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Abstract

A key aim of post-genomic biomedical research is to systematically 

integrate and model all molecules and their interactions in living cells. 

Existing research usually only focusing on the associations between 

individual or very limited type of molecules. But the interactions between 

molecules shouldn’t be isolated but interconnected and influenced. In this 

study, we revealed, constructed and analyzed a large-scale molecular 

association network of multiple biomolecules in human cells by modeling 

all associations among lncRNA, miRNA, protein, circRNA, microbe, drug, 

and disease, in which various associations are interconnected and any type 

of associations can be predicted. More specifically, we defined the 

molecular associations network and constructed a molecular associations 

dataset containing 105546 associations. Then, each node is represented by 

its attribute feature and network embedding learned by Structural Deep 

Network Embedding. Moreover, Random Forest is trained to predict any 

kind of associations. And we compared the features and classifiers under 

five-fold cross-validation. Our method achieves a remarkable performance 

on entire molecular associations network with an AUC of 0.9552 and an 

AUPR of 0.9338. To further evaluate the performance of our method, a 

case study for predicting lncRNA-protein interactions was executed. The 

experimental results demonstrate that the systematic insight for 

understanding the synergistic interactions between various molecules and 
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complex diseases. It is anticipated that this work can bring beneficial 

inspiration and advance related systems biology and biomedical research.

Author Summary

The interactions between the various biomolecules in the cells should not 

be isolated, but interconnected and influenced. There have been many 

valuable studies on the interactions between two individual molecules. 

Based on a systematic and holistic perspective, we revealed and 

constructed a large-scale molecular associations network by combining 

various associations in human living cells, including miRNA-lncRNA 

association, miRNA-disease association, miRNA-protein interaction, 

lncRNA-disease association, protein-protein interaction, protein-disease 

association, drug-protein interaction, drug-disease interaction, and 

lncRNA-protein interaction. To model and analyze this molecular 

associations network, we employed the network representation learning 

model to learn how to represent the node. Each node in the network can be 

represented by network embedding and its own attribute information. Any 

node can be classified. And any type of the associations in this network can 

be predicted, which can be considered as link prediction task. Our work 

provides a new systematic view and conceptual framework to understand 

complex diseases and life activities. It is anticipated that our study can 

advance related biological macromolecules, systems biology and 

biomedical research, and bring some meaningful inspiration.
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Introduction

In the past century, reductionism alternately guide the development of 

biology, has provided a wealth of valuable knowledge and data resources 

on individual cellular components and their functions. But the study of 

isolated cellular components does not help to answer the core questions 

about complex life activities, such as the nature of cells and the essence of 

life. A key goal of post-genomic biomedical research is to systematically 

integrate and model all molecules and their interactions in living cells. 

Understanding these molecules and their associations, whether isolated or 

surrounded by other cells, is essential to understanding how they determine 

the functions of this extremely complex machine of cells. As a master of 

reductionism theory, molecular biology and genomics have thoroughly 

pursued the fine structure and underlying physical basis of cellular system 

components, and accumulated excessive experimental data resources. 

Comprehensive and accurate modeling and understanding of these data 

requires a systematic and holistic perspective and approach. As a new 

holism, system biology inherits existing research paradigms such as 

molecular biology and genomics, providing a new understanding and 

framework for our study of life activities and complex diseases.

Existing biomolecular interaction or association studies often focusing 

only on the links between individual molecules, including mRNA-protein 

interactions [1, 2], lncRNA-protein interactions [3], protein-protein 
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interactions [4], miRNA-protein interactions [5], miRNA-lncRNA 

interactions [6, 7], considering exogenous chemical compound or complex 

disease, there is drug-protein interactions [8, 9], drug-disease interactions 

[10-12], miRNA-disease associations [13, 14], lncRNA-disease 

associations [15], protein-disease associations [10, 16]. Emerging research 

on circRNA shows there are also circRNA-miRNA associations [17], 

circRNA-protein interactions [18] and circRNA-disease associations [19]. 

From a systematic perspective, as one of the participating elements of 

human life activity system, the environment, or simply, the microbes, also 

has an association with disease [20] and affects the functions of drug [21]. 

In this study, we releveled and defined these interconnected associations 

between biomolecules as the Molecular Associations Network (MAN). 

The molecular associations in the human are shown in the Figure 1:

Figure 1. The molecular associations exist in human.
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There are several studies have considered the association between more 

than one biomolecule. Davis et al. manually compiled chemical-gene 

interactions, chemical-disease relationships, and gene-disease relationship 

data from literature, which provides a wealth of information for integrating 

data to constructed a chemical-gene-disease network [22]. Liu et al. 

constructed a heterogeneous network to predict miRNA-disease 

associations by connecting miRNA-target gene, miRNA-lncRNA 

associations, and miRNA-disease associations to calculated miRNA 

similarity and disease functional similarity [23]. Similarly, Chen et al. used 

lncRNA as a mediator to discover the associations between miRNA and 

disease by constructing a heterogeneous network of miRNAs, lncRNAs 

and diseases [24]. Zhu et al. described a Drug-Gene-ADR heterogeneous 

information network and use it to predict drug-gene interactions [25]. Lin 

et al. studied multimodal networks linking diseases, genes and chemicals 

(drugs) by applying three diffusion algorithms and different information 

content [26]. Yang et al. integrated protein-protein interactions and cell 

lines’ functional contexts similarity to predict drug response [27]. But the 

types of biomolecules integrated in these studies are still very limited. 

Moreover, these studies are not based on the perspective of systematic 

intermolecular interactions.

Network is an important form to express the connection between 

objects and objects. A key problem in the analysis of networks is to study 
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how to reasonably represent the characteristic of nodes in the network. In 

order to construct and analyze large-scale heterogeneous molecular 

associations network, we need appropriate network representation methods. 

Early matrix eigenvectors-based network representation learning 

algorithms strongly depend on the construction of relation matrices, for 

example, locally linear embedding [28], Laplace eigenmap [29] and 

directed graph embedding [30]. Such methods generally first define a 

linear or second-order loss function for the representation of the node. Then 

the optimization problem is transformed into the eigenvector calculation 

problem of a relation matrix. The main disadvantage of this type of method 

is the computational complexity: the eigenvector calculation of large-scale 

matrices is very time and space consuming. Neural network-based methods 

have made remarkable progress in the field of natural language and image 

processing. Similarly, such methods are also effective in the field of 

network representation [31]. For the first time, DeepWalk [32] introduced 

neural network model into the network representation learning field using 

Random Walk and word2vec, making full use of the information network 

structure. Another representative network representation learning 

algorithm is LINE [33]. It models all pairs of first-order similarity and 

second-order similarity nodes and minimizes the KL distance between the 

probability distribution and the empirical distribution, which can be 

applied to large-scale directed weighted graphs network representation 
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learning. In addition, matrix factorization is also an important means of 

network representation learning [34, 35]. Structural Deep Network 

Embedding (SDNE) [36] is applied to learn representation of each node in 

MAN, namely MAN-SDNE.

In this study, we defined a large-scale molecular association network 

of multiple molecules associations in human cells and constructed a dataset 

of MAN. It provides a systematic perspective for understanding the 

synergistic interactions between various molecules and complex diseases. 

More specifically, we cleaned and collected the most widely available data 

sets of nine biomolecular interactions to construct the whole molecular 

associations dataset (MAD). These data sets are originally isolated 

associations among five different objects, including miRNA, lncRNA, 

protein, drug and disease, with redundancy and duplicate names between 

entries, we unify it into a unified naming system and remove redundancy. 

Meanwhile, we introduce the network representation learning algorithm 

SDNE into MAN to calculate feature representation of each node in the 

MAN. And then, we simplify the heterogenous network to be 

homogeneous. Moreover, we consider not only the network embedding 

features, but also the attribute characteristics of the nodes themselves, such 

as k-mer frequency of lncRNA, miRNA, protein sequence, Morgan 

fingerprint of drug compound structure and semantic similarity of disease 

phenotype. All known association pairs are positive samples, and the same 
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number of unknown pairs that are randomly selected as negative samples 

to form a data set. Random Forest (RF) is used as the classifier for link 

prediction, and to avoid bias, the RF uses only default parameters and does 

not make any adjustments. Five-fold cross-validation was adopted to verify 

the performance of the model. Furthermore, we compared the performance 

of different features and different classifiers. And a case study using MAN-

SDNE to predict lncRNA-protein interactions was carried out. The 

experimental results are in line with expectations, the MAN contained rich 

information and MAN-SDNE can predict whether any node pairs have 

interactions. The reveal of MAN offers a new systematic view of complex 

diseases and life activities. It is anticipated that this research could advance 

systems biology and biomedical research, or bring some useful inspiration.

Materials and Methodology

Construction of Molecular Associations Dataset

In the past few decades, the interactions between individual biomolecules 

have been well studied. Some existing research provides valuable data on 

individual molecular interactions or associations. In order to create a 

comprehensive dataset of MAN, we have collected the most extensive data 

sets for various molecular associations in human cells, including miRNA-

lncRNA from lncRNASNP2 [37], miRNA-disease from HMDD [38], 

miRNA-protein from miRTarBase [39], lncRNA-disease from 

LncRNADisease [40] and lncRNASNP2 [37], lncRNA-protein from 
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LncRNA2Target [41], protein-disease from DisGeNET [42], drug-protein 

from DrugBank [43], drug-disease from CTD [44], and protein-protein 

from STRING [45]. In these data sets, the same entity may have different 

naming conventions. To connect different interactions of the same entity, 

we unify them into a unified naming scheme. Further, we remove 

redundancy and duplication. Finally, we obtained a MAD of 105546 

association records with five kinds of molecules objects, nine types of 

interactions. The details of node types and associations items in MAD are 

shown in Table 1 and Table 2 below.

Table 1. The amount of 5 types of nodes in the MAD dataset.

Node type Amount

lncRNA 769

miRNA 1023

protein 1649

drug 1025

disease 2062

Total 6528

Table 2. Type of association, source and quantity in the MAD.

Association type Amount Database

miRNA-lncRNA 8374 lncRNASNP2

miRNA-disease 16427 HMDD

miRNA-protein 4944 miRTarbase

lncRNA-disease 1264 LncRNADisease
lncRNASNP2

Protein-protein 19237 STRING
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Protein-disease 25087 DisGeNET

Drug-protein 11107 DrugBank

Drug-disease 18416 CTD

lncRNA-protein 690 LncRNA2Target

Total 105546 This study

Network embedding of the nodes

To obtain high effective node features for large-scale network, the network 

representation learning model SDNE is adopted to learn low-rank 

representations of each node and capture network structure. Unlike 

previous methods of using shallow neural networks, SDNE uses deep 

neural networks to model the nonlinearity between node representations. 

The entire model can be divided into two parts: one is model the first-order 

proximity supervised by the Laplace matrix. The other is to model the 

second-order proximity by an unsupervised deep autoencoder. The final 

SDNE algorithm uses the output of middle layer of the deep autoencoder 

as the network representation of the node. The framework of SDNE is 

shown in Figure 2.
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Figure 2. The framework of the semi-supervised deep model SDNE.

The details of second-order proximity that unsupervised components 

use to preserve global network structures was first described. Suppose a 

network G = (V, E), its adjacency matrix M, which contains n instances m1, 

m2, …, mn. for each instance mi, it can be defined as:

 (1)mi = ∑n
j = 1mi,j, mi,j > 0

Only if there is a link between vi and vj. while mi means the neighborhood 

structure of the node vi and M contains the neighborhood structure of each 

node. SDNE applied the deep autoencoder to obtain the second-order 

proximity. 

The objective function can be defined as follows:

 (2)𝐿2𝑛𝑑 = ∑𝑛

𝑖 = 1
‖(𝑥1

𝑧 ‒ 𝑥𝑖) ⊙  𝑏𝑖‖2
2 = ‖(𝑥 ‒ 𝑥) ⊙ 𝐵‖2

𝐹

Where  indicates the Hadamard product. SDNE not only considers ⊙
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the global network structure, but also the local structure, which is represent 

by first-order proximity. The first-order proximity can be viewed as the 

supervised information to constrain the similarity of the potential 

representations of a pair of nodes. The loss function of the first-order 

proximity can be defined as:

 (3)𝐿1𝑠𝑡 = ∑𝑛

𝑖,𝑗 = 1
𝑚𝑖,𝑗‖𝑦𝑘

𝑖 ‒ 𝑦𝑘
𝑗‖2

2

The final semi-supervised model SDNE combines the first-order and 

second-order proximity simultaneously. The objective function is shown 

as below:

𝐿𝑚𝑖𝑥 = 𝐿2𝑛𝑑 + 𝛼𝐿1𝑠𝑡 + 𝑣𝐿𝑟𝑒𝑔

 (4)= ‖(𝑥 ‒ 𝑥) ⊙ 𝐵‖2
𝐹 + 𝛼∑𝑛

𝑖,𝑗 = 1
𝑚𝑖,𝑗‖𝑦𝑘

𝑖 ‒ 𝑦𝑘
𝑗‖2

2 + 𝑣𝐿𝑟𝑒𝑔

Where  is an -norm regularization term to avoid overfitting. The 𝐿𝑟𝑒𝑔 𝐿2

define of  is:𝐿𝑟𝑒𝑔

 (5)𝐿𝑟𝑒𝑔 =
1
2∑

𝑘

𝑘 = 1
(‖𝑊𝑘‖2

𝐹 + ‖𝑊𝑘‖2
𝐹)

Node attributes

Each node in the MAN can be defined not only the network embedding, 

but also the attribute of themselves. In this work, for node with sequence 

information, the k-mer frequency was applied to exploit their attribute 

feature. For drug, Morgan fingerprints that represent their chemical 

structure are used as attribute features. For disease, we use a Medical 

.CC-BY 4.0 International licenseunder a
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available 

The copyright holder for this preprint (which was notthis version posted July 4, 2019. ; https://doi.org/10.1101/693051doi: bioRxiv preprint 

https://doi.org/10.1101/693051
http://creativecommons.org/licenses/by/4.0/


Subject Headings (MeSH) descriptor describing the phenotype of the 

disease to construct a directed acyclic graph (DAG) to calculate disease 

similarity, using this measure of similarity as the attribute of the disease. 

For sequence of miRNA, lncRNA, we use the 3-mer frequency to 

encode its sequence, from AAAA to UUUU, there is  possible 4𝑘

combinations of nucleic acid residues (A, C, G, U). For a given sequence, 

slide from left to right four residues as a sliding window, one residue one 

step, we can obtain the composition information of a sequence, and then, 

we normalize the feature vector according to the sequence length. 

For protein, the processing of protein sequences is slightly different. 

The 20 amino acids are first divided into four groups according to the 

polarity of the side chain, which is inspired by existing protein study [46], 

including (Ala, Val, Leu, Ile, Met, Phe, Trp, Pro), (Gly, Ser, Thr, Cys, Asn, 

Gln, Tyr), (Arg, Lys, His) and (Asp, Glu). Then we can use the same 3-

mer frequency mentioned above to process the protein sequence.

For drug, the chemical structure is represented by Simplified Molecular 

Input Line Entry Specification (SMILES) [47], then we calculate 

corresponding Morgan fingerprints for each compound. 

For disease, we use DAG to represent each disease based on MeSH 

descriptor. DAG(D) = (D, N(D), E(D)), N(D) is the set of points that contains 

all the diseases in the DAG(D). E(D) is the set of edges that contains all 

relationships between nodes in the DAG(D). For the diseases that are 
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included in MeSH, the semantic similarity that is calculated by means of 

DAG can be chose to represent the disease according to the previous 

literature. The semantic similarity between different diseases can be 

defined as follows. In DAG of disease D, the contribution of any ancestral 

disease t to disease D is as the formula:

  {𝐷1𝐷(𝑡) = 1                                                                 
    

𝑖𝑓 𝑡 = 𝐷
𝐷1𝐷(𝑡) = max {∆ ∗ 𝐷1𝐷(𝑡')|𝑡' ∈ 𝑐ℎ𝑖𝑙𝑑𝑟𝑒𝑛 𝑜𝑓 𝑡}  𝑖𝑓𝑡 ≠ 𝐷

(6)

 is the semantic contribution factor. The contribution of disease D to ∆

itself is 1 and the contribution of other nodes to D will be attenuated due to 

. Based on Equation (1), we can obtain the sum of the contributions of all ∆

diseases in DAG to D:

                 (7)𝐷𝑉1(D) = 𝛴𝑡 ∈ 𝑁𝐷𝐷1𝐷(𝑡)

Like the Jaccard similarity coefficient, the semantic similarity between 

the diseases i and j can be calculated by the following formula:

             (8)𝑆1(𝑖,𝑗) =
∑

𝑡 ∈ 𝑁𝑖 ∩ 𝑁𝑗
(𝐷1𝑖(𝑡) + 𝐷1𝑗(𝑡))

𝐷𝑉1(𝑖) + 𝐷𝑉1(𝑗)

Considering that the dimensions of attribute feature vector of different 

kinds of nodes are not uniform, we trained a deep autoencoder to learn its 

hidden high-level low-rank representation and unify its dimensions.

Deep autoencoder

In the framework of abovementioned SDNE, deep autoencoder (DAE) was 

used. For self-contained, in this section, we will briefly review the core 
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ideas of DAE. It is an unsupervised deep learning model consisting of two 

parts: encoder and decoder. The encoder consists of several nonlinear 

functions that map the input data to the representation space. The decoder 

includes a plurality of non-linear functions that map representations in the 

representation space to the reconstruction space. For a given input x, DAE 

maps the input to the output O(x):

 (9)𝑂(𝑤,𝑏)(𝑥) = 𝑓(𝑊𝑇𝑥) = 𝑓(∑𝑛
𝑖 = 1𝑤𝑖𝑥𝑖 + 𝑏)

Where the nonlinear activation function f can be defined as:

            (10)𝑓(t) = 𝑚𝑎𝑥(0,𝑊𝑡 + 𝑏)

Suppose the output of O(x) is , DAE aims to minimize the error 𝑥

between input and output. The loss function can be defined as follow:

  (11)ℒ = ∑𝑛

𝑖 = 1
‖𝑥𝑖 ‒ 𝑥𝑖‖2

2

Performance evaluation

In this study, the widely used evaluation measure was followed to evaluate 

our method, including accuracy (Acc.), sensitivity (Sen.), also means recell, 

specificity (Spec.), precision (Prec.) and Matthews Correlation Coefficient 

(MCC) defined as:

             (12)Acc. =
𝑇𝑁 + 𝑇𝑃

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃

(13)Sen. =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁

(14)Spec. =
𝑇𝑁

𝑇𝑁 + 𝐹𝑃

(15)Prec. =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃

(16)MCC =
𝑇𝑃 × 𝑇𝑁 ‒ 𝐹𝑃 × 𝐹𝑁

(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
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where TN represents the correctly predicted number of negative samples, 

TP stands for the correctly predicted number of positive samples, FN 

indicates the wrongly predicted number of negative samples and FP 

denotes the wrongly predicted number of positive samples. Certainly, the 

Receiver Operating Characteristic (ROC) curve, Precision-Recall curve 

and the area under the ROC curve (AUC), the area under the precision-

recall curve (AUPR) are also adopted to evaluate the performance of 

MAN-SDNE.

Results and Discussion

Five-fold cross validation performance of MAN-SDNE

First, we will briefly introduce the scheme of five-fold cross validation. 

The entire data set is randomly divided into five equal parts, each taking 

four subsets as the training set and the remaining one subset as the test set, 

cycle five times in turn, take the average of five times as the final 

performance. For MAN, we remove 20% of the links each time as the 

training set, the removed links as the testing set, and ensure that the links 

removed in these five times have no overlap. In each fold cross validation, 

we only use the training set as input to the network representation learning 

model to learn the network embedding of nodes. The five-fold cross 

validation performance is shown in Table 3 and Figure 3 as follow:

Table 3. The five-fold cross-validation performance of MAN-SDNE on the entire 
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MAN dataset.

fold Acc. (%) Sen. (%) Spec. (%) Prec. (%) MCC (%) AUC (%)

0 89.5 89.72 89.29 89.33 79.01 95.42

1 89.79 90.28 89.31 89.41 79.59 95.67

2 89.48 89.67 89.29 89.33 78.96 95.46

3 89.79 89.97 89.61 89.64 79.58 95.64

4 89.49 89.56 89.42 89.44 78.99 95.43

Average 89.610.16 89.840.29 89.380.14 89.430.13 79.230.33 95.520.12

Figure 3. The five-fold cross validation ROC, Precision-Recall curve, AUC and AUPR 
of MAN-SDNE on the entire MAN dataset.

On entire MAN, for predicting any type of molecular associations, that 

is, for predicting any link or edge in the associations network, our method 

MAN-SDNE achieves an average accuracy of 89.61%, a sensitivity of 

89.84%, a specificity of 89.38%, a precision of 89.43%, a MCC of 79.23%, 

a AUC of 95.52% and a AUPR of 0.9385. It should be noted that our 

classifier only uses the default parameters and does not perform any 

parameter optimization. To characterize the volatility of the model's 

performance, we also calculated the standard deviation of the five-fold 

cross-validation. As can be seen from Table 3, the standard deviation of 
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the above indicators is 0.16, 0.29, 0.14, 0.13, 0.33, and 0.12, which can 

reflect that our model MAN-SDNE is very stable and robust.

Evaluate and compare the effects of network embedding and 

attribute features

To fully exploit the discriminative features of nodes, we considered both 

the network embedding and the attribute of nodes in the MAN. In this 

section, we will evaluate and compare the effects of individual network 

embedding and attribute features and their combined use. The details are 

shown in Table 4 and Figure 4 as follow.

Table 4. Comparison of different features.

Feature Acc. (%) Sen. (%) Spec. (%) Prec. (%) MCC (%) AUC (%)

Attribute 87.920.2 90.510.33 85.330.35 86.060.27 75.950.4 93.80.11

Embedding 87.190.43 87.040.54 87.340.37 87.30.38 74.380.85 93.870.36

Combined 89.610.16 89.840.29 89.380.14 89.430.13 79.230.33 95.520.12

Figure 4. Comparison of nodes network embedding and attribute features.

The attribute of each type of node are obtained by the most widely used 
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feature extraction methods in its related research, such as k-mer frequency 

for lncRNA, miRNA and protein sequences, fingerprint for drug chemical 

structure, and semantic similarity for disease phenotype. The network 

embedding of nodes are learned by the SDNE algorithm on the training set. 

In order to evaluate and compare the impact of each kind of feature on the 

final classification performance of the MAN-SDNE model, we performed 

our model separately using individual network embedding feature, 

attribute feature and combined use of these two features. As the results 

listed in Table 4 and Figure 4, the individual effects of network embedding 

features and attribute features are already acceptable, and the large-scale 

network representation features are at least as good as state-of-the-art 

attribute features. Moreover, the combination of these two features can 

achieve the best results, demonstrating the complementary potential of the 

two features.

Comparison of widely used machine learning classifiers

In order to highlight the importance of constructing MAN under a 

systematic view, the most commonly used Random Forest model are 

choose as the classifier in the link prediction scenario. In this section, we 

will compare Random Forest with other widely used machine learning 

model, including Naïve Bayes (NB), Logistic Regression (LR), AdaBoost, 

and XGBoost, under the same experimental conditions. Both the Random 

Forest classifier and other contrast models use default parameters to avoid 
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bias. The results are shown in Table 5 and Figure 5 as below.

Table 5. Compare with widely used machine learn classifiers.

Method Acc. (%) Sen. (%) Spec. (%) Prec. (%) MCC (%) AUC (%)

NB 68.20.85 47.311.34 89.10.68 81.271.18 40.081.73 80.60.84

LR 80.650.98 82.021.02 79.282.65 79.881.88 61.351.9 88.031.25

AdaBoost 83.550.22 85.390.47 81.720.46 82.370.33 67.150.45 91.190.19

XGBoost 84.220.16 88.650.26 79.790.46 81.430.32 68.710.29 91.830.23

Proposed 
method 89.610.16 89.840.29 89.380.14 89.430.13 79.230.33 95.520.12

Figure 5. Comparison of widely used machine learning classifiers and MAN-SDNE.

The proposed method achieves the best results on all indicators with a 

high AUC of 95.52 and a high AUPR of 0.9385, while also having the 

smallest standard deviation. And the other machine learning classifiers also 

have good performance. NB can obtain better results when the properties 

of the samples are independent of each other. In this experiment, there are 

cases where the attributes are not independent and the cross-joins together 

affect the final classification effect. LR is essentially a linear classifier 

whose performance is limited by the distribution of data and does not 
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perform well in this case. All classifier parameters are default, which may 

cause AdaBoost and XGBoost to be inappropriate or over-fitting on this 

task. The results verify the robustness of the Random Forest and the high 

discriminability of features. 

Case study: predicting lncRNA-protein interactions using MAN-

SDNE

The effectiveness and robustness of the feature representation and 

classifier have been proved in the above experiments. In fact, MAN-SDNE 

can not only be used to predict the interaction between nodes under 

homogeneous conditions, but also play a role in the specific interaction 

types prediction in the network. In this section, we use MAN-SDNE to 

predict lncRNA-protein interactions. More specifically, in MAN dataset, 

there is 690 lncRNA-protein interaction, and the count of other 

associations is 104856, we divided the lncRNA-protein pairs into 5 equal 

subsets, according the strategy of five-fold cross-validation, prepare the 

train set and test set. In each fold of cross-validation, the training set is 

added to the remaining 104856 edges to train the SDNE for learning the 

network embedding of nodes. The conjoint triad (3-mer frequency) of 

lncRNA and protein sequence is used as node attribute. The results are 

shown in Figure 6. As shown in Figure 6A, MAN-SDNE can achieve good 

performance with an AUC of 80.28%. Meanwhile, we also compared the 

effects of attribute, network embedding for predicting lncRNA-protein 
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interactions, their performances are shown in Figure 6B, Figure 6C, 

respectively. And the comparison of them is shown in Figure 6D. The 

results demonstrate the capability of MAN-SDNE to predict heterogeneous 

interaction types. It also proves that the cell is a complete unit of life, and 

the interaction of biomolecules in the cell is interconnected to maintain the 

normal conduct of life activities.

Figure 6. The ROC performance of MAN-SDNE for predicting lncRNA-protein 
interactions. (A) five-fold cross-validation performance using network embedding and 
attribute feature of nodes; (B) five-fold cross-validation performance using only nodes 
attribute feature; (C) five-fold cross-validation performance using only network 
embedding feature; (D) performance comparison of different features.

Conclusion

In this study, we revealed and defined a molecular associations network of 
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various intermolecular associations. The difference from previous studies 

is that we consider these intermolecular interactions as interconnected 

entities to understand the wide-ranging interactions between molecules in 

human cells from a systematic view. The SDNE algorithm is applied to 

learn network embedding of nodes from the MAN. The k-mer frequency, 

fingerprint, and semantic similarity are also employed as the attribute of 

nodes. The Random Forest classifier is trained for link prediction. And we 

analyzed and compared the features, models and results. In addition, we 

did a case study using MAN-SDNE to predict lncRNA-protein interactions, 

which indicate the ability of MAN-SDNE to predict specific types of 

interactions in entire molecular associations network. Above these, for 

diseases, microbes, objects that are difficult to directly represents, MAN 

network embedding can be regarded as a good method of providing 

discriminative feature representation. In this work, different types of edge 

are treated as homogeneous, the node attributes are directly combined to 

the embedding, and some known types of interactions have not yet merged 

into our network, which can be improved in our future work.
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