bioRxiv preprint doi: https://doi.org/10.1101/692921; this version posted July 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

Bidirectional Mendelian randomization analysis of shared genetic signals between coexisting neurodegenerative disorders to decipher underlying causal pathways

Sandeep Grover, International Age-related Macular Degeneration Consortium (IAMDGC)

Running head: Genetic etiology of neurodegeneration

Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck, Universitätsklinikum

Schleswig-Holstein, Campus Lübeck, Lübeck, Germany

Search terms: Mendelian randomization, Causal inference, Educational attainment, Age-

related macular degeneration

Submission Type: Research article

Corresponding Author:

Sandeep Grover, Institut für Medizinische Biometrie und Statistik, Universität zu Lübeck,

Ratzeburger Allee 160, 23562 Lübeck, Germany; E-mail: sandeep.grover@imbs.uni-

luebeck.de, grover.sandeep@gmail.com

Phone: +49 451 500 50620, +49 1732168633

Fax: +49 451 500 50604

bioRxiv preprint doi: https://doi.org/10.1101/692921; this version posted July 13, 2019. The copyright holder for this preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under aCC-BY-NC-ND 4.0 International license.

ABSTRACT

OBJECTIVE

To investigate whether coexistence of various neurodegenerative disorders is coincidental or biologically connected.

DESIGN

Two sample Mendelian randomization using summary effect estimates

SETTING

Genetic data taken on various neurodegenerative disorders from various cohorts comprising individuals predominantly of European ancestry.

PARTICIPANTS

International Genomics of Alzheimer's patients (IGAP), project MinE, International Agerelated Macular Degeneration Consortium (IAMDGC), International Multiple Sclerosis Genetics Consortium (IMSGC), International Parkinson's Disease Genomics Consortium (IPDGC)

MAIN OUTCOME MEASURES

Alzheimer's disease (AD), Amyotrophic lateral sclerosis (ALS), Age related macular degeneration (AMD), Multiple sclerosis (MS) and Parkinson's disease (PD).

RESULTS

A Bonferroni corrected threshold of P=0.005 was considered to be significant, and P<0.05 was considered suggestive of evidence for a potential association. I observed a risky effect of PD on ALS (OR = 1.126, 95% CI = 1.059-1.198, P = 0.005). Using AD as exposure and PD as outcome, I observed a risky effect of AD on PD using all the MR methods with strongest results using MBE method (OR = 2.072, 95% CI = 1.006-4.028, P = 0.0416). Genetic predisposition to AD was further observed to be a risky for AMD (OR = 1.759, 95% CI = 1.040-1.974, P = 0.0363). On the contrary, AMD was observed to be strongly protective towards MS (OR = 0.861, 95% CI = 0.776-0.955, P = 0.0059).

CONCLUSIONS

My findings are consistent with the previously observed relative occurrence of co-existing neurodegenerative diseases or overlapping symptoms among neurodegenerative diseases.

Introduction

It is not uncommon to see cases of neurodegeneration in clinical practice showing temporal development of one neurodegenerative disorder after another. For instance, observational studies have shown higher risk of Parkinson's disease (PD) and Alzheimers' disease (AD) among patients with a diagnosis of neovascular age-related macular degeneration (AMD)¹⁻⁴. Occasional case reports of co-existence of Multiple sclerosis (MS) with Alzheimer's disease (AD) have also emerged in the literature⁵. Furthermore, the co-existence of Amyotrophic lateral sclerosis (ALS) with Frontotemporal dementia (FTD) had recently lead to revises consensus criteria for the diagnosis of FTD in ALS⁶.

Not surprisingly, most neurodegenerative diseases share certain clinical and pathological features. Furthermore, a number of genetic studies have time and again have also shown existence of shared genetic aetiology⁷⁻⁹. It is common to see overlapping symptoms among various neurodegenerative disorders. For instance, up to 50% of AD cases exhibit aggregation of alpha-synuclein into Lewy bodies, a characteristic seen in PD cases¹⁰. Furthermore, degeneration of retinal layer, a characteristic of AMD has also been reported in cases with ALS and MS^{11, 12}. Of all the co-existing neurodegenerative, presence of ALS, parkinsonism and dementia together is the most well characterized combination often reported in specific geographic locations and known by several name such as kii-ALS or Guam-ALS or ALS-PDC^{13, 14}.

It has been long debated whether co-existence of neurodegenerative disorders is purely coincidental or there is a causal relationship in between them. However, the varying latent phases of different neurodegenerative disorders make it difficult to interpret the exact relationship between the co-existing disorders. With age as a major confounding factor in observational studies, Mendelian randomization (MR) methodology could provide an alternative solution by providing life-long effect estimates using genetic variants as proxy pseudorandomized markers of neurodegenerative diseases¹⁵. Henceforth, the objective of the current study was to explore the causal relationships among different neurodegenerative disorders using MR approach.

Methods

A two-sample MR approach was applied to explore the relationship among six most commonly occurring neurodegenerative disorders namely Alzheimer's disease (AD), Amyotrophic lateral sclerosis (ALS), Age-related macular degeneration (AMD), Frontotemporal dementia (FTD), Multiple sclerosis (MS) and Parkinson's disease (PD)¹⁶⁻²⁰. I employed latest available summary GWAS datasets for the present study to prioritize genetic instruments for each of the neurodegenerative disorder. I used inverse variance weighted method as the main method to generate unconfounded estimates using the summary statistics from respective GWAS datasets to explore the relationship between each pair of neurodegenerative disorder. A Bonferroni corrected threshold of P=0.005 (as ten pairs of neurodegernative disorders were compared) was considered to be significant, and P<0.05 was considered suggestive of evidence for a potential association.

I also generated causal estimates adjusted for presence of potential pleiotropic variants by employing additional MR methods. The heterogeneity in the effect estimates were judged using MR-Egger, I2 and Cochrane-Q statistics. Lastly, sensitivity analysis was conducted to check reliability of estimates by excluding variants known to be directly involved in specific neurodegenerative disorder as an outcome, and variants believed to be potential confounders between pair of neurodegenerative disorder under consideration.

Results

All the datasets used in the study have been shown in **Table 1**. In addition, complete summary statistics used for causal analysis is provided in **Supplementary table 1**. The results from direct and reverse causal estimate analysis have been provided in **Table 2a to 2e**. I observed a risky effect of PD on ALS (OR = 1.126, 95% CI = 1.059-1.198, P = 0.005). The risky effect was further retained using IVW, MR-Egger and WME method. Furthermore, a weak bidirectional relationship was observed between AD and PD. Using AD as exposure and PD as outcome, I observed a risky effect of AD on PD using all the MR methods with strongest results using MBE method (OR = 2.072, 95% CI = 1.006-4.028, P = 0.0416). A moderate risky effect of PD on AD was further observed using WME method (OR = 1.013, 95% CI = 1.006-1.019, P = 0.0606).

Genetic predisposition to AD was further observed to be a risky for AMD (OR = 1.759, 95% CI = 1.040-1.974, P = 0.0363). On the contrary, AMD was observed to be strongly protective towards MS using MR-Egger method in the presence of significant pleiotropy (MR-Egger intercept p-value = 0.0481, OR = 0.861, 95% CI = 0.776-0.955, P = 0.0059).

Discussion

The present study is the first study to comprehensively explore causal relationship among various neurodegenerative disorders. My results strongly confirm the genetic relationship between PD, ALS and PD as observed in the case of patients with kii-ALS or Guam-ALS or ALS-PDC. My results further suggest risky and protective effect of AMD towards AD and MS which is consistence with the relative prevalence of retinal degeneration seen in cases of AD and MS (See **Supplementary table 2**). My study has several strengths and limitations. It is one of the most comprehensive study exploiting the genetics of neurodegenerative disorders to understand the relationship among different disorders. However, differential genomic coverage and different sample sizes of different datasets make it difficult to compare the results. It is quite possible that healthy controls used in different GWAS datasets may be overlapping, leading to the risk of bias in the findings. Nevertheless, I used improved version of IVW method which takes care of these biases. Another limitation could be my inability to explore causality using different types of dementias including Frontotemporal dementia (FTD) which is known to occur in combination with ALS, as it was observed that FTD dataset was highly underpowered with sample size <5000 individuals.

In future, it would be important to dissect different biological pathways using relevant genetic instrument for each pair of relationships. Nevertheless, my study shows utility of genetic data to unearth important biological findings and could enhance our understanding of interconnected etiopathologies of neurodegenerative disorders. Moreover, the finding could impact the diagnosis and management of neurodegenerative disorders.

Acknowledgement

I thank Prof. Inke König for providing the institutional facilities and research environment for conduct of the research. I acknowledge the investigators of the International Age-related Macular Degeneration Consortium (IAMDGC) for sharing the summary statistics from GWAS on AMD, International Genomics of Alzheimer's patients (IGAP) on AD, International Parkinson's Disease Genomics Consortium (IPDGC) for sharing the summary statistics from GWAS on PD, project MinE for sharing the summary statistics from GWAS on ALS, and the International Multiple Sclerosis Genetics Consortium (IMSGC) for sharing the summary statistics on MS.

List of figures and tables

Table 1. Details of discovery GWAS datasets explored and prioritized instruments used for the main analysis in the present study.

Table 2a. Causal effect estimates exploring influence of various neurodegenerative disorders on Alzheimer's disaease (AD).

Table 2b. Causal effect estimates exploring influence of various neurodegenerative disorders on Amyotrophic lateral sclerosis (ALS).

Table 2c. Causal effect estimates exploring influence of various neurodegenerative disorders on Age-related macular degeneration (AMD).

Table 2d. Causal effect estimates exploring influence of various neurodegenerative disorders on Multiple sclerosis (MS).

Table 2e. Causal effect estimates exploring influence of various neurodegenerative disorders on Parkinson's disease (PD).

Supplementary table 1. Summary statistics used for the conduct of causal analysis in the current manuscript.

Supplementary table 2. Examples of recent case reports or case-series reporting co-existence of various neurodegenerative disorders (in alphabetical order).

References

1. Chung SD, Ho JD, Hu CC, Lin HC, Sheu JJ. Increased risk of Parkinson disease following a diagnosis of neovascular age-related macular degeneration: a retrospective cohort study. Am J Ophthalmol. 2014 Feb;157(2):464-9 e1.

2. Etminan M, Samii A, He B. Risk of Parkinson's disease in patients with neovascular age-related macular degeneration. J Curr Ophthalmol. 2018 Dec;30(4):365-7.

3. Seden D, Alime G, Kadir D, Serpil D, Levent T, Ozlem T. Is Alzheimer disease related to age-related macular degeneration? Turk J Med Sci. 2015;45(5):1115-21.

4. Chung SD, Lee CZ, Kao LT, Lin HC, Tsai MC, Sheu JJ. Association between neovascular age-related macular degeneration and dementia: a population-based case-control study in Taiwan. PLoS One. 2015;10(3):e0120003.

5. Luczynski P, Laule C, Hsiung GR, Moore GRW, Tremlett H. Coexistence of Multiple Sclerosis and Alzheimer's disease: A review. Mult Scler Relat Disord. 2019 Jan;27:232-8.

6. Lule DE, Aho-Ozhan HEA, Vazquez C, et al. Story of the ALS-FTD continuum retold: rather two distinct entities. J Neurol Neurosurg Psychiatry. 2019 May;90(5):586-9.

7. Ho WY, Tai YK, Chang JC, et al. The ALS-FTD-linked gene product, C9orf72, regulates neuronal morphogenesis via autophagy. Autophagy. 2019 May;15(5):827-42.

8. Clinton LK, Blurton-Jones M, Myczek K, Trojanowski JQ, LaFerla FM. Synergistic Interactions between Abeta, tau, and alpha-synuclein: acceleration of neuropathology and cognitive decline. J Neurosci. 2010 May 26;30(21):7281-9.

9. Ismail A, Cooper-Knock J, Highley JR, et al. Concurrence of multiple sclerosis and amyotrophic lateral sclerosis in patients with hexanucleotide repeat expansions of C9ORF72. J Neurol Neurosurg Psychiatry. 2013 Jan;84(1):79-87.

10. Kotzbauer PT, Trojanowsk JQ, Lee VM. Lewy body pathology in Alzheimer's disease. J Mol Neurosci. 2001 Oct;17(2):225-32.

11. Balk LJ, Steenwijk MD, Tewarie P, et al. Bidirectional trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis. J Neurol Neurosurg Psychiatry. 2015 Apr;86(4):419-24.

12. Gabilondo I, Martinez-Lapiscina EH, Martinez-Heras E, et al. Trans-synaptic axonal degeneration in the visual pathway in multiple sclerosis. Ann Neurol. 2014 Jan;75(1):98-107.

13. Okumiya K, Wada T, Fujisawa M, et al. Amyotrophic lateral sclerosis and parkinsonism in Papua, Indonesia: 2001-2012 survey results. BMJ Open. 2014 Apr 16;4(4):e004353.

14. Plato CC, Garruto RM, Galasko D, et al. Amyotrophic lateral sclerosis and parkinsonism-dementia complex of Guam: changing incidence rates during the past 60 years. Am J Epidemiol. 2003 Jan 15;157(2):149-57.

15. Grover S, Del Greco MF, Stein CM, Ziegler A. Mendelian Randomization. Methods Mol Biol. 2017;1666:581-628.

16. Nalls MA, Blauwendraat C, Vallerga CL, et al. Expanding Parkinson's disease genetics: novel risk loci, genomic context, causal insights and heritable risk. bioRxiv. 2019 2019-01-01 00:00:00.

17. Fritsche LG, Igl W, Bailey JN, et al. A large genome-wide association study of agerelated macular degeneration highlights contributions of rare and common variants. Nat Genet. 2016 Feb;48(2):134-43.

18. , Patsopoulos N, Baranzini S, et al. The Multiple Sclerosis Genomic Map: Role of peripheral immune cells and resident microglia in susceptibility. bioRxiv. 2017 2017-01-01 00:00:00.

19. Jansen IE, Savage JE, Watanabe K, et al. Genome-wide meta-analysis identifies new loci and functional pathways influencing Alzheimer's disease risk. Nature Genetics. 2019 Mar;51(3):404-+.

20. van Rheenen W, Shatunov A, Dekker AM, et al. Genome-wide association analyses identify new risk variants and the genetic architecture of amyotrophic lateral sclerosis. Nat Genet. 2016 Sep;48(9):1043-8.

Number of significant SNPs (post- clumping)	Average F- statistics (median (range))	bioRxiv preprint doi: https://doi.org/10.11 certified by peer review) is the author/func
26	42.2 (30.2-422.5)	101/65 ler, wł
4	37.2 (32.2-80.1) م	92921 ho ha
42	47.5 (29.2-382.5	; this s gra
74	41.9 (29.8-561.9	vers
23	43.6 (30.0-181.5	sion p bioR
	.0 International license.	sted July 13, 2019. The copyright holder for this preprint (which was not is a license to display the preprint in perpetuity. It is made available under

Number

Table 1. Details of discovery GWAS datasets explored and prioritized instruments used for the main analysis in the present study.

S.No.	Exposure	Source study	Maximum sample size	GWAS study cohort	Number of SNPs analyzed	Р	of significant SNPs (pre- clumping)	of significant SNPs (post- clumping)	Average F- statistics (median (range))
1	Alzheimer's disease (AD) (AD)	Jansen et al. 2018	71880 cases/ 383,378 controls	Discovery	133,672,99	5 x 10 ⁻⁸	2357	26	42.2 (30.2-422
2	Amyotrophic lateral sclerosis (ALS)	van Rheenen et al. 2016	12577 cases/ 23475 controls	Discovery	870, 945,2	5 x 10- 8	125	4	37.2 (32.2-80.1
3	Age-related macular degeneration (AMD)	Fritsche et al. 2016	16144 cases/17832 controls	Discovery	120,238,39	5 x 10 ⁻⁸	7218	42	47.5 (29.2-382
4	Multiple sclerosis (MS) (MS)	Patsopoulos et al. 2017	47351 cases/ 68284 controls	Discovery	859, 365,0	5 x 10 ⁻⁸	26403	74	41.9 (29.8-561
5	Parkinson's disease (PD) (PD)	Nalls et al. 2018	33,674 cases/ 449, 056 controls	Discovery	175,137,73	5 x 10 ⁻⁸	3465	23	43.6 (30.0-181

*Clumping was done using TwoSampleMR R package

	MR methodology	Genetic Instruments	Ca	usal effect esti	nates	Tests of heterogeneity			
				Number of SNPs	OR	95% CI	Р		
Exposure	-		-	·	Alzheimer	's disease (Outcome)			
Amyotrophic lateral sclerosis (ALS)	IVW	4	1,016	0.968-1.066	0.3729	MR-Egger intecept (p-value)	0.9244		
	MR-Egger		1,022	0.799-1.308	0.7416	I square (IVW)	0.5325		
	WME		1,018	1.004-1.032	0.2873	Cochrane Q-test (IVW) (p-value)	0.0930		
	MBE		1,032	1.004-1.061	0.1101	Rucker's Q-test (p-value)	0.0409		
						Rucker's test statistic/ Cochrane Q-statistics	0.9962		
Age-related macular degneration (AMD)	IVW	40	1,032	0.994-1.072	0.9850	MR-Egger intecept (p-value)	0.4064		
	MR-Egger		1,055	0.988-1.127	0.1055	I square (IVW)	0.8286		
	WME		1,002	0.999-1.006	0.5548	Cochrane Q-test (IVW) (p-value)	0.0000		
	MBE		1,003	0.995-1.010	0.4924	Rucker's Q-test (p-value)	0.0000		
						Rucker's test statistic/ Cochrane Q-statistics	1.7613		
Multiple sclerosis (MS)	IVW	69	0.999	0.996-1.004	0.9599	MR-Egger intecept (p-value)	0.4847		
	MR-Egger		0.998	0.993-1.004	0.5790	I square (IVW)	0.1383		
	WME		1,001	0.998-1.003	0.7979	Cochrane Q-test (IVW) (p-value)	0.1720		
	MBE		1,000	0.995-1.005	0.8952	Rucker's Q-test (p-value)	0.1626		
						Rucker's test statistic/ Cochrane Q-statistics	0.9924		
Parkinson's disease (PD)	IVW	23	1,010	0.995-1.026	0.1762	MR-Egger intecept (p-value)	0.1165		
	MR-Egger		1,039	1.000-1.079	0.0506	I square (IVW)	0.7311		
	WME		1,013	1.006-1.019	0.0606	Cochrane Q-test (IVW) (p-value)	0.0000		
	MBE		1,019	0.987-1.052	0.2598	Rucker's Q-test (p-value)	0.0000		
						Rucker's test statistic/ Cochrane Q-statistics	0.8880		

Table 2a. Causal effect estimates exploring influence of various neurodegenerative disorders on Alzheimer's disaease (AD).

	MR methodology	Genetic Instruments	Causa	l effect estimate	28	Tests of heterogeneity						
		Number of SNPs	OR	95% CI	Р							
Exposure		Amyotrophic late	Amyotrophic lateral sclerosis (ALS) (Outcome)									
Alzheimer's disease (AD)	IVW	25	0.996	0.623-1.591	0.9849	MR-Egger intecept (p-value)	0.3992					
	MR-Egger		1,729	0.422-7.083	0.4299	I square (IVW)	0.0000					
	WME		1,327	0.948-1.857	0.4087	Cochrane Q-test (IVW) (p-value)	0.6550					
	MBE		1,584	0.497-5.043	0.4443	Rucker's Q-test (p-value)	0.6395					
						Rucker's test statistic/ Cochrane Q-statistics	0.9670					
Age-related macular degeneration (AMD)	IVW	42	0.986	0.945-1.030	0.5229	MR-Egger intecept (p-value)	0.4077					
	MR-Egger		1,012	0.938-1.092	0.7495	I square (IVW)	0.1823					
	WME		1,002	0.973-1.032	0.9539	Cochrane Q-test (IVW) (p-value)	0.1550					
	MBE		1,015	0.948-1.086	0.6724	Rucker's Q-test (p-value)	0.1459					
						Rucker's test statistic/ Cochrane Q-statistics	0.9857					
Multiple sclerosis (MS)	IVW	72	1,008	0.984-1.033	0.4934	MR-Egger intecept (p-value)	0.3323					
	MR-Egger		1,020	0.986-1.054	0.2464	I square (IVW)	0.0269					
	WME		1,034	1.015-1.053	0.0786	Cochrane Q-test (IVW) (p-value)	0.4134					
	MBE		1,023	0.992-1.056	0.1566	Rucker's Q-test (p-value)	0.4151					
						Rucker's test statistic/ Cochrane Q-statistics						
Parkinson's disease (PD)	IVW	22	1,126	1.059-1.198	0.0006	MR-Egger intecept (p-value)	0.1318					
	MR-Egger		1,280	1.068-1.533	0.0099	I square (IVW)	0.0000					
	WME		1,111	1.064-1.161	0.0239	Cochrane Q-test (IVW) (p-value)	0.6965					
	MBE		1,083	0.928-1.264	0.3248	Rucker's Q-test (p-value)	0.7844					
						Rucker's test statistic/ Cochrane Q-statistics	0.8619					

Table 2b. Causal effect estimates exploring influence of various neurodegenerative disorders on Amyotrophic lateral sclerosis (ALS).

		Genetic Instruments	('guidal attact actimatac			Tests of heterogeneity					
		Number of SNPs	OR	95% CI	Р						
Exposure	-	Age-related macu	Age-related macular degeneration (AMD) (Outcome)								
Alzheimer's disease (AD)	IVW	26	1,759	1.040-2.974	0.0363	MR-Egger intecept (p-value)	0.2093				
	MR-Egger		3,150	1.083-9.162	0.0362	I square (IVW)	0.3513				
	WME		1,678	1.238-2.275	0.1010	Cochrane Q-test (IVW) (p-value)	0.0410				
	MBE		1,683	0.791-3.581	0.1886	Rucker's Q-test (p-value)	0.0571				
						Rucker's test statistic/ Cochrane Q-statistics	0.9295				
Amyotrophic lateral sclerosis (ALS)	IVW	4	0.924	0.679-1.256	0.4717	MR-Egger intecept (p-value)	0.4079				
	MR-Egger		1,209	0.369-3.959	0.5629	I square (IVW)	0.3516				
	WME		0.985	0.900-1.078	0.8782	Cochrane Q-test (IVW) (p-value)	0.2013				
	MBE		1,015	0.841-1.225	0.8879	Rucker's Q-test (p-value)	0.2119				
						Rucker's test statistic/ Cochrane Q-statistics	0.6708				
Multiple sclerosis (MS)	IVW	68	0.976	0.939-1.015	0.2239	MR-Egger intecept (p-value)	0.9725				
	MR-Egger		0.978	0.870-1.099	0.7054	I square (IVW)	0.2083				
	WME		0.968	0.943-0.993	0.2107	Cochrane Q-test (IVW) (p-value)	0.0717				
	MBE		0.932	0.817-1.064	0.3023	Rucker's Q-test (p-value)	0.0608				
						Rucker's test statistic/ Cochrane Q-statistics	1.0002				
Parkinson's disease (PD)	IVW	23	0.953	0.901-1.007	0.0863	MR-Egger intecept (p-value)	0.7136				
	MR-Egger		0.931	0.806-1.074	0.3098	I square (IVW)	0.0000				
	WME		0.929	0.896-0.963	0.0556	Cochrane Q-test (IVW) (p-value)	0.7723				
	MBE		0.927	0.836-1.028	0.1668	Rucker's Q-test (p-value)	0.7281				
						Cochrane Q-staitics/Rucker's test statistic	0.9929				

Table 2c. Causal effect estimates exploring influence of various neurodegenerative disorders on Age-related macular degeneration (AMD).

Table 2d. Causal effect estimates exploring influence of various neurodegenerative disorders on Multiple sclerosis (MS).

	MR methodology	Genetic Instruments	Causa	l effect estimates	i	Tests of heterogeneity	
		Number of SNPs	OR	95% CI	Р		
Exposure		Multiple sclerosis	(MS) (O	utcome)			
Alzheimer's disease (AD)	IVW	26	1,597	0.257-9.908	0.6020	MR-Egger intecept (p-value)	0.7683
	MR-Egger		3,032	0.025-374.146	0.6388	I square (IVW)	0.7059
	WME		1,305	0.917-1.857	0.4577	Cochrane Q-test (IVW) (p-value)	0.0000
	MBE		1,445	0.563-3.708	0.4508	Rucker's Q-test (p-value)	0.0000
						Rucker's test statistic/ Cochrane Q-statistics	1.0094
Amyotrophic lateral sclerosis (ALS)	IVW	3	0.998	0.629-1.582	0.9860	MR-Egger intecept (p-value)	0.3454
	MR-Egger		1,822	0.016-204.153	0.3528	I square (IVW)	0.4493
	WME		0.976	0.888-1.072	0.8186	Cochrane Q-test (IVW) (p-value)	0.1627
	MBE		1,142	0.940-1.388	0.3138	Rucker's Q-test (p-value)	0.3285
						Rucker's test statistic/ Cochrane Q-statistics	0.2629
Age-related macular degeneration (AMD)	IVW	35	0.939	0.884-0.997	0.0409	MR-Egger intecept (p-value)	0.0481
	MR-Egger		0.861	0.776-0.955	0.0059	I square (IVW)	0.4715
	WME		0.966	0.930-1.004	0.3816	Cochrane Q-test (IVW) (p-value)	0.0013
	MBE		1,065	0.955-1.187	0.2652	Rucker's Q-test (p-value)	0.0055
						Cochrane Q-statistics/Rucker's test statistic	0.8898
Parkinson's disease (PD)	IVW	22	1,042	0.976-1.112	0.2030	MR-Egger intecept (p-value)	0.5749
	MR-Egger		1,087	0.918-1.287	0.3145	I square (IVW)	0.1214
	WME		1,049	1.005-1.095	0.2722	Cochrane Q-test (IVW) (p-value)	0.2978
	MBE		1,004	0.863-1.167	0.9627	Rucker's Q-test (p-value)	0.2655
						Rucker's test statistic/ Cochrane Q-statistics	0.9826

Table 2e. Causal effect estimates exploring influence of various neurodegenerative disorders on Parkinson's disease (PD).

	MR methodology	Genetic Instruments	Causa	Causal effect estimates		Tests of heterogeneity	
		Number of SNPs	OR	95% CI	Р		
Exposure		Parkinson's diseas	se (PD) (0	Dutcome)			
Alzheimer's disease (AD)	IVW	26	2,189	0.996-4.812	0.0510	MR-Egger intecept (p-value)	0.3779
	MR-Egger		1,270	0.289-5.584	0.7418	I square (IVW)	0.5830
	WME		1,951	1.415-2.688	0.0477	Cochrane Q-test (IVW) (p-value)	0.0001
	MBE		2,072	1.066-4.028	0.0416	Rucker's Q-test (p-value)	0.0001
						Rucker's test statistic/ Cochrane Q-statistics	0.9961
Amyotrophic lateral sclerosis (ALS)	IVW	4	0.995	0.784-1.263	0.9514	MR-Egger intecept (p-value)	0.8013
	MR-Egger		1,053	0.425-2.606	0.8297	I square (IVW)	0.0000
	WME		0.998	0.915-1.089	0.9844	Cochrane Q-test (IVW) (p-value)	0.6030
	MBE		0.952	0.775-1.171	0.6749	Rucker's Q-test (p-value)	0.4118
						Rucker's test statistic/ Cochrane Q-statistics	0.9564
Age-related macular degeneration (AMD)	IVW	38	0.989	0.945-1.035	0.6427	MR-Egger intecept (p-value)	0.3854
	MR-Egger		0.962	0.887-1.042	0.3300	I square (IVW)	0.1454
	WME		0.976	0.947-1.005	0.4144	Cochrane Q-test (IVW) (p-value)	0.2205
	MBE		0.981	0.918-1.047	0.5647	Rucker's Q-test (p-value)	0.2139
						Rucker's test statistic/ Cochrane Q-statistics	0.9797
Multiple sclerosis (MS)	IVW	70	1,010	0.978-1.044	0.5289	MR-Egger intecept (p-value)	0.8676
	MR-Egger		1,014	0.958-1.074	0.6179	I square (IVW)	0.0776
	WME		0.984	0.961-1.007	0.4817	Cochrane Q-test (IVW) (p-value)	0.2954
	MBE		0.983	0.932-1.038	0.5438	Rucker's Q-test (p-value)	0.2673
						Rucker's test statistic/ Cochrane Q-statistics	0.9998