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Abstract 
Background: Heterogeneity in autism spectrum disorder (ASD) has hindered the development 

of biomarkers, thus motivating subtyping efforts. Most subtyping studies divide ASD individuals 

into non-overlapping (categorical) subgroups. However, continuous inter-individual variation in 

ASD suggests the need for a dimensional approach. 

 

Methods: A Bayesian model was employed to decompose resting-state functional connectivity 

(RSFC) of ASD individuals into multiple abnormal RSFC patterns, i.e., categorical subtypes 

henceforth referred to as “factors”. Importantly, the model allowed each individual to express 

one or more factors to varying degrees (dimensional subtyping). The model was applied to 306 

ASD individuals (age 5.2-57 years) from two multisite repositories. Posthoc analyses associated 

factors with symptoms and demographics. 

 

Results: Analyses yielded three factors with dissociable whole-brain hypo/hyper RSFC patterns. 

Most participants expressed multiple (categorical) factors, suggestive of a mosaic of subtypes 

within individuals. All factors shared abnormal RSFC involving the default network, but the 

directionality (hypo/hyper RSFC) differed across factors. Factor 1 was associated with core ASD 

symptoms, while factor 2 was associated with comorbid symptoms. Older males preferentially 

expressed factor 3. Factors were robust across multiple control analyses and not associated with 

IQ, nor head motion.   

 

Conclusions: There exist at least three ASD factors with dissociable patterns of whole-brain 

RSFC, behaviors and demographics. Heterogeneous default network hypo/hyper RSFC across 

the factors might explain previously reported inconsistencies. The factors differentiated between 

core ASD and comorbid symptoms - a less appreciated domain of heterogeneity in ASD. These 

factors are co-expressed in ASD individuals with different degrees, thus reconciling categorical 

and dimensional perspectives of ASD heterogeneity.  
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Introduction 
A major challenge in developing biomarkers for Autism Spectrum Disorder (ASD) is the 

high heterogeneity among ASD individuals. This encompasses core ASD symptoms (1), 

cognitive skills (2), comorbid psychiatric/medical conditions (3), brain atypicalities (4,5), and 

genetics (6). Consequently, there have been significant efforts in defining ASD subtypes. Most 

studies have focused on variability of behavioral or cognitive characteristics (7-10). Studies 

focusing on brain features are emerging (11-14). Here, we propose a Bayesian framework to 

decompose whole-brain resting-state functional connectivity (RSFC) patterns in ASD individuals 

into multiple hypo/hyper RSFC patterns, which we will refer to as “factors” (Figure 1A). This 

approach allows an individual to express one or more factors (categorical subtypes) to varying 

degrees (continuous), thus potentially reconciling dimensional (13-15) and categorical (11,12,17) 

models of ASD heterogeneity.  

This approach is motivated by two important considerations. First, most previous ASD 

subtyping studies assumed that each participant belonged to a single (categorical) subtype. By 

contrast, the term “spectrum” in ASD suggests continuous variation across individuals (18). This 

is observed at varying degrees across multiple symptom domains (19,20). In parallel, evidence 

from genetics and neurobiology suggests that autism results from the combination of multiple 

factors underlying distinct pathways (21,22). Thus, ASD inter-individual variability may reflect 

different degrees of expression of such factors and related mechanisms (6,23). Together, these 

observations motivate a mosaic approach to ASD subtyping that incorporates categorical and 

dimensional features (Figure 1A). Our model allows each ASD individual to express more than 

one latent factor. For example, the hypo/hyper RSFC pattern of an ASD individual might be 

explained by 90% factor 1 and 10% factor 2, while the hypo/hyper RSFC pattern of another ASD 

individual might be explained by 40% factor 1 and 60% factor 2.  

Second, early resting-state fMRI (rs-fMRI) investigations supported models of ASD as a 

dysconnection syndrome (23-26). Although these early studies focused on a priori 

regions/networks of interest in small to moderately sized samples, these observations have been 

extended by more recent whole-brain investigations of larger samples showing that multiple 

functional networks subserving the wide range of processes impaired in ASD are affected (26). 

Importantly, recent studies have reconciled previously inconsistent findings of either hypo- or 

hyper-connectivity in ASD by showing that both patterns co-exist, though affecting distinct 
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functional circuits (27-29). Nevertheless, these studies rely on traditional case-control analyses, 

which may miss out on less frequently expressed RSFC patterns due to ASD heterogeneity 

and/or sampling biases. Thus, our study seeks to provide detailed characterization of the nature 

and spatial extent of functional dysconnections in ASD, while accounting for significant 

heterogeneity among ASD individuals.  

To address these challenges and estimate latent ASD factors with distinct patterns of 

whole brain hypo/hyper connectivity, we combined two multisite rs-fMRI data repositories 

(Autism Brain Imaging Data Exchange-second release; ABIDE-II (31) and the Gender 

Explorations of Neurogenetics and Development to Advance Autism Research; GENDAAR) 

(32)). Posthoc analyses were performed to examine common and distinct abnormal RSFC across 

factors. Furthermore, associations between the latent factors and multiple phenotypic information 

were examined using multivariate analyses to capture the complexity of ASD.   
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Methods and Materials
Overview 

Our analyses proceeded in four steps (Figure 1B). First, to identify latent ASD factors, 

we applied a Bayesian model (Figure 1A) to a combined dataset comprising ABIDE-II (31) and 

GENDAAR (32). We used this combined dataset to maximize sample size with regards to both 

MRI and non-brain-imaging phenotypic data. Second, we examined the associations between 

latent factors and ASD participants’ phenotypes (i.e., demographic and behavioral symptoms) in 

the ABIDE-II+GENDAAR combined sample. Third, multiple control analyses were performed 

to ensure robustness of the results. Lastly, we utilized another independent dataset (ABIDE-I 

(28)) to explore the drawbacks of case-control analyses, which do not account for ASD 

heterogeneity. 

 

Participants 

MRI data selected from the ABIDE and GENDAAR repositories were analyzed. 

Following preprocessing and quality control (see “MRI preprocessing” and Supplemental 

Methods), the resulting sample comprised 242 ASD and 276 neurotypical (NT) participants from 

ABIDE-II, which were combined with 64 ASD and 72 NT participants from GENDAAR for 

primary analyses, as well as an independent sample of 166 ASD and 150 NT participants from 

ABIDE-I (secondary analyses). Age, sex and head motion were matched between ASD and NT 

participants within each site. Participants’ characteristics are summarized in Tables 1 and S1. 
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Figure 1. Bayesian model and overview of analyses in this study. (A) A Bayesian model of 
ASD participants, latent factors, and resting-state fMRI (rs-fMRI). The model assumes that each 
ASD participant expresses one or more latent factors, and each factor is associated with distinct, 
but possibly overlapping patterns of hypo/hyper functional connectivity. Given the RSFC data of 
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ASD participants and a predefined number of factors K, the model estimates the probability that 
a participant expresses a latent factor (i.e., factor composition of the participant or Pr(Factor | 
Participant)), as well as the expected patterns of hypo/hyper RSFC associated with each factor 
(i.e., factor-specific hypo/hyper RSFC patterns or E(RSFC patterns | Factor)). (B) We first 
identified latent ASD factors using the ABIDE-II+GENDAAR sample. The latent factors were 
then correlated with ASD participants’ phenotypes (i.e., demographics and behavioral 
symptoms) in the same sample. Because the multiple sites do not have a uniform set of 
phenotypes, the sample size varied depending on the phenotype. In addition, we performed 
several control analyses using the ABIDE-II+GENDAAR sample to ensure the robustness of the 
latent factors. Finally, we explored the relevance of the latent factors on traditional case-control 
analyses in the ABIDE-I sample. (C) 400 cortical parcels (33). Colors are assigned based on 17 
networks widely used in the rs-fMRI literature (34). The 17 networks are divided into eight 
groups (TempPar, Default, Control, Limbic, Salience/Ventral Attention, Dorsal Attention, 
Somatomotor and Visual). (D) 19 subcortical ROIs (35). 
 

 

 

 

Table 1. Characteristics and behavioral data of participants from ABIDE-II and 
GENDAAR. Fourteen data collections from ABIDE-II and GENDAAR were included in this 
study:  BNI_1 (NASD = 21, NNT = 15), ETH_1 (NASD = 6, NNT = 21), GU_1 (NASD = 34, NNT = 
26), IP_1 (NASD = 10, NNT = 5), IU_1 (NASD = 17, NNT = 15), KKI_1 (NASD = 31, NNT = 90), 
NYU_1 (NASD = 42, NNT = 23), OHSU_1 (NASD = 23, NNT = 23), TCD_1 (NASD = 14, NNT = 18), 
UCD_1 (NASD = 15, NNT = 9), UCLA_1 (NASD = 11, NNT = 11), USM_1 (NASD = 10, NNT = 13), 
U_MIA_1 (NASD = 8, NNT = 7), GENDAAR (NASD = 64, NNT = 72). ASD and NT participants 
were compared with either two-sample t-tests (for continuous measures) or chi-squared tests (for 
categorical measures). All p-values that survived false discovery rate (FDR) correction (q < 0.05) 
are indicated in bold. 
  

ASD (N = 306) NT (N = 348) p value  
(two-tailed) 

Demographics 
   

Age, mean (SD), years 14.94 (8.59) 14.89 (8.20) 0.94 
Female, No. (%) 70 (22.88) 94 (27.01) 0.26 
Full-scale IQa, mean (SD) 106 (16.90) 115 (13.37) 4.43e-13     

Head motion 
   

Mean FD before censoring, mean (SD) 0.10 (0.06) 0.09 (0.07) 0.13 
Mean FD after censoring, mean (SD) 0.05 (0.02) 0.05 (0.01) 0.49 

  
   

Current medication (by target)b 
   

GABA, No. (%) 2 (0.97) 0 (0.00) 0.45 
Glutamate, No. (%) 3 (1.45) 9 (4.05) 0.18 
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Serotonin, No. (%) 22 (10.63) 1 (0.45) 8.12e-06 
Epinephrine/Adrenaline, No. (%) 1 (0.48) 0 (0.00) 0.97 
Norepinephrine/Noradrenaline, No. (%) 50 (24.15) 3 (1.35) 2.13e-12 
Dopamine, No. (%) 43 (20.77) 2 (0.90) 5.58e-11 
Others, No. (%) 18 (8.70) 9 (4.05) 0.08     

Current medication (by class)c 
   

Antipsychotic, No. (%) 8 (3.86) 0 (0.00) 9.30e-3 
Antidepressant, No. (%) 21 (10.14) 1 (0.45) 1.49e-5 
Stimulant, No. (%) 32 (15.46) 2 (0.90) 6.71e-8 
SHA, No. (%) 4 (1.93) 0 (0.00) 0.11 
Mood stabilizer, No. (%) 4 (1.93) 0 (0.00) 0.11 
Others, No. (%) 27 (13.04) 9 (4.05) 1.50e-3 

aN = 297 ASD and 340 NT participants have full-scale IQ scores. 
bMedication was sorted by the primary neurotransmitter system(s) targeted by the medication 
currently used by participants, based on the Neuroscience-based Nomenclature (NbN-2 (36,37) ; 
http://www.nbn2.com/). Only 207 ASD and 222 NT participants from ABIDE-II+GENDAAR 
have medication information. As such, percentages were computed based on 207 ASD and 222 
NT participants. 
cOnly 207 ASD and 222 NT participants from ABIDE-II+GENDAAR have medication 
information. As such, percentages were computed based on 207 ASD and 222 NT participants. 
Abbreviations: GABA, Gamma-Aminobutyric acid; SHA, sedatives/hypnotics/anxiolytics. 
 
 
MRI preprocessing 

The neuroimaging data were processed using a previously published pipeline (38-40). 

See Supplemental Methods for details. Here, we briefly outline the procedure. Rs-fMRI data 

underwent standard preprocessing including slice time correction, motion correction and 

alignment with anatomical T1. Frame-wise displacement (FD) and voxel-wise differentiated 

signal variance (DVARS) were computed using fsl_motion_outliers (41,42). Volumes with FD > 

0.2 mm or DVARS > 50 were marked as censored frames, together with one frame before and 

two frames after. Uncensored data segments lasting fewer than five contiguous volumes were 

also censored (43). Functional runs with more than 50% censored frames were removed (Table 

S2). 

We regressed out 18 nuisance regressors, consisting of six motion parameters, averaged 

cerebrospinal ventricular signal, averaged white matter signal, global signal and their temporal 

derivatives. Censored frames were ignored when regression coefficients were computed. Data 

were interpolated across censored frames using least squares spectral estimation (44). We chose 

to regress the global signal because of its effectiveness in removing motion-related and 
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respiratory artifacts (45,46). Recent work has also suggested that global signal regression (GSR) 

increases the associations between behavior and RSFC (39). Nevertheless, we performed control 

analyses using an alternative to GSR (see “Control analyses”). Finally, the data were band-pass 

filtered (0.009Hz ≤ f ≤ 0.08Hz), projected onto FreeSurfer fsaverage6 surface space, smoothed 

with a 6mm kernel and down-sampled onto FreeSurfer fsaverage5.  

 

Resting-state functional connectivity (RSFC) 

We utilized a cortical parcellation (33) comprising 400 cortical regions-of-interest (ROIs; 

Figure 1C) and a subcortical segmentation (35) comprising 19 subcortical ROIs (Figure 1D). 

RSFC (Pearson’s correlation) was computed among the average time series of 419 brain ROIs 

(ignoring censored frames), yielding a 419 × 419 RSFC matrix for each participant. Age, sex, 

head motion (mean frame-wise displacement (42)) and site differences were regressed out from 

all participants’ RSFC data with a general linear model (GLM). Regression coefficients were 

estimated only from NT participants to retain any ASD-specific interactions with participants’ 

characteristics (e.g., age). Each RSFC entry (i.e., lower triangular entries since the matrices are 

symmetric) of the ASD participants was z-normalized with respect to the 348 ABIDE-

II+GENDAAR NT participants. A z-score larger (or smaller) than zero for a given ROI pair 

indicates hyper-connectivity (or hypo-connectivity) relative to the NT participants.  

 

Latent factors in ABIDE-II+GENDAAR 

Latent ASD factors were identified using the ABIDE-II+GENDAAR dataset. We applied 

a Bayesian model (Figure 1A) to the z-normalized RSFC of the ASD participants to estimate 

latent factors. The model is a variant of Bayesian models previously utilized to discover latent 

atrophy factors in Alzheimer’s Disease (47) and latent components subserving cognitive tasks 

(48). It assumes that each individual expresses one or more latent factors, associated with 

distinct, but possibly overlapping patterns of hypo/hyper RSFC. Given the RSFC data and a user-

defined number of factors K, we can estimate the factor composition of each participant, i.e., 

probability that a participant expresses a latent factor (i.e., Pr(Factor | Participant)), as well as the 

factor-specific hypo/hyper RSFC patterns (i.e., E(RSFC patterns | Factor)). See Supplemental 

Methods.  
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 We estimated 2, 3 and 4 latent factors. The estimations were robust for 2 and 3 factors, 

but unstable for 4 factors (Figure S1). Therefore, a larger number of factors was not considered. 

Furthermore, the two-factor estimates were inconsistent in the control analyses (see “Control 

analyses”), so we focused on the three-factor estimates in subsequent analyses. 

 To estimate confidence intervals for the factor-specific hypo/hyper RSFC patterns, we 

applied a bootstrapping procedure that generated 100 samples from ASD participants’ z-

normalized RSFC data. Z-scores were then calculated by dividing factor-specific hypo/hyper 

RSFC patterns by the bootstrap-estimated standard deviation. To reduce multiple comparisons, 

the factor-specific hypo/hyper RSFC patterns were averaged across ROI pairs within and 

between the 17 networks and subcortical structures (Figures 1C-1D), resulting in 18 × 18 

matrices, before computing bootstrapped z-scores. The z-scores were converted to p-values and 

corrected using false discovery rate (q < 0.05) along with other tests (Supplemental Methods). 

 

Associations between participants’ characteristics and latent factors in ABIDE-II+GENDAAR 

We applied separate GLM (or logistic regression for binary variables) to the factor 

compositions and each characteristic (age, sex, FIQ and head motion) of ABIDE-II+GENDAAR 

ASD participants to investigate potential associations. For each GLM/logistic regression, 

participants’ characteristic and factor compositions were treated as the dependent and 

independent variables respectively (Supplemental Methods). 

 

Associations between behavioral symptoms and latent factors in ABIDE-II+GENDAAR 

Because ABIDE-II+GENDAAR consisted of datasets across independent sites, not all 

participants had the same behavioral measures (Table S3). If we considered all available 

behavioral measures jointly, we would be left with only seven participants. Therefore, available 

behavioral scores were divided into five groups to maximize the number of participants in each 

group. For example, Social Responsiveness Scale (SRS) Autistic Mannerism and Repetitive 

Behaviors Scale-Revised 6 Subscales (RBSR-6) subscales were grouped together because they 

index aspects of restricted/repetitive behaviors (RRB). Of note, Autism Diagnostic Observation 

Schedule (ADOS) Stereotyped Behavior subscore was not included into the RRB domain 

because only 38 participants had ADOS Stereotyped Behavior with SRS Autistic Mannerism, 

RBSR-6 subscales. The five groups of behavioral scores are shown in Table S4.  
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We then applied canonical correlation analysis (49) (CCA) between each group of 

behavioral scores and each factor loading (i.e., Pr(Factor | Participant)), i.e., fifteen CCAs in total 

in the case of the three-factor model (see Supplemental Methods). The goal of the CCA was to 

find an optimal linear combination of the behavioral scores that maximally correlated with the 

factor loading. Age, sex, head motion and sites were regressed out from both behavioral scores 

and factor loadings before the CCA. Statistical significance was tested using 10,000 

permutations that accounted for different sites. False discovery rate (q < 0.05) was utilized to 

correct for multiple comparisons (Supplemental Methods).  

 

Control analyses in ABIDE-II+GENDAAR 

We performed several control analyses to ensure robustness of results. First, to ensure 

robustness to preprocessing strategies, we applied the Bayesian model to rs-fMRI processed 

using CompCor (50) instead of GSR. Second, we applied k-means clustering to ABIDE-

II+GENDAAR ASD participants’ z-normalized RSFC data (processed with GSR or CompCor) 

to ensure robustness to analysis strategies (k-means versus Bayesian model). Third, we compared 

behavioral associations of the k-means clusters with those of the latent factors. Lastly, we 

randomly split the 306 ASD participants in ABIDE-II+GENDAAR into two groups (Table S5) 

and estimated the latent factors in each group independently. See Supplemental Methods for 

details. 

 

Drawbacks of traditional case-control analyses in ABIDE-I 

In most studies, ASD and NT individuals are compared without accounting for ASD 

heterogeneity. To explore the drawbacks of case-control analyses, we considered 166 ASD and 

150 NT participants from ABIDE-I (Table S1) and inferred their factor compositions using latent 

factors estimated from ABIDE-II+GENDAAR. These compositions were used to assign each 

individual to one of three subgroups. This sub-grouping violates the spirit of our hybrid 

dimensional-categorical approach, but is necessary for comparison with traditional case-control 

analysis. To ensure robustness, we experimented with two different criteria of assigning ASD 

participants to subgroups (Tables S6-S7). RSFC differences between each ASD subgroup and 

demographically-matched NT participants were computed and compared with traditional case-
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control analysis (i.e., RSFC differences between ASD and NT participants without subgrouping). 

See Supplemental Methods for details. 
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Results 
Latent ASD factors with dissociable hypo/hyper RSFC patterns  

We applied the Bayesian model (Figure 1A) to 306 ABIDE-II+GENDAAR ASD 

participants. An important model parameter is the number of latent factors 𝐾. We experimented 

with 𝐾 = 2, 3 and 4. Four-factor model was unstable (Figure S1), so we did not explore more 

factors. On the other hand, the two-factor model was sensitive to the preprocessing strategy 

(Supplemental Results; Table S8). Thus, we focused on the three-factor solution.  

Each of the three factor-specific hypo/hyper RSFC patterns among the 400 cortical and 

19 subcortical ROIs (Figures 1C-1D) are shown in Figure 2A (unthresholded) and Figure 2B 

(statistically significant). Figure 2C illustrates the significant RSFC patterns averaged within and 

between the 17 networks and subcortical structures.  

Factor 1 was associated with ASD-related hypo-connectivity (blue in Figure 2) within 

and between perceptual/motor networks (somatomotor A/B, visual A/B, salience/ventral 

attention A, dorsal attention A/B). On the other hand, there was ASD-related hyper-connectivity 

(red in Figure 2) between perceptual/motor and association networks (default, control and 

salience/ventral attention B), as well as between somatomotor and subcortical regions (caudate 

and thalamus).  

Factor 2 was associated with a pattern of hypo/hyper RSFC almost opposite to factor 1 (r 

= -0.57), but with subtle deviations. For example, regions within default networks A and B were 

strongly hyper-connected in factor 2, but only weakly hypo-connected in factor 1. Similarly, 

regions between somatomotor networks and caudate were strongly hyper-connected in factor 1, 

but did not exhibit any atypical RSFC in factor 2.  

Factor 3 was characterized by a complex pattern of hypo/hyper RSFC. For example, there 

was hyper-connectivity between visual and somatomotor networks. There was also strong hypo-

connectivity among regions within default networks A/B, and among regions within the visual 

networks. 
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Figure 2. Three latent ASD factors estimated from ABIDE-II+GENDAAR ASD 
participants. (A) Patterns of hypo/hyper RSFC (unthresholded) associated with each factor. Hot 
color indicates hyper-connectivity (relative to NT), and cold color indicates hypo-connectivity 
(relative to NT). (B) Statistically significant patterns of hypo/hyper RSFC associated with each 
factor. (C) Significant patterns of hypo/hyper RSFC associated with each factor, averaged within 
and between networks. 
 

Factor compositions of ASD participants in ABIDE-II+GENDAAR 

 Figure 3 shows the factor compositions of ASD participants in ABIDE-II+GENDAAR. 

Most participants expressed multiple latent factors rather than a single factor. Critically, no 

single site showed predominantly one single factor, suggesting that latent factors were not driven 

by site differences. 

  

 
Figure 3. Factor compositions of ASD participants in ABIDE-II+GENDAAR. Each 
participant corresponds to a dot, with location (in barycentric coordinates) representing the factor 
composition (i.e., Pr(Factor | Participant)). Corners of the triangle represent pure factors, and 
dots closer to the corner indicates higher probability of the respective factor. Most dots are far 
from the corners, suggesting that most ASD participants expressed multiple factors. 
 
 

Default network exhibits abnormal connectivity across all three factors 

 By comparing the RSFC patterns among the three factors (Figure 2B), Figure S2 shows 

the statistically significant hypo/hyper RSFC unique to each latent factor. 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 4, 2019. ; https://doi.org/10.1101/692772doi: bioRxiv preprint 

https://doi.org/10.1101/692772
http://creativecommons.org/licenses/by/4.0/


16 
 

On the other hand, to examine hypo/hyper RSFC patterns that are shared across factors, 

within-network and between-network blocks with significant bootstrapped z-scores (Figure 2C) 

were binarized (ignoring directionality of abnormality) and summed across the three factors 

(Figure 4A). In addition, absolute values of hypo/hyper RSFC patterns that were significant 

across all three factors (Figure 2B) were summed to obtain the magnitude of hypo/hyper RSFC 

patterns common across factors (Figure 4B).  Altered connectivity within default A and B 

networks were notable, as well as between default and perceptual/motor networks (somatomotor 

A, salience/ventral attention A, dorsal attention B). In addition, hypo/hyper connectivity within 

salience/ventral attention A, within dorsal attention, as well as between somatomotor and control 

B networks were also common across all three factors.  

Lastly, Figure 4C shows the strength of involvement of each ROI obtained by summing 

the rows of Figure 4B. The strength of default network’s involvement was particularly striking. 

Although atypical default network connectivity was present across all factors, the directionalities 

were inconsistent. For example, factor 2 exhibited hyper-connectivity within the default network, 

while factor 1 and 3 exhibited hypo-connectivity (Figure 2B).  
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Figure 4. Patterns of hypo/hyper RSFC involved in all three factors. (A) Statistically 
significant within- and between-network hypo/hyper RSFC patterns (Figure 2C) were binarized, 
and then summed across the three factors; hypo/hyper RSFC patterns that were significant in 
only one factor were set to zero. (B) Sum of absolute values of hypo/hyper RSFC (Figure 2B) 
that were significant across all three factors. (C) The summed absolute values of hypo/hyper 
RSFC from panel (B) were averaged across the rows for each ROI, and projected onto a surface 
map for visualization. 
 
 
Participants’ characteristics across latent factors in ABIDE-II+GENDAAR 

We used GLM (or logistic regression) to investigate whether ASD participants’ 

characteristics (i.e., age, sex, FIQ, head motion) varied across factors in ABIDE-II+GENDAAR. 

Factor 3 was more strongly expressed by males relative to factors 2 (p<0.001; Figure S3A). 

Factor 3 was also associated with older participants compared to factors 1 and 2 (p=0.002 and 

p=0.01 respectively; Figure S3B). There was no difference in FIQ nor head motion across factors 

(Figure S3C and S3D). 

 

Associations between latent factors and behavioral symptoms  

To examine associations between latent factors and behavioral symptoms in ABIDE-

II+GENDAAR ASD participants, we performed CCA between each factor loading and each 

group of behavioral scores (see Methods). Four sets of CCA analyses remained significant after 

FDR correction (q < 0.05; Figure 5). Higher scores indicated worse symptoms. Therefore, 

positive values implied that a higher loading on the factor was associated with greater 

impairment. Factor 1 was associated with both worse RRB (Figure 5A; r=0.54, p=0.002) and 

social deficits (Figure 5B; r=0.27, p=0.004). Factor 2 was associated with both worse 

externalizing problems (Figure 5C; r=0.43, p=0.004) and executive dysfunction (Figure 5D; 

r=0.33, p=0.02). Factor 3 was not associated with any aggregated behavioral symptoms. 
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Figure 5. First and second latent ASD factors were associated with distinct behavioral 
deficits. CCA analyses between the loadings of each factor and five groups of behavioral scores 
revealed that RSFC factors 1 and 2 were associated with distinct behavioral deficits. Four sets of 
CCA analyses remained significant after FDR (q < 0.05) multiple comparisons correction. (A) 
Associations between factor 1 and RRB measured by SRS Autistic Mannerism subscale and 
RBSR-6 subscales. (B) Associations between factor 1 and social responsiveness measured by 
SRS subscales (excluding SRS Autistic Mannerism). (C) Associations between factor 2 and 
comorbid psychopathology measured by CBCL-6-18 subscales. (D) Associations between factor 
2 and executive function measured by BRIEF subscales. The bar plots show the Pearson’s 
correlation between each behavioral score and CCA behavioral loading (more details in 
Supplemental Methods). Positive correlation suggests that a higher loading on the factor was 
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associated with greater impairment. The scatterplots show the relationship between CCA 
behavioral score loading and CCA ASD factor loading, where each dot represents an ASD 
participant. Factor 1 was associated with worse RRB and social deficits, while factor 2 was 
associated with worse externalizing problems and executive dysfunction.  
Abbreviations: SRS, Social Responsiveness Scale; RBSR-6, Repetitive Behaviors Scale-Revised 
6 Subscales; CBCL-6-18, Child Behavior Checklist Ages 6-18; BRIEF, Behavior Rating 
Inventory of Executive Function.  
See Table S4 for behavioral scores entered into the CCA.  

 

Control analyses 

Here, we summarize the results of the control analyses (see Supplemental Results for 

more details). First, factors 1 and 2 from the three-factor model were similar regardless of 

processing pipeline (GSR or CompCor), but not so for factor 3 (Table S8). On the other hand, all 

three factors (estimated in primary analyses using GSR; Figure 2) were similar to clusters 

obtained from k-means regardless of GSR or CompCor (Table S9). Thus, overall, factors 1 and 

2, and to some extent factor 3, were relatively robust to preprocessing and analysis strategies.  

Compared to the latent factors, k-means clusters showed similar but weaker behavioral 

associations (Figure S4), suggesting potential advantage of our hybrid dimensional-categorical 

model. Finally, factors estimated from random splits of ABIDE-II+GENDAAR ASD 

participants were similar to the factors generated in primary analyses and with each other (Table 

S10). 

 

Traditional case-control analysis yields smaller effects and misses significant ASD-related RSFC 

associations 

To explore potential drawbacks of traditional case-control analyses, we computed RSFC 

differences between 166 ASD and 150 demographically-matched NT participants from ABIDE-

I. We also computed RSFC differences between ASD and NT participants from each ASD 

subgroup in ABIDE-I (see Methods). Despite the larger sample size, traditional case-control 

analysis yielded significantly weaker RSFC differences than the subgroup analyses and missed 

out on ASD-related RSFC differences (Figures S5-S6). See Supplemental Results for details. 
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Discussion 
In this study, we applied a Bayesian model to a large rs-fMRI cohort of individuals with 

ASD, revealing three latent factors with dissociable patterns of hypo/hyper RSFC. Each factor 

was expressed to different degrees across individuals and associated with distinct behavioral and 

demographic features that are known sources of clinical heterogeneity in ASD, i.e., core ASD 

impairments, externalizing symptoms, executive dysfunctions, age and sex. Overall, these results 

suggest that each ASD individual expresses a mosaic of latent factors. This has been missed in 

prior subtyping approaches that assigned each individual to a single subtype (7-12,51). By 

contrast, our approach allows each individual’s factor composition to be unique, thus retaining 

inter-individual variability. This is consistent with models suggesting that ASD heterogeneity 

reflects the contribution of multiple mechanisms with different degrees of expression across 

subjects (6,23).  

Factor 1 loading was the highest when averaged across ASD participants, so 

unsurprisingly, the hypo/hyper RSFC pattern of factor 1 was the most similar to prior case-

control whole-brain comparisons emerging from distinct analytical approaches applied to 

partially overlapping samples from ABIDE-I (27-29). ASD-related hypo-connectivity within 

sensory and salience networks, as well as hyper-connectivity between somatomotor and 

subcortical regions were particularly notable. Likely reflecting its greater prevalence among 

ASD participants, this factor was more strongly associated with the core ASD symptoms of both 

social reciprocity and RRB (20). Reflecting their wide range of ASD symptoms, factor 1 

involved multiple functional networks previously associated with ASD severity. For example, 

social skills impairment and hypo-RSFC within default or salience networks have been 

previously reported (52,53). Although not often explored, hyper-connectivity between thalamus 

and temporal cortex have also been associated with social reciprocity deficits in ASD (30), and 

an atypical RSFC balance in cortical striatal circuitry involving limbic somatomotor and 

frontoparietal networks have been associated with RRB indexed by RBS-R total scores (54).  

Interestingly, the factors did not differentiate among core ASD symptoms (e.g., RRB 

versus social reciprocity), but differentiated between core ASD symptoms (factor 1) and 

comorbid symptoms (executive dysfunction and externalizing symptoms; factor 2). This finding 

underscore two important aspects of the ASD phenomenology. One is the strong intercorrelation 

of ASD symptom domains (20,55) and possibly their partially overlapping biological 
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underpinnings. While neuroimaging studies with deeper phenotyping may be able to characterize 

the association between the RSFC patterns in a given factor and specific symptom subdomains, 

larger scale phenomena reflected in the mosaic of atypical RSFC in a given factor are at play. 

This is suggested by recent reports of atypical hierarchical network organization in ASD relative 

to controls, which was also related to global metrics of ASD traits (56,57).  The second aspect of 

the ASD phenomenology underscored by our brain-behavioral findings is that comorbidity 

critically contributes to ASD heterogeneity. This is a clinical dimension that has been 

quantitatively and qualitatively overlooked in the neuroimaging literature, albeit with notable 

exceptions (e.g., 56,57). Our findings suggest that comorbidity should be more consistently 

accounted for in ASD biomarker efforts.  

 In contrast with factor 1, factor 2 was characterized by a pattern of hypo/hyper RSFC that 

included, but was not limited to, hyper-connectivity within the default and attentional networks, 

as well as hypo-connectivity between the default and attentional networks. As previously 

mentioned, factor 2 was also associated with executive dysfunction and externalizing symptoms. 

These findings are consistent with reports that poor executive control might result from 

abnormalities in attentional networks (60). Greater connectivity within default network has also 

been linked to worse executive function in ASD (53). Furthermore, externalizing symptoms are 

frequently observed in large proportions of ASD individuals (59-61). Finally, it remains 

unknown to what extent factor 2, as well as the other factors and their relationship with behavior 

are ASD specific or extend across diagnoses. An initial study (13) has suggested that shared 

factors across ADHD and ASD might exist, but the lack of a shared behavioral battery between 

the ADHD and ASD samples limited further exploration with specific symptom domains. 

Another study has shown that distinct clusters of RSFC patterns exist across individuals with and 

without ASD, and the subtypes revealed unique brain-behavior relations (14). The emergence 

and availability of deeply-phenotyped transdiagnostic samples (64) will help address this gap. 

In our study, factors 1 and 2 were associated with similar age, but distinct behavioral 

deficits, suggesting that they might not simply reflect disease severity or neurodevelopment 

stage. On the other hand, factor 3 was more frequently expressed in older participants, and might 

thus reflect a neurodevelopmental stage. The prevalence of ASD is much higher in males than 

females (65). Recent studies have suggested that ASD-related sex differences are associated with 

atypical brain connectivity and mentalization (65-67). Our study suggests that factor 3 was 
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associated with male participants, but given the small percentage of female participants (23%) in 

ABIDE-II+GENDAAR, replication with larger sex-balanced datasets is necessary. 

Finally, along with factor-specific RSFC signatures, all three factors shared atypical 

RSFC involving the default network. This is consistent with the larger RSFC ASD literature that 

have consistently reported structural, and functional ASD-related abnormalities involving the 

default network (68-70). The directionality of the abnormal default network RSFC varied by 

factor, e.g., factor 2 exhibited hyper-connectivity within the default network, while factor 1 and 3 

exhibited hypo-connectivity (Figure 2B). Similarly, factor 2 exhibited hypo-connectivity 

between the default and attentional networks, but factors 1 and 3 exhibited hyper-connectivity. 

The differences between factors may explain some of the inconsistent reports in prior studies on 

the nature of the DN atypicalities in ASD (50,71-73). As shown by our results from additional 

analyses on the independent ABIDE-I sample, common case-control comparisons fail to 

appreciate heterogeneous ASD-related RSFC abnormalities, overall urging for future quantitative 

ASD subtyping efforts.  

  A major limitation of this study is the lack of uniform deep phenotyping across all ASD 

participants because the datasets were gathered post-hoc. Therefore, despite the large sample 

size, the behavioral associations were separated into five sets of analyses performed on 

overlapping subsets of ASD participants. A harmonized dataset would also allow the 

identification of latent factors from RSFC and behavioral deficits simultaneously using a multi-

modal variant of the current approach (75). Second, since medication information is limited (e.g., 

only 8 ASD participants in ABIDEII+GENDAAR were reported to be taking antipsychotic 

medications), we did not explore the association between factors and medications. Finally, 

longitudinal data is needed to clarify whether the latent factors reflect ASD heterogeneity or 

neurodevelopmental stages or complex interactions between heterogeneity and 

neurodevelopment.   
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Conclusion 
Our study revealed three latent ASD factors with dissociable whole-brain hypo/hyper 

RSFC patterns. The factors were associated with distinct behavioral symptoms (core ASD versus 

comorbid symptoms) and demographics. Our approach allows each individual to express 

multiple latent factors to varying degrees, rather than a single factor. Therefore, each individual’s 

factor composition is unique, which might be potentially useful for future biomarker 

development. 
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