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Abstract

Background: Accurate detection of copy number aberrations (CNA) can aid in
understanding the genetic causes of diseases. Three methods (CopyNumber,
Ginkgo, and HMMcopy) have been applied to single-cell DNA sequencing data
for CNA detection.

Results: In this paper, we benchmarked these three methods on simulated as
well as biological datasets. We found that HMMcopy has the best accuracy of
the three methods in terms of breakpoint detection but that Ginkgo is better in
terms of detecting the actual copy numbers. In terms of computational
requirements, HMMcopy consumes the least memory, but is in between the two
other methods in terms of running time.

Conclusion: While single-cell DNA sequencing is very promising for elucidating
and understanding CNAs, even the best existing method does not exceed 80%
accuracy. New methods that significantly improve upon the accuracy of these
three methods are needed. Furthermore, with the large datasets being generated,
the methods must be computationally efficient.

Keywords: Single-cell sequencing; Copy number aberration; Benchmarking;
Tumor evolution

Background
Acquired mutations are the main causes of cancer [1–3]. Copy number aberrations

(CNAs) are one such type of acquired mutations and have been implicated in over-

regulating oncogenes or down-regulating tumor suppressor genes [4]. Consequently,

accurate detection of CNAs could hold a great promise to understanding some of the

genetic underpinnings of cancer as well as developing targeted drugs. In the past two

decades, a wide array of DNA technologies have been used to detect CNAs, among

which the three most widely used are array Comparative Genomic Hybridization

(aCGH), Next Generation Sequencing (NGS), and single-cell sequencing [5].

Array CGH [6] is a cytogenetic approach that uses fluorescent dyes on the test

(tumor) and reference (normal) samples, and applies them to a microarray, which

is an array of probes. Each probe is a DNA sequence that represents a region of

interest. The size of a probe depends on the DNA sequence being used, and it varies

from dozens of base pairs, such as oligonucleotides, to thousands of base pairs, such

as bacterial artificial chromosomes. The probes from the paired samples, after be-

ing mixed together, hybridize at each target region. The fluorescence intensities

can then be measured for both samples, and the ratio of the two is used to inform

about CNAs of the test sample relative to the normal one. Array CGH data is ad-

vantageous in comprehensively detecting aneuploidies, amplifications and deletions
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simultaneously. A few computational methods [7–9] have been developed to detect

CNAs using aCGH data. DNAcopy [7] applies a modification of binary segmen-

tation [10] called circular binary segmentation (CBS) to aCGH to overcome data

noise, but it suffers from the problem of outliers [8, 9]. HMMcopy [8] was designed

to ameliorate the problem of outliers and uses a Hidden Markov Model (HMM) to

divide the genome into piecewise fixed segments in order to makes inferences on

CNAs. However, since aCGH data is limited in resolution and throughput [11], as

well as suffers from a hybridization bias problem, it is not the optimal technology

to detect CNAs for cancer samples.

Unlike aCGH, which obtains signal on only a limited number of genomic sites

of interest, NGS technology makes it possible to survey the whole genome at a

nucleotide-level resolution by sequencing millions of small fragments (reads) of the

genome in parallel. By aligning the reads to an assembled reference genome, the

reads that cover a position in the genome are counted to obtain the read depth

at that position. Read depths at different regions of the genome can then be con-

trasted to assess hypothesized genomic locations where copy number gains and

losses had occurred. NGS technologies suffer from high false positive rate compared

with aCGH, due mainly to GC bias and the presence of repetitive regions [12, 13].

Even more challenging in the case of cancer genomes that are often aneuploid, con-

tamination of normal cells may occur in the bulk tissue further complicating the

task of estimating the absolute copy number from NGS data. To overcome these

challenges, a plethora of computational tools [12, 14–20] have been developed for

detecting CNAs from NGS data. SeqCNA [12] filters out potentially false-positive

CNAs and corrects GC content for a more accurate CNA detection. CNAseg [14]

analyzes flowcell-to-flowcell variability to avoid false-positive CNAs. CNAnorm [15]

addresses the normal contamination and aneuploidy of the tumor sample to accu-

rately infer CNAs. Paired-end NGS data provides another modality in addition to

the read depth to infer CNA, and a few bioinformatics tools use this, including, for

example, CNVer [17], CNVnator [18], ReadDepth [19], and Mseq-CNV [20].

Although both aCGH and NGS data can be used to detect CNAs, they do not

provide high-throughput data at the single-cell resolution that is ideal for under-

standing tumor growth. In particular, intratumor heterogeneity [21] is best under-

stood by using data obtained from individual cells within the tumor tissue. Indeed,

in the last 10 years, the field has made great strides towards developing technologies

for single-cell DNA sequencing. Data generated by these technologies can be ana-

lyzed to detect CNAs and other types of mutations in individual cells and individual

clones within the heterogeneous tumor [22]. For example, DOP-PCR is a PCR am-

plification method that generates low-coverage data suitable for CNA detection in

single-cell data [23–26]. However, it also suffers from uneven coverage and allelic

dropout [22] that could lead to false-positive calls of CNAs. Beyond this method,

three tools have been extensively applied to single-cell sequencing data for CNA

detection: AneuFinder [27,28], CopyNumber [29], and Ginkgo [30]. Like HMMcopy,

AneuFinder uses a Hidden Markov Model (HMM) to determine the segmentation of

the genome and the absolute copy number of each segment. CopyNumber [29] pools

all cells together for joint segmentation to improve boundary detection accuracy.

Since cancer cells in the same subclone mostly share the same CNA boundaries,
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such strategy can improve the nucleotide resolution of the boundary by implicitly

amplifying the signal in the data. Ginkgo [30] uses Circular Binary Segmentation

(CBS) [7] to segment the genome, followed by inferring the integer value of the

absolute copy number. It is worth noting that some methods designed for aCGH

and NGS data have also been extensively used on single-cell data [31–34]. One such

method is HMMcopy [35]. As both AneuFinder and HMMcopy are HMM-based

methods, we focus on HMMcopy as a representative of the HMM-based approach.

A more recent method is SCNV [36], which uses a bin-free segmentation method

to do segmentation and copy number profiling. However, the method has not been

widely applied to single-cell DNA studies.

Among CopyNumber, Ginkgo and HMMcopy, only CopyNumber utilized the

pooled information from single-cell data. The other two methods can be equally

well applied to bulk samples. Moreover, HMMcopy was designed for aCGH data

originally, and thus does not take into account the specific error profiles that char-

acterize single-cell sequencing data, such as low and uneven coverage, or the com-

putational challenges that arise due to biological processes such as aneuploidy in a

tumor single cell. While these three methods have been widely applied to analyze

single-cell data [27, 31–34, 37–48], a comprehensive study of their performance is

currently lacking. While Knouse et al. [32] assessed the performance of CBS and

HMM-based methods on single-cell DNA sequencing data, their evaluation is lim-

ited to CNVs in brain and skin cells. Moreover, they did not investigate the effect

of the ploidy on the accuracy of the methods.

The contribution of this paper is two-fold. First, we developed a single-cell CNA

simulator that mimics realistic cell genealogy scenarios and is flexible enough to

allow for controlling processes that affect CNA detection, such as ploidy and read

count variability. Second, we used the simulator to generate synthetic datasets and

benchmarked the three methods that have been used for CNA detection from single-

cell DNA data: CopyNumber, Ginkgo, and HMMcopy. Moreover, we evaluated the

methods on real data. In addition to assessing the accuracy of the methods in

terms of precision and recall, we introduced the use of parsimony-based counting

of copy number changes as a potential indicator of accuracy, especially when the

ground truth is unknown. We found that in terms of accuracy of the detected

breakpoints and memory consumption, HMMcopy is the best of the three methods,

and in terms of running time, it is slower than CopyNumber but faster than Ginkgo.

However, when evaluated the methods in terms of the actual copy number profiles

they detect, we found that Ginkgo is more accurate than HMMcopy; in fact, we

found that HMMcopy is not stable at this task (paradoxically, CopyNumber does

not detect actual copy numbers). In terms of accuracy, CopyNumber has a very

poor performance. Our results highlight the need for developing new accurate and

efficient methods for CNA detection from single-cell DNA data.

Results and discussion
Simulations

We designed three experiments to evaluate the performance of the three methods

under different conditions. The first experiment was designed to evaluate the recall

and precision of the CNA detection methods. We designed the simulation study in
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this experiment to produce single cells that have ideal read count variability and

normal ploidy levels ranging between 2 and 3, so that we can learn how the methods

perform when the data is relatively not challenging. The second experiment was

designed to evaluate the performance of each method under a variety of ploidy levels.

Specifically, we simulated single cells whose ploidies range from 1.5 to 5.26 (the

ploidy of a cell is defined as the average copy number across the cell’s genome). We

then compared the recall and precision of the three methods on the simulated data

at different ploidies. The third experiment was designed to assess the performance

of each method under different coverage variabilities. In particular, we simulated

single cells whose coverage variabilities mimic those produced by three single-cell

sequencing technologies (MALBAC, DOP-PCR and TnBC) [49] that have been

used for CNA detection.

Precision and recall of the methods

In the first experiment, we simulated the evolution of 10,000 cells from which we

generated, through sampling without replacement, three 1000-cell datasets. For each

cell, we simulated read data using a simulator that we developed (see the “Methods”

section). We then aligned the reads back to the reference genome using BWA with

default parameters [50, 51]. Finally, we ran each of three methods on the resulting

BAM files, and computed the recall and precision of each method based on the

ground truth generated by the simulator.

We assessed the methods’ performances in coarse- and fine-grained analyses. For

the coarse-grained evaluation, we inspected the breakpoint positions as well as

whether they were consistent with the ground truth in terms of estimated gain/loss

state (rather than the actual value) in the copy number. The predicted breakpoint

is counted as consistent with the ground truth whenever it has the same status

(i.e., the copy number increases or decreases) and its genomic location is within

a certain distance of its counterpart in the ground truth. We varied the value of

this distance to study the methods’ accuracies. Each ground truth breakpoint was

matched by at most one predicted breakpoint to avoid double counting of the true

positive calls. For each method, we varied a parameter to obtain the receiver oper-

ator characteristic (ROC) curve, the details of which are described in the caption

of Fig. 1.

A preliminary analysis of CopyNumber on the data revealed that the method

achieves extremely low recall and precision. Since CopyNumber pools all cells to-

gether for breakpoint detection, we suspected that this poor performance owes

mainly to the method’s lack of sensitivity in detecting breakpoints shared by only a

small number of cells. Therefore, to allow for more meaningful comparison of Copy-

Number to the other two methods, we eliminated breakpoint pairs shared by fewer

than five cells in the ground truth and used the resulting new ground truth to evalu-

ate CopyNumber’s recall and precision (but we did not filter the breakpoints for the

other two methods). As Fig. 1a shows, CopyNumber still has, by far, the poorest

performance. We hypothesize that for a breakpoint to be detectable by CopyNum-

ber, it needs to be shared by a large number of cells. We further checked this by

calculating the number of cells sharing a breakpoint that is called or missed by

CopyNumber, and found that there is a significant difference between the two sets
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(p-value < 9.019e-09 for Student’s t-test with mean 9.27 versus 5.35). We also ob-

serve that as the tolerance threshold for the detected breakpoint position increases,

improvement in CopyNumber’s performance is much larger than the improvement

in the performance of the other two methods. However, even with the most forgiv-

ing threshold (two breakpoints are considered to be the same if their positions are

within 1 million basepairs of each other), CopyNumber still has poorer performance

than the other two methods even under the most stringent threshold. Overall, the

results in Fig. 1a show that (1) HMMcopy generally outperforms the other two

methods, with Ginkgo being a close second, and (2) that even HMMcopy’s best

recall and precision are around 0.8 and 0.7, respectively.

In the fine-grained analysis, we focused on the agreement of the absolute copy

numbers on both 5’ and 3’ of an inferred breakpoint with those of the ground

truth, in addition to the requirements on gain/loss consistency and distance. Since

CopyNumber does not predict the absolute copy numbers for an individual cell, it is

not considered in this analysis. Surprisingly, HMMcopy’s prediction of the absolute

copy number is not stable, leading to a bimodal distribution of both recall and

precision (Additional file 1: Figure S1). We found that cells with low recall and

precision correspond mainly to cases where HMMcopy made inaccurate estimates

of the cells’ ploidies (Additional file 1: Figure S2). We then selected only those cells

for which the ploidy was correctly predicted (i.e., 2 or 3), and plotted the ROC

curve of HMMcopy on them. We found that HMMcopy performed generally better

than Ginkgo (Fig. 1b), which is in agreement with the coarse-grained analysis. The

recall and precision for the two methods dropped, which is expected since the true

positives and negatives are now measured most stringently. However, we observed

that the difference in results between the coarse- and fine-grained analyses is not

large, suggesting that once the breakpoint is found by these methods, predicting

the absolute copy number can be attained quite accurately. This is especially true

for Ginkgo whose ploidy prediction is stable.

Similar results were observed on the other two datasets (Additional file 1: Figures

S3 and S4).

The results in Fig. 1 were obtained under default parameters except for the pa-

rameters that were tuned to generate the ROC curves (alpha, gamma, and nu).

However, we found that the value of parameter strength in HMMcopy has to be

much larger than the default value in order to make the results more expected, i.e.,

increasing recall is accompanied with decreasing precision, and vice versa. We there-

fore set strength to be 10 million. According to HMMcopy’s users’ guide, strength

is the parameter that controls how much the initial values of e, which controls the

probability of extending a segment, remains the same throughout the iterations.

We found that setting strength would help to have a good quality control of the

result by making the initial setting of e last throughout all the iterations. Apart

from parameters nu and strength, we found that e is also an important parameter in

HMMcopy. The larger the value of e, the smaller the chance that the breakpoint is

detected. To explore which combination can yield the best performance for HMM-

copy, we varied both e and nu and calculated the F1 score. The performance of

HMMcopy is the best when nu is 4 and e ≥ 0.999999 (Additional file 1: Figure S5).

We also analyzed the computational requirements in terms of running time and

memory consumption for the three methods on a 1000-cell dataset (Fig. 2). Ginkgo

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 9, 2019. ; https://doi.org/10.1101/696179doi: bioRxiv preprint 

https://rdrr.io/bioc/HMMcopy/man/HMMsegment.html
https://doi.org/10.1101/696179
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fan et al. Page 6 of 20

is the slowest among the three and CopyNumber is the fastest. HMMcopy is in

between Ginkgo and CopyNumber in terms of running time. For memory con-

sumption, Ginkgo is the most demanding of the three, followed by CopyNumber.

HMMcopy is the lightest in terms of memory consumption. Note that in running

Ginkgo, we eliminated the steps of generating figures such as heatmaps and copy

number profile, so that these do not affect the running time and memory in com-

parison with the other two methods. For CopyNumber, an extra step is required to

generate its input file. We used the intermediate result of HMMcopy, i.e., the GC

corrected read count on each bin, as the input to CopyNumber. We take the time

for calculating this intermediate file into account for CopyNumber for a fair com-

parison. Since CopyNumber processes all cells together, we suspect that more cells

will require more memory, whereas Ginkgo and HMMcopy’s memory requirements

are not affected by the number of cells involved.

In summary, we found that HMMcopy is the most accurate in predicting break-

points among the three. When HMMcopy’s prediction of ploidy is accurate, its recall

and precision of predicting the absolute copy number are the best among the three

methods. However, it is not as stable as Ginkgo in terms of absolute copy number

detection since its prediction of ploidy is wrong for many cells (49.4% for default

values of nu and e). CopyNumber’s recall and precision are the worst of the three

methods. Moreover, it cannot predict the absolute copy number for each individual

cell, and thus is not as applicable as the other two methods.

The effect of ploidy on performance

To test the robustness of the methods to different ploidies, we varied the ploidy

by tuning the parameters that control whole chromosomal amplifications and the

rate of deletion (see the “Methods” section). We varied the ploidy from 1.5 to

5. Specifically, we used 1.5, 2.1, 3, 3.8, and 5.26 (we refer to them as 1, 2, 3, 4,

and 5, respectively, hereafter), and generated three datasets for each ploidy. We

tuned the coverage parameter for each ploidy so that the total number of reads

for different ploidies are approximately the same to avoid adding reads for larger

genomes resulting from higher ploidies.

We ran each method using their default parameters (except the strength pa-

rameter in HMMcopy). Finding CopyNumber’s recall to be zero using the default

gamma, we tuned gamma using the optimal value, i.e., 5, shown in Fig. 1). We

then found the recall greatly increased with this setting. Similar to the previous

experiment, we again removed those breakpoint pairs shared by ≤ 5 cells from the

ground truth for evaluating CopyNumber’s performance.

We used different combinations of the parameters to simulate high-ploidy cells

(details are in the “Methods” section), i.e., 4 and 5, and found that in the absence

of odd and intermediate copy numbers, HMMcopy’s inference of the ploidy and

absolute copy numbers were inaccurate (Additional file 1: Figure S6). This is also

the case for Ginkgo in the absence of the odd copy numbers. However, despite

the lack of intermediate copy numbers, Ginkgo correctly predicted absolute copy

numbers for the case of ploidy=5, showing that Ginkgo is more robust to changes in

ploidy than HMMcopy in terms of predicting absolute copy numbers. In summary,

the lack of odd or intermediate copy numbers in the data led to wrong predictions of
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absolute copy numbers. We then tuned the simulator’s parameters so that in higher

ploidies there are odd and intermediate copy numbers to avoid the extremely hard

cases for CNA detection (details are in the “Methods” and “Conclusions” sections).

Fig. 3 shows the precision and recall for the three methods for coarse- and fine-

grained analyses, respectively.

In the coarse-grained analysis, Ginkgo’s recall is > 0.8 in general, but its precision

is relatively low (i.e., < 0.4) for ploidy 2 and 3. This is probably because it was

affected by the variability of the read counts and over-segmented the genome. With

similar recall, HMMcopy has higher precision at all ploidies. CopyNumber’s recall

and precision are low (< 0.4) for all ploidies, with low recall and precision for ploidy

5 and low precision for ploidy 2.

In the fine-grained analysis, Ginkgo’s recall and precision dropped by about 10%

as compared with the coarse-grained results. Its recall dropped the most for ploidy 5,

indicating the challenge in accurately predicting the absolute copy number for high-

ploidy cells. Although the odd and intermediate copy number states are present in

this simulated data, HMMcopy’s precision and recall are still bimodally distributed

for all ploidies. As we observed cells whose incorrect ploidy prediction led to wrong

prediction of absolute copy numbers in the previous experiment, these bimodal

distributions further showed that such wrong prediction can widely occur to cells

with different ploidies.

Similar results were observed on the other two datasets (Additional file 1: Figures

S7-S10).

The effect of coverage on performance

To evaluate the performance of each method under different single-cell sequencing

technologies, we sampled 20 cells from the simulated dataset and simulated their

sequencing at four levels of coverage variabilities, corresponding to MALBAC, DOP-

PCR, TnBC and Bulk sequencing (see details in the “Methods” section) and ran

the three methods on each of them. We generated three datasets for each level of

variability. Fig. 4 show the performance on one of the datasets. With decreasing

variability, all three methods’ recall increased under both the coarse- and fine-

grained analyses. Ginkgo’s and HMMcopy’s precisions increased with decreasing

variability. CopyNumber’s precision, on the other hand, stays the same regardless

of the coverage variability level, whereas its recall generally increases. In summary,

better sequencing technology leads to better performance. The best that can be

ever obtained (Bulk sequencing) is about 15% higher than the worst (MALBAC)

for recall, and slightly higher for precision.

We looked into the copy number profiles in cases where HMMcopy’s precision

and recall were effectively 0 (one such case is illustrated in Additional file 1: Figure

S11). We found that choosing a wrong ploidy from the set of candidate ploidies

by HMMcopy may result in a copy number profile in which all the segments are

predicted to have the same absolute copy number, whereas the closest profile to the

ground truth is among the reported non-optimal results. We observed that in such

cases, the wrong choice of ploidy may affect both the segmentation and inference

of the absolute copy number of those segments.

Similar results were observed on the other two repetitions (Additional file 1: Fig-

ures S12-S15).
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Performance on a real dataset

In real data analysis, due to the lack of ground truth, we evaluated the performance

of the three methods in two ways. First, we evaluated the consistency among the

three methods. The more overlap among the methods, the more consistent they

are. Second, we inferred a maximum parsimony tree using PAUP [52] from the

inferred copy number profiles and calculated the smallest number of copy number

changes for each bin across all branches of the tree, where the genome at the root

of the tree is assumed to be diploid. The rationale for the latter way of assessing

performance is that if the CNA’s called by a method result (under a parsimony

analysis) in a very large number of changes of the copy number at any bin, then

one plausible explanation is error in the calls (another plausible prediction is that,

for some reason, the locus corresponding to that bin has repeatedly gained and lost

copies during the evolution of the cells which could be indicative of some interesting

biological processes at play).

We downloaded single-cell DNA sequencing data of seven samples (the median

number of cells in the seven samples is 47) from [37] and selected those pre-treatment

samples whose CNA profiles had not changed due to treatment compared with mid-

treatment and post-treatment ones. We then ran the three methods with default

parameters (except for the strength parameter in HMMcopy, as discussed above)

on the single cells in each sample.

For assessing accuracy, we generated for each sample a Venn diagram of the pre-

dictions based on all three methods, where predictions by two methods were deemed

consistent according to the same rule we used in the simulation study (in assessing

consistency between predictions and the ground truth). Fig. 5a shows the results

for Sample 102 (Additional file 1: Figures S16-S18 show the results for the other

six samples). It can be seen that 47% of Ginkgo’s calls overlapped with the other

two methods, leaving a large portion as unique calls. HMMcopy overlapped well

with the other two methods, with 22% of unique calls. In particular, HMMcopy

overlapped well with Ginkgo: 76% of HMMcopy’s calls overlapped with Ginkgo.

CopyNumber’s overlap with Ginkgo was larger than that of HMMcopy (65% versus

43%). The overlap among the three methods is a very small portion of the union

of all calls (8%), indicating a very large inconsistency among the three methods.

From these results, we observe that HMMcopy performed the best among the three

in breakpoint calling, if we consider consistency with other methods as a metric of

quality, which is consistent with what we observed on the simulated data.

We then investigated the smallest number of changes required to explain the copy

numbers detected by Ginkgo and HMMcopy (again, CopyNumber does not detect

absolute copy numbers, which is why it is excluded in this analysis). Fig. 5b and

Fig. 5c show the distributions of copy number changes based on HMMcopy and

Ginkgo’s results, respectively (Additional file 1: Figures S17-S18 show results for

the other six samples). Interestingly, four out of seven samples (samples 102, 132,

152, and 302) showed a higher number of bins that have one copy number change

than ones with no copy number changes. The other three samples (samples 126,

129, 615) have the most bins that had no copy number changes at all. Generally

the number of bins that had copy number changes decreased with the increasing

number of changes. On the other hand, based on the HMMcopy results, all samples
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showed much higher percentage of no copy number change than those with some

copy number change.

Conclusions
Computational methods for analyzing single-cell DNA data are currently being de-

veloped, yet their performance is not yet well understood. This is the case especially

for methods for CNA detection. In this work, we benchmarked three methods that

have been widely applied to single-cell data, namely CopyNumber, Ginkgo, and

HMMcopy. We compared the three methods on simulated data generated under

different settings that reflect varying degrees of complexity in the data. To ac-

complish this task, we developed a simulator that is flexible to simulate different

scenarios and also mimic realistic data. We found that HMMcopy performs the best

for breakpoint detection. However, HMMcopy is not stable in inferring the absolute

copy number. Ginkgo performs well for both breakpoint detection and inference of

the absolute copy number. CopyNumber is not as sensitive as the other two meth-

ods. We also looked into the performance of the three methods when ploidies were

varied. We found that data with higher ploidies presented challenges for Ginkgo.

HMMcopy is the most robust in terms of breakpoint detection among the three

methods regardless of the ploidy, but its inference of the absolute copy number

is not accurate for all ploidies. Both recall and precision of CopyNumber are the

worst among the three methods. To explore the effect of technology artifacts on the

accuracy of the methods, we simulated data that mimics the variability in coverage

corresponding to MALBAC, DOP-PCR, TnBC, and Bulk. We found that all three

methods’ recall generally increases with the improvement in the technology, with

smaller observed change in their precision.

We then applied the three methods to real data and evaluated their performance

by analyzing the shared and unique detections they made as well as counting the

total number of copy number changes must be invoked based on their detections.

We found a good amount of overlap in detections between Ginkgo and HMMcopy.

We also found that HMMcopy’s detections result in fewer copy number changes

than Ginkgo’s.

In our simulations, we found that in the absence of odd or intermediate copy

numbers, neither Ginkgo nor HMMcopy can correctly predict the absolute copy

number. For example, in the absence of copy numbers 1, 3, and 5, copy numbers

2, 4 and 6 can be incorrectly inferred as 1, 3, and 5, respectively. Similarly, in the

absence of copy numbers 1, 3, 4, 6, and 7, copy numbers 2, 5, and 8 can be incorrectly

inferred as 1, 2, and 3, respectively. It is important to emphasize that while such

issues may be present in real datasets, the computational tools we considered are

limited in handling them. We also observed that HMMcopy may incorrectly infer the

absolute copy number even in the presence of odd and intermediate copy numbers.

This is due to the fact that HMMcopy incorrectly inferred the ploidy. We suggest

that the users also take into account the intermediate results inferred from ploidies

other than the chosen one when applying HMMcopy to their real data.

Another issue is that among the three methods, HMMcopy has the largest number

of parameters for the user to set (or use the default values thereof). Following the

command listed in [35], where the authors applied HMMcopy to their single-cell
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data, while tuning parameters such as e and nu, resulted in odd behavior of the

method (in terms of the shape of the ROC curve). We found out that the parameter

strength needs to be set very high to result in a “standard” ROC curve.

For Ginkgo, we found that it may generate a few outlier bins with extremely high

absolute copy number on the real dataset. We suspect this might be due to its read

count correction step that takes into account the GC content and mappability of

the region that coincides with the bin. In fact, in our real data analyses, we capped

these extremely high copy numbers at 15 since this is the maximum number that

PAUP can handle in such a parsimony analysis.

Methods
Simulation

Two steps are involved in simulating reads for single-cell sequencing. First, the cell

tree is generated, where the nodes are the cells, and the edges represent the parent-

daughter cell relation. The leaf nodes represent the single cells that are sampled

from the patient; the internal nodes represent the cells that existed in the past and

were not sampled. We set the root node as a normal genome without any CNA,

assuming that all CNAs are somatic. The tree is simulated by the Beta-Splitting

model (see below), which allows producing imbalanced trees, consistent with what

was observed in the real data [38].

On each edge (except for those attached to the root of the tree; see below),

we simulate a number of CNAs, the number of which corresponds to a Poisson

distribution (by default, λ = 2). λ relates with the mutation rate which has been

studied for two decades [53,54]. There has not yet been a comprehensive knowledge

of the mutation rate of CNAs, but according to the data from [37], we found there

are about several dozens of CNAs in this data set. The same can be found in a pan-

cancer study [55]. Setting default λ to be 2 will lead to the similar number of CNAs

at the leaves for a tree. The daughter cell of the edge inherits all CNAs in the parent

node, in addition to its unique CNAs. To simulate a CNA, we randomly choose the

allele, and the chromosome and position on the allele that CNA is going to occur.

First, we sample the allele on which the CNA is going to occur from the paternal and

maternal alleles according to a binomial distribution (default p = 0.5). We designed

the simulator in a framework which keeps track of the allele at which the CNA

occurs so that in our future work of simulating single nucleotide variations (SNV)

simultaneously, the allele that is dropped due to the high allelic dropout rate can

be traced. For the CNA size, we sample from an exponential distribution (default

mean=5Mbp), plus a minimum CNA size (default 2Mbp). We set the minimum

CNA size by default to be 2Mbp because these CNAs are rare and commonly

associated with disease [56], and also because of the limited resolution of of single-

cell data. The exponential distribution with mean 5Mbp is to render a wide range

of CNA size. According to [32,57], the larger the CNA size, the smaller the CNA’s

possibility. We choose copy number gain versus loss by a binomial distribution

(default p = 0.5). We set the default parameter to be 0.5 so that copy number gain

and loss are equally distributed. If a copy number gain is sampled, we sample from

a geometric distribution (default p = 0.5) to determine the number of copies to be

gained (mean=1/p). This choice of a distribution is motivated by the observation
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that extremely high copy number gains are very rare and are often observed by

double minutes amplification [58], which we do not take into account currently.

Once a whole-genome DNA sequence is simulated with the CNAs, the gained copies

are placed in tandem with the original copy. If a copy number loss is sampled, the

whole sequence on that region of the allele is deleted.

The CNAs on the edges attached to the root node are simulated differently. In

particular, clonal whole chromosomal amplifications can occur on these edge, as

indicated in the punctuated evolution model observed in [38]. We simulate the

chromosomal amplifications in addition to the focal CNAs. We set the probability of

a chromosome to be amplified to be according to a binomial distribution (default p =

0.2). This default value is used so that while the whole chromosome amplification

is introduced, 20% chromosomes in the genome will be changed. The number of the

amplified copy is sampled from a geometric distribution (default mean is p = 1)

multiplied by a value (default is 1) to amplify the copy numbers simulated without

changing the distribution. The distribution of the whole chromosomal amplification

can be turned off as an option.

At the edge to the root, we also add an option to allow more CNAs than the

other edges. This is again to mimic a scenario of punctuated evolution [38]. To do

that, we sample a value from a Poisson distribution (by default, λ = 4) which is the

multiplier of the average number of the CNAs that occur to the edges other than

the root. Thus the edge to the root has on average 4 times (default parameter)

more focal CNAs than those of other edges. The higher this number, the more

focal CNAs the edge to the root carries. This parameter is introduced to allow the

user to simulate data that mimics the punctuated evolution model. However, due

to the diversity of models that have been summarized for cancer evolution [59],

users can turn off this option or tune the parameter λ so that the simulated data

corresponds to their observation and experience. In our study, the value of λ was

chosen according to the length of the trunk observed in Fig. 6 in [38].

Once we have the tree and the DNA sequences for all leaf nodes, we simulate

the generation of read data from the genomes. Given the coverage of the genome

(by default 0.04X), the simulator divides the genome into non-overlapping bins

each of which has a default size of 200,000bp. To simulate the coverage variabil-

ity observed in single-cell data, we use a Markov Chain Monte Carlo (MCMC)

Metropolis-Hastings algorithm to determine a sequence of numbers of read pairs to

be sampled for each bin.

An input of the variability information is a point on the Lorenz curve, whose X

axis represents the percentage of the reads, and Y axis represents the percentage

of the coverage. We transform it to a Beta distribution by Equations (1) and (2)

in [60]. Through this transformation, we can sample read counts from a Beta distri-

bution that corresponds to the given Lorenz curve. The followings are mathematical

equations in [60] that are used to calculate the parameters (α and β) for the Beta

distribution. In more detail, suppose X is a random variable whose cumulative dis-

tribution function F corresponds to a Beta distribution with parameters α and β.

A point x sampled from this distribution has its corresponding X and Y positions

on the Lorenz curve as F (x) and φ(x), where

F (x) = Ix(α, β) (1)
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and

φ(x) = Ix(α+ 1, β) (2)

Given a point (F (x), φ(x)) on the Lorenz curve, we can calculate α and β for the

Beta distribution.

Given the Beta distribution’s parameters, we can then sample read count for each

bin by MCMC Metropolis-Hastings algorithm. Starting from the first bin whose read

count is assigned as the expected coverage x0, we sample the next bin’s proposed

read count x′ by a Gaussian distribution, and accept it if compared with the previous

bin’s read count x0,

Ix′(α, β)×Gaus(x′|x0)

Ix0
(α, β)×Gaus(x0|x′)

≤ u (3)

where Gaus(x′|x0) is the proposal probability of proposing x′ given x0, and u is the

acceptance ratio. We set u to be 0.5 by default. We set the same standard deviations

for Gaus(x′|x0) and Gaus(x0|x′), centered at x0 and x′, respectively. Thus the two

Gaussian distribution canceled out. The rest term, Ix′/Ix0
≤ u, controls how much

the next bin’s read count differs from the current one. The read counts drawn are

thus corresponding to a Beta distribution, and are simultaneously constrained by

the acceptance ratio of the Metropolis-Hastings algorithm. This is to mimic the

realistic data whose read coverage fluctuates, but the read count changes smoothly

without sharp changes between neighboring bins.

Running the programs

In all experiments, we eliminated reads that have mapping quality score < 40.

We eliminated the cells that HMMcopy predicted as normal cells (predicted to be

diploid and found no copy number aberration) in all experiments, the percentage

of which was very small ( < 0.2%).

Parameters of simulator

The simulator is designed to be flexible, with user-specified parameters, as now

describe.

Parameters for varying the ploidy level

To generate data with different ploidies, parameters associated with whole chromo-

somal amplification can be set for that purpose.

• -W (–whole-amp) Controls whether there are whole chromosomal amplifi-

cations or not.

• -d (–del-rate) The rate of copy number loss versus copy number gain.

• -C (–whole-amp-rate) The possibility that a chromosome is selected to

have whole chromosomal amplification.

• -E (–whole-amp-num) For those chromosomes that are selected to be am-

plified, multiplying this number with the sampled value from a geometric

distribution, whose p is “-J” described below, renders the final number of

copies to be amplified.
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• -J (–amp-num-geo-par) The parameter p in the geometric distribution

from which the number of copy of the chromosome to be amplified is sampled.

Combination of -J and -E can make a variety of copy number distributions

and make it convenient to attain higher copy number gains when necessary.

In our experiment above where we varied the ploidy level, we use a combination of

these five parameters to generate data whose ploidies range from 1.5 to 5 as follows.

• Ploidy = 1.5: -W 0 -d 1 No amplifications are allowed, and all copy number

aberrations come from deletion.

• Ploidy = 3: -W 1 -d 0.5 -C 0.5 -E 1 -J 1 Amplification is allowed, and

the average number of amplification for the whole genome is 0.5 for one allele.

The final ploidy is 3.

• Ploidy = 4, the case that lacks odd copy numbers: -W 1 -d 0.5 -C 0.5

-E 2 -J 1 Amplification is allowed, and the average number of amplification

for the whole genome is 1 for one allele. The final ploidy is 4. Note that since

the parameter p in the geometric distribution (-J) is set to be one, the copy

number is amplified by two for the allele that is selected for amplification.

This causes the lack of intermediate copy numbers such as three, five, etc.

• Ploidy = 3.8, the case that has odd copy numbers: -W 1 -d 0.5 -C 0.9

-E 1 -J 1 Amplification is allowed, and the average number of amplification

for the whole genome is 0.9 for one allele. The final ploidy is 3.8. Compared

with the previous case which lacks odd copy numbers, we increase the copy

number by doubling 90% of the chromosomes. The following local copy num-

ber aberrations that are performed based on the amplified genome will then

generate regions that have different copies, including the odd copies. In the

absence of odd copy numbers, copy numbers 2, 4 and 6 will be considered as

1, 2, and 3 by any method. Thus, without copy numbers 1, 3 and 5, there is

no way for a method to tell the correct absolute copy number.

• Ploidy = 5, the case that lacks intermediate copy numbers: -W 1 -d 0.5

-C 0.5 -E 3 -J 1 Amplification is allowed, and the average number of ampli-

fications for the whole genome is 1 for one allele. The final ploidy is 5. Note

that since the parameter p in the geometric distribution (-J) is set to be one,

the copy number is amplified by three for the allele that is selected for ampli-

fication. This causes a scenario where most of the copy numbers are two, five

and eight.

• Ploidy = 5.26, the case that has intermediate copy numbers: -W 1 -d 0.5

-C 0.9 -E 1 -J 0.55 Amplification is allowed, and the average number of

amplification for the whole genome is 0.9 for one allele. Setting parameter

J to be 0.55, the total amplified copy number for each allele is 1.63 (from

1/p× 0.9). The final ploidy is 5.26.

Parameters for varying the read count distribution

Since Lorenz curves have been used to evaluate the variability of read counts

[35, 49, 61], we used the Lorenz curves reported in [49] for simulating variabili-

ties at different levels. We sampled the read counts for each bin by the distribution

(Beta distribution) corresponding to their Lorenz curves using a Markov Chain

Metropolis-Hastings method (Additional file 1: Figure S19 shows the Lorenz curves

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 9, 2019. ; https://doi.org/10.1101/696179doi: bioRxiv preprint 

https://doi.org/10.1101/696179
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fan et al. Page 14 of 20

(left panel) and their corresponding Beta distributions (right panel) for the four

technologies. The key parameters used for the Lorenz curves and Beta distributions

corresponding to the four technologies are shown within the panels.).

The Beta-splitting model

For generating the underlying evolutionary trees, we followed a generalization of the

Blum-François Beta-splitting model [62] which is inspired by Aldous’ Beta-splitting

model [63]. The construction of a tree based on this model [64] consists of two

major steps: First, we generate two sequences of random values: B = (b1, b2, · · · )
and U = (u1, u2, · · · ), B is a sequence of independent and identically distributed

(i.i.d.) random variables sampled from the B(α + 1, β + 1) distribution, and, U is

a sequence of i.i.d. random variables with the uniform distribution on [0, 1]. We

call {gi = (ui, bi)i∈N} the generating sequence which is the basis of incremental

construction of a tree. At the second step, we run the following algorithm on the

random values generated at the first step. The process of constructing an evolution-

ary tree for n cells/leaves based on the Beta-splitting model with the parameters

(α, β) combining these two steps is described in the following pseudocode.

Algorithm 1 Algorithm for constructing a tree T with n leaves with the Beta param-

eters α and β.
1: function BuildBetaSplittingTree(n, α, β)
2: Create the root of T
3: T .root.label← (0, 1)
4: for i = 1 · · ·n do
5: Sample bi ∼ B(α+ 1, β + 1)
6: Sample ui ∼ U(0, 1)
7: for each leaf ∈ T .leaves do
8: (x, y)← leaf.label
9: if ui ∈ [x, y] then

10: l← Create the left child of leaf
11: r ← Create the right child of leaf
12: r.label← (x+ (y − x)bi, y)
13: l.label← (x, x+ (y − x)bi)
14: leaf.label← i
15: end if
16: end for
17: end for
18: return T
19: end function

Software availability

The simulator has been implemented in Python and is freely available at https://

bitbucket.org/xianfan/cnsc simulator/src/master/, which also includes the scripts

for regenerating the comparison results for both simulated and real datasets.

Availability of data and materials
The new version of HMMcopy was downloaded from https://github.com/shahcompbio/

single cell pipeline/tree/master/single cell/workflows/hmmcopy. The scripts to

preprocess files for HMMcopy were downloaded from https://shahlab.ca/projects/

hmmcopy utils/. We use hg19 for all experiments in this manuscript and the mappa-

bility file used by HMMcopy was downloaded from http://genome.ucsc.edu/cgi-bin/

hgFileUi?db=hg19&g=wgEncodeMapability. CopyNumber was downloaded from
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https://bioconductor.org/packages/release/bioc/html/copynumber.html. Ginkgo’s

command line version which was used in this manuscript was downloaded from

https://github.com/robertaboukhalil/ginkgo.

The real biological dataset that we analyzed is available from NCBI Sequence

Read Archive under accession SRP114962.

Glossary
• Segmentation Computationally segmenting the genome into non-overlapping regions so that each region

has a homogeneous copy number.

• Boundary and Breakpoint Positions on the genome where segmentation occurs.

• Absolute Copy Number The integer value representing the number of copies of a region on the genome.

• Ploidy The average copy number across the genome.
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Figure 1 ROC curves of the three methods HMMcopy, Ginkgo, and CopyNumber. (a)
Coarse-grained analysis results, and (b) fine-grained results. For each method, the results based on
three thresholds of correctness are plotted. For HMMcopy, nu, which controls the suggested
degree of freedom between states, was tuned to take on the values 0.01 (rightmost), 0.1, 2.1 (the
tool’s default), 4, 10, and 20 (leftmost). For Ginkgo, alpha, which controls the significance level
to accept a change point, was tuned to take on the values 1e-1000 (rightmost), 1e-100, 1e-10,
1e-5, 1e-4, 1e-3, 1e-2 (the tool’s default), 0.02, and 0.05 (leftmost). The dots corresponding to
values 1e-5 and 1e-10 in coarse-grained analysis overlap. For CopyNumber, gamma, which is the
weight of the penalty on changing a state, was tuned to take on the values 40 (rightmost, and the
tool’s default), 10, 5, 4, 3, 2, and 1 (leftmost).
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Figure 2 Computational requirements of Ginkgo, HMMcopy, and CopyNumber for analyzing a
1000-cell dataset on Intel(R) Xeon(R) CPU E5-2650 v2 whose clock speed is 2.60GHz. Left and
right panels correspond to running time (in log10 of seconds) and memory consumption (in log10
of kb). The running time and memory were recorded for using different parameters as described in
Fig. 1. As Ginkgo’s running time increases more than twofold for α = 0.05, we treated it as an
outlier and did not include this running time point in this plot.

Figure 3 Recall and Precision of Ginkgo, HMMcopy, and CopyNumber on varying ploidy level
based on the (a) coarse-grained (b) fine-grained analysis. The ploidies of the simulated data were
1.5, 2.1, 3.0, 3.8, and 5.3.

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 9, 2019. ; https://doi.org/10.1101/696179doi: bioRxiv preprint 

https://doi.org/10.1101/696179
http://creativecommons.org/licenses/by-nc-nd/4.0/


Fan et al. Page 20 of 20

Figure 4 Recall and Precision of Ginkgo, HMMcopy, and CopyNumber on varying coverages
based on the (a) coarse-grained (b) fine-grained analysis. The coverages are varied to mimic those
produced by MALBAC, DOP-PCR, TnBC and Bulk sequencing.

Figure 5 Comparison of HMMcopy, Ginkgo and CopyNumber on Sample 102 in [37]. (a) Venn
diagram of the breakpoints from Ginkgo, HMMcopy and CopyNumber. Breakpoints from two
methods are counted as overlapping if they are within 400,000bp of each other. (b) Distribution
of the copy number changes (under a parsimony analysis) per bin based on the copy number
profiles obtained by HMMcopy for the seven samples. (c) Distribution of the copy number
changes (under a parsimony analysis) per bin based on the copy number profiles obtained by
Ginkgo for the seven samples. For (b) and (c), a maximum parsimony tree was inferred from the
copy number profiles of the cells, and the minimum number of copy number changes per bin
along all branches of the tree was computed by parsimony analysis. The percentages of bins with
each number of copy number changes are plotted.
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