 is nonzero; moreover the other matrix
element can be grouped according to the number
of nonzero elements in each row. This grouping
results in the following convenient way to rewrite
the last equation:

N−1∇d = P1

N∑
k′=0

P2(k
′)P3(k

′) (A3)

with terms P1,2,3 defined as:

P1 = Pr

{
Wi1 6= 0

}
(A4)

P2 = Pr

{
#{Wij 6= 0} = k′|j > 1

}
(A5)

P3 = αPr

{∣∣z1∣∣ >√k′ + σ2
u

∣∣z2∣∣}+

+ (1− α) Pr

{∣∣z1∣∣ > √k′∣∣z2∣∣} (A6)

Here z1, z2 are i.i.d. normal Gaussian variables,
as follows from the mean field approximation,
and i is an arbitrary row. The terms P1 and
P2 are determined by the network structure: P1

is simply the sparsity of the Binomial network
which makes up the bulk nodes,

P1 = N−1kb, (A7)

and the probability of a row in the network hav-
ing exactly k′ nonzero entries is:

P2(k
′) = Pbinom(k′, N − 1, N−1kb). (A8)

The only term which depends on the actual re-
alization of weights is P3. To evaluate it we note
that for a positive scalar η:

Pr

{∣∣z1∣∣ > η
∣∣z2∣∣} =

2

π
arctan

1

η
. (A9)

To derive this expression, one notes that in the
|z1|, |z2| plane, we are interested in the portion
of probability mass that lies below the line |z2| =
|z1|
η

. Since the probability density in this plane

only depends on the distance from the origin, we
simply compute the angle between this line and
the |z1| axis and (A9) follows.

Combining all the terms together, and assum-
ing large N , we arrive at:
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∇d =
2kb
π

N∑
k′=0

Ppoisson(k′, kb)

(
α arctan

1√
k′ + σ2

u

+ (1− α) arctan
1√
k′

)
, (A10)

For α = 1 and large kb, the sum over k′ can
be approximated by its expected value, and tanh
by its argument leading to:

∇d ≈ 2kb

π
√
k + σ2

≈ 2kb
πσ

. (A11)

This expression accounts for the asymptotically
linear relation between k and σ at the phase
transition curve in Fig. 5B. Conversely, for
sparse hubs with α < 1 there exists a kmax above
which we have ∇d > 1 for any σu.

Appendix B: Quasi fixed points

Along with a possibility of converging to a
stable fixed point another scenario exists where
most network nodes are fixed but a small frac-
tion is still toggling.

More specifically, a situation where all nodes
except a small, interconnected clique are frozen

becomes typical. We refer to such a regime as a
quasi fixed point (QFP). A threshold to define a
QFP was set empirically at a value of 0.9 where
a rise in probability of frozen cores starts (Fig.
1B).

Appendix C: Fixed points are always there,
regardless of topology

Defined by equation (1), our system turns out
to be a special case of the Theorem in Ref. [38]
which states that the expectation EM of number
of fixed points M in random Boolean networks
is one, subject to a condition on the distribution
of random Boolean functions that holds in our
setting. Specifically, to comply with [38] an en-
semble of random Boolean functions φi(s) defin-
ing the network dynamics via si(t+1) = φi(s(t)),
must have a set of neutral links, removal of which
renders the network acyclic. Here a link j → i
between a pair of nodes is said to be neutral iff

Pr{φi(s) = g(s1, s2..sj..sN)} = Pr{φi(s) = g(s1, s2..s̄j..sN)} (C1)

for any Boolean function g. In our case of
threshold network, the condition (C1) is fulfilled

immediately because

Pr

{
φi(s) = sign

( N∑
k=1

W 1
iksk

)}
= Pr

{
φi(s) = sign

( N∑
k=1

W 2
iksk

)}
(C2)

for Gaussian matrices W 1 and W 2 differing by
inversion of a single element.

Unfortunately, the expectation, without any
higher moments known, does not provide infor-
mation about a typical case. Depending on the
topology T , a typical realization of W might
have M = O(1). Alternatively, there could be

a few exceptional realizations with a huge num-
ber of fixed points while typically M = 0.
For example, for T = I there are M = 0 fixed
points with probability 1 − 2−N and M = 2N

with probability 2−N . Conversely if T is a cyclic
graph (e.g. cyclic permutation) then with proba-
bility of half network has two fixed points and it
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has zero fixed points in the complementary case.
Although it is not immediately clear which sce-
nario is relevant for SF networks, for lumped hub
networks some insights are available.

For a lumped hub network with a strong hub,
such that∇d < 1 in the open loop setting, global
convergence to a stable fixed point s′ = s∗ is ex-
pected. If the consistency condition associated
with relaxation of clamping of h(t) in (3) is met,
then the closed loop system inherits the fixed
point at s = s∗. Moreover, another fixed point
emerges at s = −s∗ corresponding to a drive of
−1 in the open loop system. Since the aforemen-
tioned condition is met with probability half we
have an expected number of 2 × 1

2
= 1 fixed

points in agreement with [38].
In the opposite extreme case of zero drive

from the hub, it follows from mean field the-
ory that the network exhibits chaotic dynamics
with any pair of state-space trajectories becom-
ing asymptotically orthogonal. In particular, to
comply with MFT, distinct fixed points should
be either orthogonal to- or inverse of one an-
other. We assume, without a rigorous proof,
that orthogonality approximately implies inde-
pendence. Namely, events of having a fixed point
at s = s1 and at s = s2 are statistically indepen-
dent for s1 ⊥ s2. Now, we recall that fixed points
appear in pairs. Hence the number of pairs of
fixed points is distributed binomially with pa-
rameters n = 2N

2
= 2N−1 of possible pairs ±s∗ of

a state and its inverse, and a probability p = 2−N

that a particular pair of points is fixed. In the
limit of N → ∞ this distribution converges to
Poisson with parameter λ = pn = 1

2
:

M

2
∼ Poisson

(
1

2

)
. (C3)

To validate this theory numerically, we per-
formed an exhaustive search for fixed points in
small, fully connected networks with 16 ≤ N ≤
22 nodes. For N > 22 an exhaustive search was
not feasible due to computational constraints.
The results, shown in Fig. 8, depict an approx-
imate match to the theory which is not perfect,
with inaccuracies exceeding the standard error.
We attribute these inaccuracies to the finite size
of the networks, emphasizing that orthogonality

FIG. 8. Probability of a given number of fixed points. ’+’
– theoretical prediction. ◦ and � – empirical estimates for
networks of size N = 16 and 19 based on 104 and 103 Monte
Carlo tries respectively.

of chaotic trajectories upon which our theory is
built, is not achieved, even approximately, for
values of N small enough for exhaustive search.
Future work may include numerical experiments
with larger and sparser networks using advanced
search algorithms e.g. the method of [42].

For intermediate values of σh the picture is
more complicated. Chaos is not suppressed but
the symmetry between ±s is broken by the drive
(in the open loop setting only, since once the loop
is closed symmetry is restored). For σh � 1 one
might repeat our reasoning for σh = 0, this time
with single fixed points rather than pairs thereof,
and therefore with (C3) being replaced by:

M ∼ Poisson(1). (C4)

Numerical observations on small networks re-
ported in table I tell us that while a sharp transi-
tion in the distribution of fixed points is observed
once a drive is introduced, the distribution of M
does not immediately match (C3). Here again
we tend to attribute such a discrepancy with the-
ory to finite size effects compromising the fixed
point orthogonality.

To conclude, we present a strong evidence,
that the event of having a fixed point in the set-
ting (1) has probability of order one and it is the
fixed point stabilities rather than their existence
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σh M: 0 1 2 3 4 5
0 0.679 0 0.206 0 0.069 0

0.1 0.563 0.205 0.097 0.048 0.028 0.020
0.5 0.505 0.248 0.117 0.062 0.027 0.025
1.0 0.435 0.305 0.149 0.065 0.024 0.008
3.0 0.279 0.481 0.185 0.043 0.009 0

10.0 0.112 0.780 0.095 0.012 0.001 0

λ x: 0 1 2 3 4 5
1
2

0.607 0 0.303 0 0.076 0
1 0.607 0.304 0.076 0.013 0.002 2× 10−4

TABLE I. Numerical estimates for the distribution of M are
shown as a function of external drive strength for ensemble of
dense random networks of size N = 16 with elements gaussian
i.i.d. Random gaussian drive is scaled by σh. Poisson distri-
bution with parameter λ = 1, 1

2
are provided for reference.

that determines the convergence probabilities of
dynamical numeric simulations like in Fig. 1.

Remarkably, this result is opposed to a case
of continuous activation function (e.g. tanh)
where an exponentially large amount of fixed
points appear in the chaotic regime [43]. While
an in-depth analysis of these settings in beyond
the scope of the current work, we hypothesize
that the difference between tanh and sign non-
linearities follows from a fixed point at zero,
which exists in the former case but is absent in
the latter one.

Appendix D: Estimation of hub flipping time in
perturbed closed loop network

To obtain a, fairly coarse, lower bound on Tflip
one may argue as follows: the hub has approxi-
mately kh = m〈k〉 = O(1) incoming connections
whose weighted sum determines its sign. Let Hin

denote the set of these nodes. Given a random
perturbation of magnitude δ � 1 to the fixed
point s∗ the probability for a single node in Hin

to be flipped is

p1 = Pr {single flip in Hin} = δ
kh
N
� 1 (D1)

and the probability of q flips is pq ≈ pq1 =
O(δqN−q) which can be neglected for small δ.
Finally, by the arguments of Appendix A, the
probability that the hub will flip due to a single
node flip is 2

π
arctan 1√

kh
and consequently, the

flip rate is given by:

Pr {hub flips} = δ
kh
N

2

π
arctan

1√
kh
. (D2)

This corresponds to a typical flip time of:

Tflip ≈
N√
khδ

(D3)

Hence, stability condition (7) clearly holds for
− log∇d of an order of one.

Even in the critical regime, where log∇ → 0
is approached, condition (7) translates into

1−∇d >
√
khδ

N
log δN (D4)

which for our typical setting of N = 1500,
< kh >≈ 20, and a reasonable small perturbed
fraction of δ = 0.1 of the nodes translates into a
requirement of:

1−∇d < 1.5× 10−3. (D5)

This is very close to criticality compared to
other effects that may dominate inaccuracy of
mean field calculations even in open loop setting.
(Compare to Fig. 5 that depicts open loop and
closed loop setting, and Fig. 6 which includes
plot of convergence probability vs. ∇d).
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