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Abstract 
 

Lipoprotein subfractions and particle sizes are increasingly used in observational studies to predict the 
risk of cardiovascular diseases. However, the causal role of the different subfractions remain largely 
uncertain because the conventional study designs are subject to unmeasured confounding. We used 
Mendelian randomization and public GWAS summary data to estimate the effect of 82 lipoprotein 
subfraction and particle size traits on the occurrence of coronary artery disease and myocardial 
infarction. We found that, unlike LDL and VLDL subfractions, HDL subfraction traits appear to have 
heterogeneous effects on coronary artery disease according to particle size. The concentration of 
medium HDL particles may have a protective effect on coronary artery disease that is independent of 
traditional lipid factors.  
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Introduction 
Lipoprotein subfractions have been increasingly used in epidemiological studies and even in clinical 
practice to predict the risk of cardiovascular diseases (CVD) (1–3). Some studies have identified 
potentially novel lipoprotein subfraction predictors for CVD (2,4–8) and demonstrated that the addition 
of lipoprotein subfraction measures can significantly improve the prediction of CVD (1,9–11). However, 
observational studies of lipoprotein subfractions have provided conflicting evidence. For example, 
several studies have suggested that small, dense LDL particles are more atherogenic (4,12), while others 
have found that larger LDL size is associated with CVD risk (13,14). Several recent observational studies 
found that the inverse association of CVD outcomes with smaller HDL particles is stronger than the 
association with larger HDL particles (6,11,15,16), but studies in different cohorts have reached 
contradictory conclusions (17,18).  

Currently, the utility of lipoprotein subfractions in routine clinical practice remains controversial (14,19–
21), there is a lack of intervention data showing that changing specific subfractions reduces CVD risk 
(21), and there is uncertainty around the causal relationship of subfractions to CVD.  Mendelian 
randomization (MR) is an epidemiological method to investigate the causal role of risk exposures (22). 
MR uses genetic variation as instrumental variables (23) and asks if genetic predisposition to a higher 
level of the exposure (in this case, lipoprotein subfractions) is associated with higher occurrences of the 
disease outcome. A positive result suggests a causal relationship if the genetic variants satisfy the 
instrumental variable assumptions (23,24). 

Because Mendelian randomization can potentially provide unbiased causal estimate even when there 
are unmeasured confounders, it is generally considered more credible than other non-randomized 
designs (25,26). MR has been used to estimate the association of several metabolites with CVD risk, 
although most prior studies are limited to one or a few risk exposures at a time (27,28). In this study we 
use MR to estimate the effect of 82 lipid and lipoprotein traits on the occurrence of coronary artery 
disease (CAD) and myocardial infarction (MI). This is to our knowledge the first comprehensive MR study 
to investigate the association of all lipoprotein subfractions with CAD.  

In addition to complementing the existing observational epidemiology of lipoprotein subfractions, our 
study is also motivated by the inconclusive results about HDL-C in prior MR studies (29–32). An MR 
study of HDL subfractions can thus provide additional insights into the heterogeneous MR estimates and 
strong genetic correlation between HDL-C and CAD (32,33) reported in previous studies. We will discuss 
interpretations of this study in the Discussion section.  

Materials and Methods 
Lipoprotein particle measurements 
We used GWAS summary data of 82 lipid and lipoprotein traits reported by two previous studies (34,35). 
In both studies, the circulating lipid and lipoprotein traits are measured using high-throughput nuclear 
magnetic resonance (NMR) spectroscopy (36). All the subfraction traits are named using three 
components separated by hyphen: the first indicates the size (XS, S, M, L, XL, XXL); the second indicates 
the category according to the lipoprotein density (VLDL, LDL, IDL, HDL); the third indicates the 
measurement (C for total cholesterol, CE for cholesterol esters, FC for free cholesterol, L for total lipids, 
P for particle concentration, PL for phospholipids, TG for triglycerides). For example, M-HDL-P means the 
concentration of medium HDL particles. Apart from the traditional lipid traits (TG, LDL-C, HDL-C), the 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 3, 2019. ; https://doi.org/10.1101/691089doi: bioRxiv preprint 

https://doi.org/10.1101/691089
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

two studies also measured the average diameter of the fractions (VLDL-D, LDL-D, HDL-D) and the 
concentration of apoB and apoA1. 

Mendelian randomization design 
We employed a three-sample summary-data Mendelian randomization design in this study, in which 
one genome-wide association study (GWAS) was used to select independent SNPs that are associated 
with one or several lipoprotein measures. More specifically, the selection GWAS was used to create two 
sets of SNPs that are in linkage equilibrium in a reference panel (!" < 0.001): 1. a set of genome-wide 
significant SNPs (p-value ≤ 5 × 10*+); 2. a full set of SNPs (p-value ≤ 1). The latter is called the 
“genome-wide Mendelian randomization” design and requires more advanced statistical methods to 
avoid weak instrument bias (32). The other two GWAS were then used to obtain summary associations 
of the selected SNPs with the exposure and the outcome, as in the commonly used two-sample MR 
design (37,38). To avoid the pitfall of statistical selection bias (aka winner’s curse), we require that the 
other two GWAS used for estimation of causal effect to have non-overlapping sample set with the 
selection GWAS. More details about the three-sample Mendelian randomization design can be found 
elsewhere (32,39) and the Online Supplement. 

GWAS datasets and instrument selection 
Table 1 describes all GWAS summary datasets used in the present study, including two GWAS of the 
traditional lipid traits (40,41), two recent GWAS of circulating metabolites using nuclear magnetic 
resonance spectroscopy (34,35), and three GWAS of coronary artery disease or myocardial infarction 
(42–44).  

Based on how the genetic instruments were selected, the MR designs we used can be categorized into 
three types: 

1. Traditional selection: Traditional lipid traits were used to select SNPs for the Mendelian 
randomization of lipoprotein subfraction traits. That is, HDL-C was used to select SNPs for HDL 
subfraction traits, LDL-C for IDL and LDL subfraction traits, and TG for VLDL subfraction traits. 
The selected SNPs were then used to estimate the univariate effect of lipoprotein subfractions 
on CAD. 

2. Subfraction selection: For each lipoprotein subfraction, the instrumental SNPs were selected 
using the same or closest lipoprotein subfraction in the selection GWAS. For example, if the 
target exposure is S-HDL-L but this is not measured in the selection GWAS, we use S-HDL-P in 
the selection GWAS. The selected SNPs are then used to estimate the univariate effects. 
Because we have two GWAS datasets for the lipoprotein subfractions, we used one for 
instrument selection and the other one for statistical inference and then swapped their roles.  

3. Multivariate Mendelian randomization: In this design, the estimate of each lipoprotein 
subfraction was further adjusted for the traditional lipid traits (TG, LDL-C, HDL-C) of the other 
two lipoprotein classes (TG is treated as a traditional lipid trait of VLDL and IDL traits are treated 
as belonging to the LDL class). For example, M-HDL-P is further adjusted for LDL-C and TG; IDL-C 
and L-LDL-C are further adjusted for HDL-C and TG; S-VLDL-CE is further adjusted for HDL-C and 
LDL-C. In this multivariate MR, SNPs were selected as instruments if they were associated (p-
value ≤ 10*,) with at least one of the three exposures (the subfraction trait under investigation 
and two other traditional lipids). 

.CC-BY-NC-ND 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 3, 2019. ; https://doi.org/10.1101/691089doi: bioRxiv preprint 

https://doi.org/10.1101/691089
http://creativecommons.org/licenses/by-nc-nd/4.0/


   
 

   
 

Statistical methods 
For univariate MR (the first two types of instrument selection), we used three statistical methods: 
inverse-variance weighting (IVW) (45), weighted median (46), and robust adjusted profile score (RAPS) 
(32,47). All three methods require the exposure GWAS and outcome GWAS have non-overlapping 
samples. The last two methods can provide consistent estimate of the causal effect even when some of 
the genetic variants are not valid instruments, provided that the direct effects of the genetic variants are 
independent of the strength of their associations with the exposure (32,47). The last condition is called 
the Instrument Strength Independent of Direct Effect (InSIDE) assumption in the literature (46,48). RAPS 
is also robust to idiosyncratically large direct effects by using techniques from robust statistics (47). RAPS 
further increases the statistical power by exploiting weak genetic instruments and does not suffer from 
weak instrument bias (32). Because IVW and weighted median can be severely biased when there are 
many SNPs only weakly associated with the exposure (32,47), we only used them with the set of 
genome-wide significant SNPs. 

For multivariate Mendelian randomization, we used an extension of RAPS called GRAPPLE (Genome-
wide mendelian Randomization under Pervasive PLEiotropy)  to obtain the statistical estimates (39). This 
method allows overlapping exposure and outcome GWAS. 

We used Bonferroni’s correction to adjust for multiple comparisons. In our main analysis using RAPS, we 
used 7 designs to investigate 82 lipoprotein traits, so the p-value threshold for significance level 0.05 is 
0.05/7/82 = 8.7 ×	10*.. 

Genetic correlations 
Genetic correlation is a measure of association between the genetic determinants of two phenotypes. It 
is generally different from the epidemiological correlation estimated from cross-sectional data. To 
further explore whether any novel causal effect found by Mendelian randomization is independent of 
other subfraction exposures, we used the LD-score regression to estimate the genetic correlations of the 
lipoprotein subfraction traits (49). The two GWAS datasets of lipoprotein subfractions are used to obtain 
two independent estimates of the genetic correlations and are then combined using inverse-variance 
weighted average.  

Results 
Genetic correlations between lipoproteins  
We first describe the genetic correlations between the lipoprotein subfraction concentrations and other 
parameters that are estimated by LD-score regression (Figure 2).Error! Reference source not found. 
Most LDL and VLDL subfractions were strongly correlated with each other as well as with ApoB. L-HDL-P, 
XL-HDL-P, HDL-C and HDL-D were negatively correlated with the VLDL subfractions. The concentrations 
of large and extra-large HDL particles (L-HDL-P and XL-HDL-P) were strongly correlated with ApoA1, HDL-
C and HDL-D. The concentrations of small and medium HDL particles (S-HDL-P and M-HDL-P) had 
relatively few significant correlations with other subfractions. Finally, the triglyceride content in small 
HDL (S-HDL-TG) was strongly correlated with VLDL subfractions but not with S-HDL-P. The estimated 
genetic correlation using the individual GWAS can be found in Supplement D. 
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Mendelian randomization 
The estimated associations of genetic determinants of selected lipoprotein subfractions with CAD or MI 
are reported in Table 2 and Figure 1Error! Reference source not found.. The full results are available in 
the Online Supplement. 

Associations of genetically-determined apoB-containing lipoproteins with CAD/MI 
As expected, in all MR analyses (univariate and multivariate), genetically-determined LDL-C, apoB and 
TG had strong positive association with CAD and MI (Table 2) and most of the results are statistically 
significant after Bonferroni’s correction.  

In univariate MR, genetically-determined VLDL and LDL subfractions had uniformly positive associations 
with CAD and MI. Within VLDL or LDL, the magnitude of the associations was very similar, though the 
associations of VLDL subfractions were smaller than of LDL subfractions. Most of the results were 
statistically significant after Bonferroni’s correction for LDL subfractions, and only some were significant 
for VLDL subfractions. In multivariate MR that adjusted for LDL-C and TG, the associations of VLDL 
subfractions were attenuated and became non-significant. In contrast, after adjusting for HDL-C and TG, 
the associations of LDL subfractions were still strong and statistically significant.   

Genetically-determined VLDL particle size (VLDL-D) showed weak negative associations with CAD and MI 
in univariate and multivariate MR. The associations are not statistically significant after adjusting for 
multiple comparisons. In comparison, genetically-determined LDL size (LDL-D) showed positive 
associations with CAD and in one study the association is statistically significant after Bonferroni’s 
correction. 

 
Associations of genetically-determined HDL measures and HDL subfractions with CAD/MI 
 
In one univariate MR study, genetically-determined HDL-C showed significant association with CAD, but 
the diagnostic plot show evidence of horizontal pleiotropy that violates the InSIDE assumption 
(Supplement Figure F6). The magnitude of this association was much smaller than that of LDL-C or TG. In 
all other univariate and multivariate MR studies, HDL-C was not associated with CAD or MI. Genetically-
determined apoA1, the major protein component of HDL particles, did not show a significant association 
with CAD or MI.  

In contrast to the apoB lipoproteins, genetically-determined HDL subfractions showed highly 
heterogeneous associations with CAD and MI in univariate MR. The concentration and lipid contents of 
extra-large HDL particles were not associated with CAD or MI. The large HDL traits trended toward a 
negative association with CAD, but the associations were non-significant after Bonferroni’s correction 
and were attenuated in multivariate MR.  In contrast, the medium HDL traits (M-HDL-P, M-HDL-C, M-
HDL-L) had inverse associations with CAD that remained statistically significant after adjusting for 
multiple comparisons. Among the small HDL traits, S-HDL-P and S-HDL-L had a trend toward inverse 
associations with CAD but were not statistically significant. Interestingly, S-HDL-TG had significantly 
positive association with CAD, possibly confounded by its strong genetic correlation with VLDL 
subfractions (Figure 2) that had similar positive associations with CAD. 
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Adjusting for LDL-C and TG in the multivariate MR did not change the results for HDL subfractions 
substantially. In particular, the inverse association between medium HDL traits and CAD were not 
attenuated but did become non-significant due to increased standard error. 

Finally, genetically-determined HDL particle size (HDL-D) was not associated with CAD or MI.  

 

Horizontal pleiotropy for M-HDL-P 
We further evaluate the independence of M-HDL-P as a risk factor for CAD. By a meta-analysis (inverse-
variance weighting) of the two GWAS of lipoprotein subfractions (34,35), we obtained 10 SNPs that are 
significantly associated with M-HDL-P (p-value ≤ 5 × 10*+). Table 1 lists the associations of these 10 
SNPs with HDL subfractions, HDL-C, LDL-C, TG and CAD. Although M-HDL-P was not genetically 
correlated with LDL-C or TG (Figure 2), several SNPs associated with M-HDL-P were also associated with 
LDL-C and/or TG, so there is potentially a large amount of horizontal pleiotropy in the univariate 
Mendelian randomization analysis of M-HDL-P. However, the associations of these 10 SNPs with LDL-C 
and TG did not exhibit any apparent pattern and are roughly balanced around the null. Therefore we did 
not find any evidence against the InSIDE condition, a crucial assumption for the validity of the weighted 
median and RAPS estimators (46,47). This observation is further illustrated in Figure 3, in which the SNP 
effects on CAD are plotted against the SNP effects on M-HDL-P. Figure 3 also demonstrates how 
adjusting for LDL-C and TG (red arrows) may affect the multivariate Mendelian randomization (adjusted 
effect on CAD = original effect on CAD – 0.45 * effect on LDL-C – 0.25 * effect on TG). After the 
adjustment, the associations of the genetic variants with CAD generally became closer to the straight 
line in red which corresponds to a Mendelian randomization estimate of -0.3. 

Discussion 
 

Because existing GWAS data for lipoprotein subfractions are much smaller than those for the traditional 
lipid traits, there are fewer genetic variants significantly associated with the subfraction traits. This limits 
the statistical power of a conventional MR analysis. We overcome this challenge by adopting a new 
statistical method, robust adjusted profile score (RAPS), that efficiently utilizes weak instruments 
(32,47). RAPS is also robust to certain violations of the instrumental variable assumptions, including 
horizontal pleiotropy that satisfies the InSIDE assumption. These methodological innovations allow us to 
obtain new insights into the role of lipoprotein subfractions. 

Our study provides a comprehensive Mendelian randomization examination of the potential causal role 
of lipoprotein subfractions in CAD. To summarize, our results suggest that:  

• LDL and VLDL subfractions appear to have nearly uniform effects on CAD across particle size. 
Therefore, the results do not support the hypothesis that small, dense LDL particles are more 
atherogenic. On the contrary, we found some evidence that larger LDL particle size might have 
positive effect on CAD. 

• HDL subfractions appear to have heterogeneous effects on CAD. In particular, the concentration 
and lipid constituents of medium HDL particles appear to have a protective effect on CAD 
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occurrence. Moreover, this relationship is independent of traditional risk factors in the following 
sense: 

o M-HDL-P was not genetically correlated with the traditional lipid traits (HDL-C, LDL-C 
and TG). 

o The estimated effect of M-HDL-P (and other lipid measurements such as M-HDL-C) with 
CAD was not attenuated when adjusting for LDL-C and TG in multivariate MR analysis, 
although the effect became statistically non-significant after adjusting for multiple 
comparisons. 

o The SNPs that are associated with M-HDL-P showed a balanced pattern of association 
with LDL-C and TG, which is consistent with the InSIDE assumption. 

We investigated the effect of lipoprotein subfractions on CAD using multiple datasets, study designs and 
statistical methods. The MR estimates are overwhelming in agreement, which further strengthens our 
conclusions. 

There has been a heated debate on the role of HDL in preventing CVD in recent years following the 
failure of several CETP trials (50–52). Observational epidemiology studies have long demonstrated 
strong inverse association between HDL-C and the risk of CAD or MI (53–55), but contradictory evidence 
was found in MR studies. In an influential study, Voight and collaborators found that genetic variants 
associated with HDL-C had varied associations with CAD and that all variants suggesting a significant 
protective effect of HDL-C on CAD also had pleiotropic effects on LDL cholesterol (LDL-C) or triglycerides 
(TG) (29). One single nucleotide polymorphism (SNP) in the HNF4A gene, when used as an instrumental 
variable, even suggested positive association of HDL-C with CAD. Another MR study found that HDL-C is 
negatively associated with CAD using 48 SNPs as instruments, but the association became statistically 
non-significant after restricting to the 19 SNPs that do not have pleiotropic association with LDL-C or TG 
(56). A similar finding was made in a subsequent study (31), where the negative effect of HDL-C on CAD 
found by conventional MR methods becomes statistically non-significant after using the “pleiotropy-
robust” MR-Egger regression (48). A more recent study using the more powerful MR-RAPS found that 
the negative effect of HDL-C is statistically significant, although estimates of the magnitude of effect 
depend considerably on the strength of the instruments (32). To summarize, the failed CETP trials and 
previous MR studies have led to the broad conclusion that raising HDL-C may not causally reduce the 
risk of CAD, at least not in a uniform way. Our results for the HDL subfractions further support this 
conclusion, as their effects on CAD appear to be heterogeneous. 

Our results may also be related to the HDL function hypothesis (57). Cholesterol efflux capacity, a 
measure of HDL function, has been documented as superior to HDL-C in predicting CVD risk (58,59). 
Recent epidemiologic studies found that HDL particle size is positively associated with cholesterol efflux 
capacity in post-menopausal women (60) and in an asymptomatic older cohort (61). However, 
mechanistic efflux studies showed that small HDL particles actually mediate more cholesterol efflux 
(62,63). A likely explanation of this seeming contradiction is that high concentrations of small HDL 
particles in the serum may mark a block in maturation of small HDL particles (61). This may also explain 
our finding that only the medium HDL traits have significant negative association with CAD in Mendelian 
randomization, as increased medium HDL may mark successful maturation of small HDL particles. 

Our study should be viewed in the context of its limitations, in particular, the inherent limitations of the 
summary-data Mendelian randomization design. Any causal inference from non-experimental data 
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makes unverifiable assumptions, so does our study. Conventional MR studies assume the genetic 
variants are valid instrumental variables. The statistical methods we used, in particular MR-RAPS, make 
less stringent assumption---the causal inference is unbiased if, apart from a few instruments, most of 
the pleotropic effects satisfy the InSIDE assumption (47,48). The InSIDE assumption is unverifiable (64) 
but can be falsified (32). Figure 3 and scatterplots in the Online Supplement do not suggest evidence 
against the InSIDE assumption for medium HDL traits, but this does not completely eliminate the 
possibility that InSIDE is violated. 

Our study did not adjust for other important risk factors such as body mass index, blood pressure, and 
smoking. Heterogeneous populations are used to obtain genetic associations with the exposures and the 
outcomes, which may introduce bias (65). Most of the genes strongly associated with the concentration 
of medium HDL particles are also associated with LDL-C and/or TG (Table 3). Although this does not 
necessarily bias the MR estimate (Figure 3), the lack of genetic variants exclusively associated with 
medium HDL particles means that medium HDL particles may only be a biomarker (instead of the causal 
mediator) in a mechanism that lowers CAD risk. 
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Table 1 GWAS summary datasets used in this study. 

Phenotype Dataset Name PubMed ID Population Sample 
size 

Sample 
overlap 
with other 
datasets 

URL to summary 
dataset 

Traditional 
lipid traits 

AGEN 28334899 
(41) 

Asian 69,414  https://blog.nus
.edu.sg/agen/su
mmary-
statistics/ 

GLGC 24097068 
(40) 

European 188,578 Kettunen,  
CARDIoGR
AMplusC4
D 

http://csg.sph.u
mich.edu/abeca
sis/public/lipids
2013/ 

Lipoprotein 
subfraction 
traits 

Davis 29084231 
(35) 

Finnish 8,372  http://csg.sph.u
mich.edu/boehn
ke/public/metsi
m-2017-
lipoproteins/ 

Kettunen 27005778 
(34) 

European 24,925 GLGC, 
CARDIoGR
AMplusC4
D 

http://www.co
mputationalme
dicine.fi/data#N
MR_GWAS 

Heart 
disease 
traits 

CARDIoGRAM
plusC4D (CAD) 

26343387 
(42) 

Mostly 
European 

185,000 GLGC, 
Kettunen 

http://www.car
diogramplusc4d.
org/data-
downloads/ 

CARDIoGRAM
plusC4D + UK 
Biobank (CAD) 

28714975 
(43) 

Mostly 
European 

 

UK Biobank 
(MI) 

Interim 
round 2 
release (44) 

European 360,420  http://www.nea
lelab.is/uk-
biobank/ 
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Table 2 Estimated effects (in log odds ratio) of selected lipoprotein subfractions with CAD or MI. Significance level (p-value): . < 
0.05, * < 0.001, ** < 0.0001 (Bonferroni correction: 0.05/82/6 = 0.0001). Full results can be found in Section D of the Online 
Supplement. 

Design 
 Traditional 

selection 
(univariate) 

Subfraction selection (univariate) Multivariate 
Mendelian 

randomization 
Selection  
GWAS 

GERA Davis Davis Kettunen Kettunen GERA + DAVIS 

Exposure 
GWAS 

Davis Kettunen Kettunen Davis Davis GLGC + 
Kettunen 

OUTCOME 
GWAS 

CARDIoGRA
MplusC4D 

(CAD) 

UK Biobank 
(MI) 

UK BioBank 
(MI) 

UK Biobank 
(MI) 

UK Biobank 
(MI) 

CARDIoGRAM
plusC4D + UK 
Biobank (CAD) 

Variants All All p < 5e-8 All p < 5e-8 p < 1e-4 
Method RAPS RAPS IVW RAPS IVW RAPS 

(Multivariate) 
VLDL traits 

TG  0.258 **    0.289  **  0.207 .  
VLDL-D -0.099 . -0.163 . -0.083 -0.204 . -0.083 -0.147 . 
XS-VLDL-P  0.170 **  0.429 **  0.374 **  0.338 **  0.373 **  0.072 
S-VLDL-P  0.226 **   0.359 **  0.266 .  0.271 .  0.331 . -0.079 
M-VLDL-P  0.250 **  0.293 *  0.322 *  0.269 **  0.268 * -0.035 
L-VLDL-P  0.268 **  0.219 .  0.332 .  0.255 .  0.247 . -0.069 
XL-VLDL-P  0.270 **  0.404 *  0.346  0.251 .  0.245 . -0.196 . 
XXL-VLDL-P  0.308 **  0.320 . -0.120  0.227 .  0.006 -0.119 

IDL and LDL traits 
LDL-C  0.523 **  0.435 **  0.416 **  0.464 **  0.422 **  0.320 ** 
ApoB  0.605 **  0.610 **  0.636 **  0.613 **  0.569 **  0.367 ** 
LDL-D  0.271  0.328 **  0.309 .  0.201 *  0.211 .  0.208 * 
S-LDL-P  0.621 **  0.459 **  0.490 *  0.546 **  0.588 **  0.368 ** 
M-LDL-P  0.638 **  0.472 **  0.413 *  0.460 **  0.439 **  0.381 ** 
L-LDL-P  0.606 **  0.484 **  0.413 **  0.494 **  0.424 **  0.337 ** 
IDL-C  0.596 **  0.511 **  0.439  **  0.423 **  0.422 **  0.324 ** 

HDL Traits 
HDL-C -0.117 ** -0.045 -0.082 -0.108 . -0.015 -0.066 
ApoA1 -0.119 .  0.075  0.001 -0.130  0.066 -0.06 
HDL-D  -0.008  0.067  0.073  0.007  0.074 -0.002 
S-HDL-L  -0.037 -0.033   -0.302 . 
S-HDL-P -0.265 . -0.053 -0.033 -0.08 -0.115 -0.301 . 
S-HDL-TG  0.354 **  0.351 **  0.334 *  0.283 *  0.286  0.306 ** 
M-HDL-C -0.323 ** -0.460 ** -0.423 . -0.434 ** -0.390 . -0.250 . 
M-HDL-P -0.298 ** -0.565 ** -0.386 -0.307 ** -0.180 -0.255 . 
L-HDL-P -0.071 . -0.083  0.009 -0.100 .  0.025 -0.017 
XL-HDL-P  0.038  0.083  0.103  0.023  0.135  0.044 
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Table 3 GWAS associations with HDL subfractions, traditional lipid traits and CAD of 10 SNPs that are significantly associated 
with M-HDL-P. Significance level (p-value): . < 0.05, * < 0.001, ** < 0.0001, *** < 5 × 10*+. 

SNP GENE M-
HDL-P 

S-
HDL-P 

L-
HDL-P 

XL-
HDL-P 

HDL-C LDL-C TG CAD 

RS11208004 DOCK7 0.075 
*** 

0.039 
** 

0.015 -0.002 0.015 
** 

0.050 
*** 

0.069 
*** 

0.012 

RS4846913 GALNT2 0.061 
*** 

0.000 
 

0.062 
*** 

0.023  
. 

0.055 
*** 

-0.006 -0.044 
*** 

-0.025 
. 

RS2126259 LOC157273 0.082 
*** 

0.066 
*** 

0.063 
** 

0.025 
. 

0.075 
*** 

0.063 
*** 

-0.016  
. 

-0.004 

RS2083637 LPL 0.058 
*** 

-0.001 
 

0.092 
*** 

0.053 
** 

0.105 
*** 

-0.008 -0.108 
*** 

-0.047 
** 

RS10468017 ALDH1A2/LIPC 0.060 
*** 

-0.096 
*** 

0.209 
*** 

0.202 
*** 

0.118 
*** 

0.002 0.038 
*** 

0.013 

RS247616 CETP 0.121 
*** 

0.058 
*** 

0.198 
*** 

0.129 
*** 

0.243 
*** 

-0.055 
*** 

-0.039 
*** 

-0.044 
** 

RS1943973 LIPG 0.108 
*** 

0.022 
 

0.104 
*** 

0.078 
*** 

0.077 
*** 

0.024 
** 

0.009 -0.016 

RS737337 DOCK6 0.087 
*** 

0.047  
. 

0.081 
** 

0.058 
* 

0.056 
*** 

0.007 -0.011 -0.038 
. 

RS769449 APOE 0.078 
*** 

-0.016 0.071 
*** 

-0.015 0.064 
*** 

-0.214 
*** 

-0.042 
*** 

-0.085 
*** 

RS7679 PCIF1/PLTP 0.071 
*** 

0.188 
*** 

-0.129 
*** 

-0.152 
*** 

-0.059 
*** 

0.009 0.051 
*** 

-0.025  
. 
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Figure 1 Estimated odds ratio of selected lipoprotein subfraction traits with CAD or MI using MR-RAPS and four different 
strategies of selecting instruments (see Online Supplement).  
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Figure 2 Genetic correlations of lipoprotein subfraction traits. White asterisk indicates the correlation is statistically significant 
after Bonferroni correction for multiple comparisons. 
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Figure 3 Blue: Scatter-plot of SNP effects on CAD versus M-HDL-P. Red: Adjusting the effects on CAD for LDL-C and TG. Slope of 
the red line across the origin is -0.3. 
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A Methods

A.1 Study design

A.1.1 Univeraite Mendelian randomization

For univariate Mendelian randomization we follow the three-sample summary-data design as described in [5]. This
design requires three non-overlapping GWAS summary datasets which will be referred to as the selection, exposure,
and outcome datasets. The selection and exposure datasets are two non-overlapping GWAS for the same (or similar)
phenotypes. After obtaining the GWAS summary datasets, we preprocessed the data to select genetic instruments
for the statistical analysis. We first removed SNPs that do not coappear in all three datasets. Then we used
the remaining selection dataset to find independent SNPs (distance ≥ 10 megabase pairs, linkage disequilibrium
r2 ≤ 0.001) that are most associated with the exposure phenotype. This was done in a greedy fashion using the
linkage-disequilibrium (LD) clumping function in the PLINK software [3]. We created two sets of SNPs, one set
with genome-wide significant association (p-value ≤ 5 × 10−8) in the selection dataset, and one set without any
restriction on the p-value. For this study, the former set usually consisted of a few (if the selection dataset is
Kettunen or Davis) to a few dozen (if the selection dataset is GERA) SNPs, while the latter set typically contained
about 1000 independent SNPs across the entire genome. We then obtained the associations of these selected SNPs
with the exposure (some lipoprotein subfraction trait) and the outcome (CAD or MI) using the other two GWAS
summary datasets.

Because we had multiple GWAS datasets for the lipoprotein subfractions and CAD/MI (Table 1), whenever
possible we swapped the role of each GWAS in the three-sample Mendelian randomization design to obtain multiple
statistical estimates. In total we conducted five different univariate Mendelian randomization studies which are
summarized in Table A1. Some of the Mendelian randomization results (selected designs and phenotypes) are
reported in the main paper. The full results are reported in Supplement D below.

Type Selection Exposure Outcome Reported in

Traditional

selection

(univariate)

GERA Davis CAD Table 2; Figure 2 (all SNPs)

GERA Davis UK Biobank

GERA Kettunen UK Biobank

Subclass

selection

(univariate)

Kettunen Davis UK Biobank
Table 2

(significant and all SNPs)

Davis Kettunen UK Biobank
Table 2, Figure 2

(significant and all SNPs)

Multivariate

MR

GERA + Davis GLGC + Kettunen CAD + UK Biobank Table 2, Figure 2

GLGC + Kettunen GERA + Davis UK Biobank

Table A1: List of all Mendelian randomization studies in this paper. The results of 4 studies are reported in the
main paper. Note that the dataset name CARIDoGRAMplusC4D is abbreviated as CAD.

A.1.2 Multivariate Mendelian randomization

As described in (author?) [4], the multivariate Mendelian randomization was designed similarly to the univariate
studies, where GWAS summary datasets were also used for one of the three puroposes: selecting SNPs, obtaining
marginal effects of the selected SNPs on the exposure, obtaining marginal effects of the selected SNPs on the
outcome. Some key distinctions are

• Both traditional lipid traits and subclass trait were used in the SNP selection. For example, in the multivariate
Mendelian randomization study of M-HDL-P, the Davis GWAS (for M-HDL-P) and GERA GWAS (for HDL-
C, LDL-C, TG) were used to select SNPs. Significance of each SNP was defined as the smallest of its
four p-values (with M-HDL-P, HDL-C, LDL-C, TG), which were used as input to LD-clumping to select
independent SNPs. For each lipoprotein subclass, we created one set of SNPs whose smallest p-value is less
than 10−4.
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• The SNP-exposure association is now a vector of length 4 (instead of a scalar), containing its associations
with the lipoprotein subclass under study (for example M-HDL-P) and HDL-C, LDL-C, TG.

• We no longer require the selection, exposure, outcome datasets to be completely non-overlapping. More
specifically, we still require the selection dataset (in our 1st multivariate MR study, GERA and Davis) to be
independent of the other datasets (GLGC, Kettunen, CARDIoGRAM, UK Biobank), but we don’t require
the exposure (GLGC + Kettunen) and outcome (CAD + UK Biobank) datasets to be non-overlapping. This
means that the SNP-exposure and SNP-outcome associations are not independent because some samples are
used to compute both associations. Fortunately, (author?) [4] shows that the correlation between the SNP-
exposure and SNP-outcome marginal effect estimates does not depend on the SNPs and can be estimated
using the GWAS summary data.

A.2 Statistical methods

For univariate Mendelian randomization, we applied three statistical methods: inverse-variance weighting (IVW),
weighted median, and robust adjusted profile score (RAPS). For IVW and weighted median we used the imple-
mentation in the TwoSampleMR software package in R [2]. Because IVW and weighted median estimates are biased
towards 0 when there are weak instruments [1, 6], we only use these methods with the set of SNPs that are
genome-wide significant in the selection dataset. For RAPS we used the implementastion in the mr.raps package
(https://github.com/qingyuanzhao/mr.raps), using the empirical partially Bayes estimator with Huber’s loss
function as described in [5]. RAPS does not suffer from weak instrument bias as long as the average instrument
strength is not too weak [6], so we applied RAPS to both sets of SNPs.

For multivariate Mendelian randomization, we applied the multivariate extension to RAPS (aka GRAPPLE)
that is briefly described below. For SNP j, we assume the estimated association with the K exposures γ̂j ∈ RK

and the outcome Γ̂j follow a multivariate normal distribution:

(
Γ̂j

γ̂j

)
∼ N

((
Γj

γj

)
,SjΣSj

)
, Sj =


σYj

σXj1

. . .

σXjK

 ,

where the mean vector (Γj ,γj) is unknown, the diagonal matrix Sj contains the standard errors of the GWAS
summary coefficients, and Σ is the correlation matrix due to sample-overlap of the GWAS that is shared between
the SNPs. The setting considered in [6] assuming no sample overlap is a special case of this model with K = 1
and Σ = I2. In the more general setting, we estimate Σ using sample correlation of the GWAS coefficients for the
non-significant SNPs (e.g. p-value ≥ 0.5 in the selection GWAS). Let the estimate be Σ̂. We further assume the
causal effect β (a vector because we have multiple exposures) satisfies the InSIDE assumption, αj = Γj−γT

j β ⊥ γj ,
for most SNPs j. The direct effect αj is assumed to satisfy a random effects model, αj ∼ N(0, τ2).

To estimate the causasl effect β, define

tj(β, τ
2) =

Γ̂j − γ̂Tj β√
σ2
Yj

+ βT ΣXj
β − 2βT ΣXjYj

+ τ2
(1)

where ΣXj
is the variance of γ̂j and ΣXjYj

is the covariance between γ̂j and Γ̂j in our model, replacing Σ with Σ̂.
The GRAPPLE estimates β and τ2 by solving the following estimating equations:

∂

∂β

p∑
j=1

ρ(tj(β, τ
2)) = 0,

1

p

p∑
j=1

ρ(tj(β, τ
2)) = δ,

where ρ is some robust loss function (we used Huber’s loss function) and δ = E[ρ(Z)] for Z ∼ N(0, 1). Standard
errors for β and τ2 are computed using the delta method. More details about GRAPPLE can be found in a
forthcoming paper [4].
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A.3 Lipid and lipoprotein traits

A full list of lipid and lipoprotein traits used in this study can be found in Table A2.

Table A2: All 82 traits included in this study and whether they are measured in the Kettunen and Davis GWAS
(NA means not available).

Trait Description Kettunen Davis

VLDL traits

TG Total triglycerides NA

VLDL-D VLDL diameter

XS-VLDL-L Total lipids in very small VLDL NA

XS-VLDL-P Concentration of very small VLDL particles

XS-VLDL-PL Phospholipids in very small VLDL

XS-VLDL-TG Triglycerides in very small VLDL

S-VLDL-C Total cholesterol in small VLDL NA

S-VLDL-FC Free cholesterol in small VLDL

S-VLDL-L Total lipids in small VLDL NA

S-VLDL-P Concentration of small VLDL particles

S-VLDL-PL Phospholipids in small VLDL

S-VLDL-TG Triglycerides in small VLDL

M-VLDL-C Total cholesterol in medium VLDL

M-VLDL-CE Cholesterol esters in medium VLDL

M-VLDL-FC Free cholesterol in medium VLDL

M-VLDL-L Total lipids in medium VLDL NA

M-VLDL-P Concentration of medium VLDL particles

M-VLDL-PL Phospholipids in medium VLDL

M-VLDL-TG Triglycerides in medium VLDL

L-VLDL-C Total cholesterol in large VLDL

L-VLDL-CE Cholesterol esters in large VLDL

L-VLDL-FC Free cholesterol in large VLDL

L-VLDL-L Total lipids in large VLDL NA

L-VLDL-P Concentration of large VLDL particles

L-VLDL-PL Phospholipids in large VLDL

L-VLDL-TG Triglycerides in large VLDL

XL-VLDL-L Total lipids in very large VLDL NA

XL-VLDL-P Concentration of very large VLDL particles

XL-VLDL-PL Phospholipids in very large VLDL

XL-VLDL-TG Triglycerides in very large VLDL

XXL-VLDL-L Total lipids in chylomicrons and extremely very large VLDL NA

XXL-VLDL-P Concentration of chylomicrons and extremely very large VLDL particles

XXL-VLDL-PL Phospholipids in chylomicrons and extremely very large

XXL-VLDL-TG Triglycerides in chylomicrons and extremely very large

LDL/IDL traits

LDL-C Total cholesterol in LDL

ApoB Apolipoprotein B

LDL-D LDL diameter

S-LDL-C Total cholesterol in small LDL
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Table A2: All 82 traits included in this study and whether they are measured in the Kettunen and Davis GWAS
(NA means not available).

Trait Description Kettunen Davis

S-LDL-L Total lipids in small LDL NA

S-LDL-P Phospholipids in small LDL

M-LDL-C Total cholesterol in medium LDL

M-LDL-CE Cholesterol esters in medium LDL

M-LDL-L Total lipids in medium LDL NA

M-LDL-P Concentration of medium LDL particles

M-LDL-PL Phospholipids in medium LDL

L-LDL-C Total cholesterol in large LDL

L-LDL-CE Cholesterol esters in large LDL

L-LDL-FC Free cholesterol in large LDL

L-LDL-L Total lipids in large LDL NA

L-LDL-P Concentration of large LDL particles

L-LDL-PL Phospholipids in large LDL

IDL-C Total cholesterol in IDL

IDL-FC Free cholesterol in IDL

IDL-L Total lipids in IDL NA

IDL-P Concentration of IDL particles

IDL-PL Phospholipids in IDL

IDL-TG Triglycerides in IDL

HDL traits

HDL-C Total cholesterol in HDL

ApoA1 Apolipoprotein A1

HDL-D HDL diameter

S-HDL-L Total lipids in small HDL NA

S-HDL-P Concentration of small HDL particles

S-HDL-TG Triglycerides in small HDL

M-HDL-C Total cholesterol in medium HDL

M-HDL-CE Cholesterol esters in medium HDL

M-HDL-FC Free cholesterol in medium HDL

M-HDL-L Total lipids in medium HDL NA

M-HDL-P Concentration of medium HDL particles

M-HDL-PL Phospholipids in medium HDL

L-HDL-C Total cholesterol in large HDL

L-HDL-CE Cholesterol esters in large HDL

L-HDL-FC Free cholesterol in large HDL

L-HDL-L Total lipids in large HDL NA

L-HDL-P Concentration of large HDL particles

L-HDL-PL Phospholipids in large HDL

XL-HDL-C Total cholesterol in very large HDL

XL-HDL-CE Cholesterol esters in very large HDL

XL-HDL-FC Free cholesterol in very large HDL

XL-HDL-L Total lipids in very large HDL NA

XL-HDL-P Concentration of very large HDL particles
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Table A2: All 82 traits included in this study and whether they are measured in the Kettunen and Davis GWAS
(NA means not available).

Trait Description Kettunen Davis

XL-HDL-PL Phospholipids in very large HDL

XL-HDL-TG Triglycerides in very large HDL
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B SNPs associated with M-HDL-P and S-HDL-P

Table B3: SNPs associated with M-HDL-P.

SNP Chr Gene S-HDL-P M-HDL-P L-HDL-P XL-HDL-P HDL-C LDL-C TG CAD

rs11208004 1 DOCK7 0.039 ** 0.075 *** 0.015 -0.002 0.015 ** 0.050 *** 0.069 *** 0.012

rs4846913 1 GALNT2 0.000 0.061 *** 0.062 *** 0.023 . 0.055 *** -0.006 -0.044 *** -0.025 .

rs2126259 8 LOC157273 0.066 *** 0.082 *** 0.063 ** 0.025 . 0.075 *** 0.063 *** -0.016 . -0.004

rs2083637 8 LPL -0.001 0.058 *** 0.092 *** 0.053 ** 0.105 *** -0.008 -0.108 *** -0.047 **

rs10468017 15 ALDH1A2/LIPC -0.096 *** 0.060 *** 0.209 *** 0.202 *** 0.118 *** 0.002 0.038 *** 0.013

rs247616 16 CETP 0.058 *** 0.121 *** 0.198 *** 0.129 *** 0.243 *** -0.055 *** -0.039 *** -0.044 **

rs1943973 18 LIPG 0.022 0.108 *** 0.104 *** 0.078 *** 0.077 *** 0.024 ** 0.009 -0.016

rs737337 19 DOCK6 0.047 . 0.087 *** 0.081 ** 0.058 * 0.056 *** 0.007 -0.011 -0.038 .

rs769449 19 APOE -0.016 0.078 *** 0.071 *** -0.015 0.064 *** -0.214 *** -0.042 *** -0.085 ***

rs7679 20 PCIF1/PLTP 0.188 *** 0.071 *** -0.129 *** -0.152 *** -0.059 *** 0.009 0.051 *** -0.025 .

Table B4: SNPs associated with S-HDL-P.

SNP Chr Gene S-HDL-P M-HDL-P L-HDL-P XL-HDL-P HDL-C LDL-C TG CAD

rs780094 2 GCKR 0.074 *** 0.034 * -0.04 ** -0.034 * -0.011 . 0.021 ** 0.110 *** 0.005

rs10935473 3 ST3GAL6-AS1 0.052 *** 0.014 -0.029 . -0.031 * -0.009 . 0.003 0.005 -0.007

rs4936363 11 SIK3 0.064 *** 0.046 ** 0.019 0.006 0.034 ** 0.018 . 0.043 *** 0.022

rs2043085 15 ALDH1A2/LIPC 0.092 *** -0.056 *** -0.202 *** -0.197 *** -0.106 *** -0.003 -0.033 *** -0.008

rs1800588 15 ALDH1A2/LIPC 0.106 *** -0.050 ** -0.215 *** -0.212 *** -0.114 *** 0.002 -0.044 *** -0.015

rs289714 16 CETP 0.077 *** 0.122 *** 0.162 *** 0.102 *** 0.214 *** -0.036 *** -0.035 *** -0.012

rs6065904 20 PLTP 0.171 *** 0.060 *** -0.127 *** -0.149 *** -0.052 *** 0.008 0.040 *** -0.022 .
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Figure B1: Scatter-plots for M-HDL-P (left) and S-HDL-P (right).
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Figure C2: Genetic correlations computed using the Davis et al. (2017) GWAS summary dataset.
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Figure C3: Genetic correlations computed using the Kettunen et al. (2016) GWAS summary dataset.
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D Full Mendelian randomization results

See Tables D5 to D7 below. Red indicates p-value is significant (at level 0.05) after Bonferroni correction for all the results in the corresponding table and
blue indicates p-value ≤ 0.05

Table D5: Mendelian randomization results using all SNPs and robust adjusted profile score (RAPS).

Method: RAPS + Strong SNPs

Screening GERA GERA GERA GLGC Davis Kettunen Kettunen + GLGC GERA + Davis

Exposure Davis Davis Kettunen Davis Kettunen Davis GERA + Davis GLGC + Kettunen

Outcome CAD UKB UKB UKB UKB UKB UKB CAD + UKB

VLDL traits

TG .258 (.053) .296 (.075) NA .262 (.06) NA .289 (.068) .112 (.073) NA

VLDL.D -.099 (.049) .028 (.074) .072 (.073) .116 (.065) -.163 (.067) -.204 (.071) -.056 (.092) -.147 (.058)

XS.VLDL.L NA NA .368 (.064) NA .429 (.059) NA NA .076 (.064)

XS.VLDL.P .17 (.031) .26 (.048) .367 (.065) .248 (.047) .429 (.06) .338 (.056) .218 (.071) .072 (.064)

XS.VLDL.PL .191 (.034) .284 (.055) .386 (.069) .278 (.052) .449 (.049) .435 (.049) .253 (.099) .183 (.087)

XS.VLDL.TG .201 (.034) .3 (.053) .388 (.068) .283 (.046) .372 (.063) .326 (.055) .167 (.066) .025 (.056)

S.VLDL.C .294 (.06) .343 (.076) NA .322 (.063) NA .424 (.094) .051 (.11) NA

S.VLDL.FC .243 (.051) .303 (.068) .389 (.079) .286 (.056) .489 (.071) .416 (.074) .095 (.089) -.096 (.075)

S.VLDL.L NA NA .356 (.075) NA .376 (.072) NA NA -.088 (.064)

S.VLDL.P .226 (.047) .288 (.068) .343 (.074) .261 (.054) .359 (.069) .271 (.094) .081 (.081) -.079 (.061)

S.VLDL.PL .228 (.047) .294 (.067) .372 (.074) .273 (.054) .365 (.066) .336 (.063) .091 (.084) .017 (.071)

S.VLDL.TG .223 (.049) .283 (.071) .323 (.073) .25 (.055) .327 (.071) .275 (.067) .061 (.079) -.071 (.059)

M.VLDL.C .253 (.053) .304 (.078) .327 (.074) .276 (.06) .368 (.07) .312 (.079) .045 (.08) -.017 (.057)

M.VLDL.CE .248 (.051) .309 (.074) .344 (.077) .285 (.058) .369 (.073) .295 (.069) .106 (.08) -.044 (.058)

M.VLDL.FC .245 (.058) .283 (.082) .31 (.076) .259 (.063) .341 (.069) .341 (.068) .033 (.083) -.042 (.063)

M.VLDL.L NA NA .311 (.079) NA .358 (.078) NA NA -.035 (.06)

M.VLDL.P .25 (.062) .282 (.083) .305 (.081) .247 (.065) .293 (.089) .269 (.065) .041 (.084) -.035 (.061)

M.VLDL.PL .248 (.056) .295 (.077) .318 (.075) .259 (.06) .351 (.071) .31 (.063) .041 (.08) -.029 (.061)

M.VLDL.TG .205 (.064) .248 (.087) .3 (.082) .224 (.067) .275 (.092) .246 (.074) .006 (.085) -.027 (.072)

L.VLDL.C .299 (.067) .304 (.1) .297 (.081) .291 (.077) .289 (.085) .317 (.077) .051 (.09) -.079 (.06)

L.VLDL.CE .247 (.061) .282 (.088) .282 (.082) .282 (.072) .285 (.082) .3 (.112) .114 (.093) -.095 (.063)

L.VLDL.FC .316 (.076) .294 (.108) .311 (.083) .287 (.081) .351 (.087) .298 (.078) .051 (.092) -.099 (.06)

L.VLDL.L NA NA .36 (.096) NA .32 (.102) NA NA -.084 (.066)
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Table D5: Mendelian randomization results using all SNPs and robust adjusted profile score (RAPS).

Method: RAPS + Strong SNPs

Screening GERA GERA GERA GLGC Davis Kettunen Kettunen + GLGC GERA + Davis

Exposure Davis Davis Kettunen Davis Kettunen Davis GERA + Davis GLGC + Kettunen

Outcome CAD UKB UKB UKB UKB UKB UKB CAD + UKB

L.VLDL.P .268 (.073) .287 (.103) .281 (.085) .262 (.075) .219 (.086) .255 (.082) .031 (.093) -.069 (.061)

L.VLDL.PL .322 (.071) .318 (.102) .346 (.089) .283 (.077) .397 (.101) .351 (.076) .003 (.092) -.062 (.067)

L.VLDL.TG .243 (.077) .238 (.104) .332 (.094) .246 (.08) .26 (.103) .324 (.082) .028 (.101) -.061 (.07)

XL.VLDL.L NA NA .289 (.098) NA .435 (.14) NA NA -.122 (.07)

XL.VLDL.P .27 (.074) .262 (.099) .281 (.093) .279 (.084) .404 (.122) .251 (.084) .024 (.104) -.196 (.074)

XL.VLDL.PL .446 (.09) .344 (.13) .31 (.093) .361 (.118) .375 (.12) .408 (.102) .042 (.112) -.14 (.068)

XL.VLDL.TG .294 (.092) .229 (.109) .261 (.094) .284 (.095) .365 (.111) .319 (.093) .022 (.113) -.106 (.069)

XXL.VLDL.L NA NA .397 (.108) NA .312 (.108) NA NA -.164 (.079)

XXL.VLDL.P .308 (.08) .327 (.096) .378 (.097) .297 (.088) .32 (.101) .227 (.073) .147 (.091) -.119 (.068)

XXL.VLDL.PL .338 (.091) .346 (.103) .342 (.103) .351 (.103) .282 (.114) .317 (.086) .094 (.105) -.149 (.069)

XXL.VLDL.TG .384 (.108) .374 (.124) .348 (.1) .433 (.121) .304 (.138) .359 (.18) .119 (.115) -.173 (.063)

IDL/LDL traits

LDL.C .523 (.043) .512 (.053) .514 (.042) .473 (.055) .435 (.048) .464 (.048) .358 (.056) .32 (.031)

ApoB .605 (.056) .55 (.062) .551 (.052) .543 (.069) .61 (.066) .613 (.06) .45 (.082) .367 (.04)

LDL.D .271 (.215) .452 (.299) 2.064 (.233) .831 (.684) .328 (.073) .201 (.055) .375 (.09) .208 (.06)

S.LDL.C .624 (.053) .589 (.061) .539 (.048) .537 (.067) .474 (.056) .48 (.05) .341 (.064) .361 (.042)

S.LDL.L NA NA .561 (.047) NA .473 (.057) NA NA .371 (.043)

S.LDL.P .621 (.057) .581 (.065) .56 (.049) .558 (.073) .459 (.061) .546 (.063) .351 (.069) .368 (.039)

M.LDL.C .648 (.055) .607 (.062) .545 (.044) .545 (.068) .455 (.049) .557 (.054) .347 (.063) .322 (.033)

M.LDL.CE .643 (.056) .601 (.062) .564 (.042) .545 (.069) .467 (.05) .55 (.055) .347 (.064) .337 (.032)

M.LDL.L NA NA .559 (.042) NA .461 (.049) NA NA .342 (.033)

M.LDL.P .638 (.056) .597 (.062) .557 (.043) .54 (.069) .472 (.051) .46 (.05) .345 (.063) .381 (.039)

M.LDL.PL .658 (.063) .605 (.067) .556 (.047) .571 (.077) .506 (.053) .559 (.057) .388 (.075) .38 (.042)

L.LDL.C .627 (.053) .577 (.059) .515 (.042) .504 (.063) .465 (.048) .488 (.052) .35 (.059) .372 (.036)

L.LDL.CE .638 (.055) .589 (.06) .555 (.041) .514 (.065) .463 (.049) .493 (.054) .379 (.064) .372 (.036)

L.LDL.FC .609 (.051) .557 (.057) .503 (.041) .491 (.06) .468 (.047) .457 (.052) .361 (.057) .34 (.03)

L.LDL.L NA NA .543 (.04) NA .468 (.047) NA NA .363 (.035)

L.LDL.P .606 (.052) .559 (.058) .545 (.041) .49 (.062) .484 (.046) .494 (.048) .364 (.059) .337 (.031)
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Table D5: Mendelian randomization results using all SNPs and robust adjusted profile score (RAPS).

Method: RAPS + Strong SNPs

Screening GERA GERA GERA GLGC Davis Kettunen Kettunen + GLGC GERA + Davis

Exposure Davis Davis Kettunen Davis Kettunen Davis GERA + Davis GLGC + Kettunen

Outcome CAD UKB UKB UKB UKB UKB UKB CAD + UKB

L.LDL.PL .61 (.053) .558 (.058) .515 (.043) .492 (.063) .528 (.048) .502 (.052) .364 (.062) .354 (.032)

IDL.C .596 (.054) .55 (.059) .562 (.042) .481 (.064) .511 (.047) .423 (.051) .425 (.06) .324 (.03)

IDL.FC .586 (.054) .539 (.059) .525 (.044) .494 (.063) .44 (.044) .402 (.05) .444 (.058) .337 (.03)

IDL.L NA NA .57 (.043) NA .494 (.048) NA NA .323 (.031)

IDL.P .566 (.052) .536 (.059) .575 (.044) .488 (.065) .434 (.049) .412 (.051) .426 (.06) .366 (.036)

IDL.PL .583 (.052) .533 (.058) .532 (.045) .489 (.064) .471 (.047) .396 (.05) .416 (.059) .326 (.031)

IDL.TG .603 (.066) .595 (.075) .658 (.063) .567 (.085) .432 (.056) .315 (.053) .382 (.07) .374 (.043)

HDL traits

HDL.C -.117 (.031) -.199 (.045) -.136 (.055) -.317 (.052) -.045 (.059) -.108 (.05) -.106 (.06) -.066 (.049)

ApoA1 -.119 (.042) -.193 (.06) .023 (.058) -.264 (.071) .075 (.064) -.13 (.068) -.153 (.073) -.06 (.052)

HDL.D -.008 (.027) -.124 (.041) .004 (.046) -.092 (.048) .067 (.045) .007 (.041) -.003 (.06) -.002 (.041)

S.HDL.L NA NA -.098 (.095) NA -.037 (.085) NA NA -.302 (.108)

S.HDL.P -.265 (.084) -.362 (.113) -.13 (.092) -.317 (.119) -.053 (.081) -.08 (.094) -.61 (.148) -.301 (.096)

S.HDL.TG .354 (.072) .386 (.088) .65 (.089) .475 (.097) .351 (.087) .283 (.073) -.195 (.208) .306 (.062)

M.HDL.C -.323 (.058) -.43 (.079) -.364 (.085) -.376 (.091) -.46 (.104) -.434 (.075) -.337 (.119) -.25 (.082)

M.HDL.CE -.333 (.058) -.458 (.078) -.372 (.09) -.385 (.087) -.542 (.105) -.443 (.071) -.345 (.12) -.235 (.092)

M.HDL.FC -.275 (.065) -.319 (.08) -.262 (.083) -.313 (.092) -.313 (.094) -.409 (.082) -.288 (.111) -.205 (.076)

M.HDL.L NA NA -.311 (.095) NA -.474 (.123) NA NA -.25 (.085)

M.HDL.P -.298 (.06) -.394 (.086) -.273 (.101) -.373 (.1) -.565 (.131) -.307 (.079) -.321 (.107) -.255 (.087)

M.HDL.PL -.265 (.058) -.346 (.083) -.25 (.09) -.335 (.096) -.358 (.104) -.3 (.072) -.304 (.114) -.247 (.078)

L.HDL.C -.067 (.03) -.144 (.044) -.139 (.051) -.144 (.05) -.147 (.052) -.049 (.045) -.067 (.065) .014 (.047)

L.HDL.CE -.063 (.03) -.144 (.044) -.116 (.051) -.149 (.051) -.134 (.051) -.094 (.047) -.007 (.064) .011 (.047)

L.HDL.FC -.082 (.03) -.144 (.045) -.114 (.053) -.128 (.053) -.13 (.051) -.03 (.047) -.028 (.076) .001 (.047)

L.HDL.L NA NA -.108 (.05) NA -.132 (.052) NA NA .022 (.045)

L.HDL.P -.071 (.028) -.146 (.042) -.111 (.05) -.13 (.049) -.083 (.05) -.1 (.043) -.042 (.063) -.017 (.042)

L.HDL.PL -.087 (.029) -.161 (.043) -.141 (.051) -.142 (.051) -.105 (.053) -.092 (.044) -.064 (.071) .02 (.046)

XL.HDL.C .055 (.046) -.013 (.068) .11 (.066) .064 (.073) .048 (.069) .112 (.068) .044 (.096) .018 (.06)

XL.HDL.CE .064 (.044) .006 (.066) .129 (.066) .08 (.07) .057 (.068) .046 (.075) .043 (.091) .006 (.058)
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Table D5: Mendelian randomization results using all SNPs and robust adjusted profile score (RAPS).

Method: RAPS + Strong SNPs

Screening GERA GERA GERA GLGC Davis Kettunen Kettunen + GLGC GERA + Davis

Exposure Davis Davis Kettunen Davis Kettunen Davis GERA + Davis GLGC + Kettunen

Outcome CAD UKB UKB UKB UKB UKB UKB CAD + UKB

XL.HDL.FC .009 (.039) -.05 (.059) .066 (.058) -.026 (.067) .102 (.06) .049 (.066) .01 (.088) .037 (.051)

XL.HDL.L NA NA .073 (.055) NA .038 (.058) NA NA .035 (.049)

XL.HDL.P .038 (.033) -.022 (.049) .112 (.057) .017 (.056) .083 (.055) .023 (.057) .013 (.071) .044 (.051)

XL.HDL.PL .029 (.031) -.031 (.046) .037 (.05) .005 (.055) .038 (.052) .013 (.046) .023 (.071) .047 (.044)

XL.HDL.TG .092 (.027) .112 (.041) .14 (.047) .135 (.047) .191 (.042) .136 (.039) .048 (.055) .037 (.043)
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Table D6: Mendelian randomization results using genome-wide significant SNPs and inverse variance weighted (IVW) estimator.

Method: IVW + Significant SNPs

Selection GERA GERA GERA GLGC Davis Kettunen

Exposure Davis Davis Kettunen Davis Kettunen Davis

Outcome CAD UKB UKB UKB UKB UKB

VLDL traits

TG .184 (.051) .278 (.076) NA .309 (.074) NA .207 (.064)

VLDL-D .044 (.06) .052 (.09) .038 (.102) .118 (.091) -.083 (.16) -.083 (.138)

XS-VLDL-L NA NA .353 (.08) NA .372 (.083) NA

XS-VLDL-P .162 (.04) .256 (.059) .352 (.081) .273 (.063) .374 (.084) .373 (.095)

XS-VLDL-PL .165 (.046) .262 (.069) .37 (.088) .27 (.075) .443 (.048) .401 (.07)

XS-VLDL-TG .179 (.041) .277 (.061) .362 (.082) .288 (.062) .335 (.076) .314 (.08)

S-VLDL-C .237 (.053) .343 (.08) NA .339 (.083) NA .443 (.116)

S-VLDL-FC .21 (.05) .307 (.076) .344 (.098) .314 (.076) .262 (.122) .397 (.116)

S-VLDL-L NA NA .318 (.095) NA .27 (.106) NA

S-VLDL-P .188 (.049) .274 (.074) .311 (.093) .29 (.072) .266 (.103) .331 (.142)

S-VLDL-PL .198 (.048) .291 (.072) .342 (.091) .3 (.072) .281 (.089) .331 (.125)

S-VLDL-TG .174 (.051) .255 (.076) .296 (.094) .28 (.073) .261 (.102) .262 (.093)

M-VLDL-C .188 (.053) .265 (.08) .305 (.096) .287 (.077) .361 (.078) .32 (.134)

M-VLDL-CE .203 (.051) .285 (.077) .32 (.098) .295 (.076) .264 (.094) .291 (.125)

M-VLDL-FC .165 (.056) .233 (.084) .292 (.098) .27 (.08) .3 (.084) .303 (.104)

M-VLDL-L NA NA .265 (.104) NA .357 (.096) NA

M-VLDL-P .153 (.056) .214 (.085) .276 (.104) .258 (.081) .322 (.092) .268 (.074)

M-VLDL-PL .163 (.054) .23 (.082) .296 (.097) .266 (.078) .302 (.084) .289 (.095)

M-VLDL-TG .14 (.058) .196 (.087) .268 (.107) .247 (.083) .327 (.093) .245 (.091)

L-VLDL-C .177 (.06) .24 (.091) .288 (.106) .286 (.089) .108 (.223) .31 (.084)

L-VLDL-CE .178 (.057) .245 (.087) .262 (.105) .279 (.086) .182 (.187) .299 (.077)

L-VLDL-FC .176 (.063) .242 (.094) .295 (.108) .298 (.091) .321 (.101) .314 (.082)

L-VLDL-L NA NA .291 (.119) NA .125 (.232) NA

L-VLDL-P .164 (.062) .227 (.093) .269 (.108) .275 (.09) .332 (.127) .247 (.076)

L-VLDL-PL .173 (.061) .23 (.092) .308 (.115) .284 (.088) .32 (.127) .302 (.079)

L-VLDL-TG .149 (.063) .202 (.095) .268 (.118) .267 (.092) .33 (.131) .302 (.08)

XL-VLDL-L NA NA .263 (.123) NA .365 (.286) NA
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Table D6: Mendelian randomization results using genome-wide significant SNPs and inverse variance weighted (IVW) estimator.

Method: IVW + Significant SNPs

Selection GERA GERA GERA GLGC Davis Kettunen

Exposure Davis Davis Kettunen Davis Kettunen Davis

Outcome CAD UKB UKB UKB UKB UKB

XL-VLDL-P .149 (.063) .206 (.095) .247 (.122) .268 (.096) .346 (.28) .245 (.077)

XL-VLDL-PL .176 (.067) .243 (.101) .292 (.119) .323 (.101) .333 (.265) .344 (.133)

XL-VLDL-TG .151 (.066) .205 (.1) .241 (.12) .282 (.1) .323 (.272) .249 (.081)

XXL-VLDL-L NA NA .356 (.127) NA -.165 (.425) NA

XXL-VLDL-P .228 (.067) .35 (.099) .372 (.119) .376 (.098) -.12 (.389) .006 (.153)

XXL-VLDL-PL .211 (.07) .31 (.105) .275 (.125) .399 (.107) -.145 (.395) .071 (.191)

XXL-VLDL-TG .221 (.067) .3 (.102) .292 (.126) .415 (.104) .09 (.36) .349 (.303)

IDL/LDL traits

LDL-C .427 (.049) .431 (.054) .409 (.077) .409 (.054) .416 (.099) .422 (.063)

ApoB .506 (.058) .525 (.065) .474 (.093) .473 (.064) .636 (.092) .569 (.071)

LDL-D .217 (.151) .423 (.161) 1.121 (.178) .271 (.143) .309 (.126) .211 (.081)

S-LDL-C .481 (.056) .467 (.063) .445 (.087) .438 (.063) .44 (.128) .436 (.076)

S-LDL-L NA NA .44 (.09) NA .456 (.132) NA

S-LDL-P .501 (.059) .494 (.068) .449 (.093) .472 (.067) .49 (.139) .588 (.097)

M-LDL-C .475 (.057) .457 (.064) .426 (.08) .427 (.064) .418 (.111) .436 (.087)

M-LDL-CE .485 (.058) .47 (.065) .432 (.078) .436 (.064) .43 (.107) .444 (.085)

M-LDL-L NA NA .43 (.08) NA .43 (.11) NA

M-LDL-P .479 (.057) .465 (.064) .437 (.081) .44 (.064) .413 (.122) .439 (.093)

M-LDL-PL .5 (.063) .49 (.071) .437 (.087) .464 (.07) .443 (.132) .497 (.099)

L-LDL-C .449 (.055) .436 (.061) .432 (.076) .411 (.061) .409 (.106) .417 (.076)

L-LDL-CE .464 (.056) .451 (.062) .426 (.075) .422 (.062) .416 (.102) .433 (.077)

L-LDL-FC .425 (.054) .411 (.059) .424 (.074) .393 (.059) .387 (.105) .394 (.078)

L-LDL-L NA NA .427 (.074) NA .407 (.103) NA

L-LDL-P .448 (.054) .442 (.06) .435 (.075) .421 (.059) .413 (.104) .424 (.075)

L-LDL-PL .444 (.056) .438 (.061) .441 (.078) .423 (.061) .42 (.109) .429 (.076)

IDL-C .447 (.055) .455 (.059) .451 (.075) .433 (.06) .439 (.085) .422 (.07)

IDL-FC .429 (.055) .439 (.059) .468 (.075) .414 (.059) .431 (.081) .402 (.074)

IDL-L NA NA .467 (.075) NA .445 (.085) NA

34

.
C

C
-B

Y
-N

C
-N

D
 4.0 International license

a
certified by peer review

) is the author/funder, w
ho has granted bioR

xiv a license to display the preprint in perpetuity. It is m
ade available under 

T
he copyright holder for this preprint (w

hich w
as not

this version posted July 3, 2019. 
; 

https://doi.org/10.1101/691089
doi: 

bioR
xiv preprint 

https://doi.org/10.1101/691089
http://creativecommons.org/licenses/by-nc-nd/4.0/


Table D6: Mendelian randomization results using genome-wide significant SNPs and inverse variance weighted (IVW) estimator.

Method: IVW + Significant SNPs

Selection GERA GERA GERA GLGC Davis Kettunen

Exposure Davis Davis Kettunen Davis Kettunen Davis

Outcome CAD UKB UKB UKB UKB UKB

IDL-P .443 (.055) .467 (.06) .48 (.077) .45 (.059) .446 (.088) .426 (.071)

IDL-PL .429 (.055) .443 (.059) .473 (.078) .427 (.059) .435 (.092) .407 (.069)

IDL-TG .461 (.07) .518 (.076) .625 (.098) .494 (.073) .342 (.085) .34 (.123)

HDL traits

HDL-C -.085 (.044) -.156 (.057) -.146 (.085) -.195 (.06) -.082 (.159) -.015 (.109)

ApoA1 -.072 (.054) -.155 (.071) -.036 (.09) -.194 (.074) .001 (.192) .066 (.158)

HDL-D -.027 (.042) -.071 (.058) -.052 (.073) -.092 (.063) .073 (.098) .074 (.074)

S-HDL-L NA NA -.064 (.148) NA -.033 (.092) NA

S-HDL-P -.117 (.087) -.172 (.116) -.13 (.146) -.298 (.117) -.033 (.09) -.115 (.174)

S-HDL-TG .224 (.063) .317 (.082) .496 (.107) .344 (.085) .334 (.096) .286 (.17)

M-HDL-C -.214 (.062) -.327 (.078) -.48 (.111) -.39 (.079) -.423 (.175) -.39 (.159)

M-HDL-CE -.227 (.062) -.338 (.077) -.497 (.111) -.4 (.078) -.435 (.194) -.341 (.238)

M-HDL-FC -.158 (.065) -.272 (.084) -.341 (.117) -.337 (.085) -.288 (.218) -.278 (.144)

M-HDL-L NA NA -.436 (.125) NA -.514 (.223) NA

M-HDL-P -.172 (.066) -.292 (.087) -.414 (.132) -.361 (.089) -.386 (.307) -.18 (.118)

M-HDL-PL -.161 (.064) -.275 (.085) -.38 (.126) -.345 (.087) -.419 (.301) -.2 (.099)

L-HDL-C -.047 (.044) -.097 (.059) -.124 (.08) -.133 (.063) .022 (.106) .021 (.105)

L-HDL-CE -.049 (.044) -.098 (.059) -.12 (.079) -.137 (.063) .023 (.112) .004 (.106)

L-HDL-FC -.044 (.046) -.094 (.062) -.106 (.082) -.127 (.067) .038 (.103) .017 (.109)

L-HDL-L NA NA -.106 (.077) NA .034 (.102) NA

L-HDL-P -.045 (.043) -.097 (.058) -.102 (.077) -.125 (.063) .009 (.111) .025 (.11)

L-HDL-PL -.054 (.044) -.11 (.06) -.115 (.079) -.14 (.064) .006 (.115) .016 (.115)

XL-HDL-C .03 (.06) -.012 (.084) .014 (.099) -.05 (.088) -.015 (.165) .161 (.101)

XL-HDL-CE .03 (.059) -.009 (.081) .025 (.098) -.042 (.086) -.001 (.166) .221 (.107)

XL-HDL-FC -.003 (.056) -.05 (.076) -.001 (.089) -.077 (.081) .072 (.11) .057 (.092)

XL-HDL-L NA NA .001 (.085) NA -.009 (.138) NA

XL-HDL-P .015 (.049) -.021 (.067) .013 (.088) -.042 (.071) .103 (.1) .135 (.093)

XL-HDL-PL 0 (.047) -.037 (.065) -.026 (.079) -.055 (.069) .081 (.088) .071 (.069)
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Table D6: Mendelian randomization results using genome-wide significant SNPs and inverse variance weighted (IVW) estimator.

Method: IVW + Significant SNPs

Selection GERA GERA GERA GLGC Davis Kettunen

Exposure Davis Davis Kettunen Davis Kettunen Davis

Outcome CAD UKB UKB UKB UKB UKB

XL-HDL-TG .086 (.041) .103 (.059) .14 (.075) .13 (.063) .165 (.043) .126 (.051)
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Table D7: Mendelian randomization results using genome-wide significant SNPs and the weighted median estimator.

Method: Weighted median + Significant SNPs

Selection GERA GERA GERA GLGC Davis Kettunen

Exposure Davis Davis Kettunen Davis Kettunen Davis

Outcome CAD UKB UKB UKB UKB UKB

VLDL traits

TG .042 (.055) .191 (.072) NA .228 (.069) NA .195 (.077)

VLDL-D -.098 (.052) .039 (.095) .057 (.11) .058 (.093) -.107 (.099) -.052 (.115)

XS-VLDL-L NA NA .312 (.076) NA .393 (.078) NA

XS-VLDL-P .101 (.037) .23 (.052) .303 (.079) .229 (.052) .409 (.08) .253 (.059)

XS-VLDL-PL .096 (.039) .242 (.059) .352 (.087) .228 (.06) .422 (.065) .319 (.062)

XS-VLDL-TG .125 (.041) .266 (.057) .287 (.079) .221 (.056) .361 (.084) .306 (.069)

S-VLDL-C .187 (.059) .232 (.075) NA .256 (.074) NA .303 (.094)

S-VLDL-FC .152 (.057) .207 (.069) .289 (.093) .227 (.069) .316 (.109) .279 (.077)

S-VLDL-L NA NA .282 (.083) NA .306 (.099) NA

S-VLDL-P .131 (.057) .202 (.069) .275 (.085) .221 (.062) .291 (.093) .226 (.078)

S-VLDL-PL .137 (.053) .205 (.067) .283 (.083) .218 (.062) .305 (.092) .263 (.075)

S-VLDL-TG .112 (.057) .204 (.067) .216 (.088) .229 (.064) .267 (.099) .244 (.073)

M-VLDL-C .12 (.058) .2 (.07) .255 (.088) .213 (.066) .303 (.099) .224 (.081)

M-VLDL-CE .144 (.054) .207 (.071) .262 (.087) .207 (.068) .301 (.098) .209 (.072)

M-VLDL-FC .081 (.058) .188 (.074) .221 (.087) .218 (.068) .272 (.102) .231 (.08)

M-VLDL-L NA NA .227 (.095) NA .275 (.109) NA

M-VLDL-P .047 (.06) .191 (.072) .221 (.096) .226 (.069) .31 (.104) .257 (.079)

M-VLDL-PL .103 (.056) .197 (.071) .228 (.089) .217 (.064) .29 (.104) .231 (.078)

M-VLDL-TG -.005 (.06) .199 (.075) .224 (.089) .222 (.068) .318 (.113) .233 (.085)

L-VLDL-C .109 (.068) .2 (.078) .237 (.093) .231 (.075) .242 (.122) .262 (.088)

L-VLDL-CE .147 (.063) .211 (.079) .249 (.09) .253 (.073) .281 (.11) .286 (.081)

L-VLDL-FC .045 (.065) .199 (.085) .225 (.093) .224 (.077) .252 (.125) .228 (.089)

L-VLDL-L NA NA .243 (.102) NA .261 (.122) NA

L-VLDL-P .041 (.064) .209 (.082) .224 (.092) .21 (.079) .289 (.122) .223 (.086)

L-VLDL-PL .08 (.063) .201 (.08) .244 (.101) .224 (.077) .278 (.123) .247 (.092)

L-VLDL-TG -.008 (.061) .215 (.084) .225 (.103) .161 (.077) .286 (.13) .277 (.093)

XL-VLDL-L NA NA .262 (.111) NA NA NA
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Table D7: Mendelian randomization results using genome-wide significant SNPs and the weighted median estimator.

Method: Weighted median + Significant SNPs

Selection GERA GERA GERA GLGC Davis Kettunen

Exposure Davis Davis Kettunen Davis Kettunen Davis

Outcome CAD UKB UKB UKB UKB UKB

XL-VLDL-P -.026 (.063) .207 (.091) .289 (.102) .192 (.088) NA .209 (.101)

XL-VLDL-PL -.006 (.067) .197 (.094) .253 (.094) .213 (.088) NA .24 (.101)

XL-VLDL-TG -.026 (.064) .214 (.092) .229 (.102) .191 (.088) NA .212 (.099)

XXL-VLDL-L NA NA .316 (.114) NA -.156 (.22) NA

XXL-VLDL-P .091 (.071) .236 (.089) .267 (.1) .263 (.088) -.104 (.173) .185 (.098)

XXL-VLDL-PL .153 (.082) .283 (.096) .267 (.11) .332 (.095) -.139 (.178) .126 (.124)

XXL-VLDL-TG .126 (.078) .266 (.096) .244 (.108) .339 (.097) .227 (.171) .23 (.123)

IDL/LDL traits

LDL-C .263 (.053) .307 (.066) .274 (.05) .297 (.063) .435 (.072) .431 (.067)

ApoB .365 (.073) .472 (.078) .381 (.063) .375 (.081) .624 (.08) .565 (.094)

LDL-D .306 (.09) .413 (.157) .467 (.163) .271 (.142) .294 (.075) .193 (.06)

S-LDL-C .271 (.058) .342 (.073) .343 (.056) .273 (.068) .498 (.08) .274 (.083)

S-LDL-L NA NA .354 (.061) NA .449 (.081) NA

S-LDL-P .355 (.063) .366 (.078) .397 (.069) .329 (.08) .49 (.089) .581 (.098)

M-LDL-C .283 (.055) .313 (.073) .299 (.05) .244 (.07) .474 (.074) .297 (.074)

M-LDL-CE .27 (.055) .333 (.077) .299 (.051) .255 (.071) .437 (.081) .311 (.077)

M-LDL-L NA NA .303 (.053) NA .432 (.079) NA

M-LDL-P .251 (.057) .32 (.071) .309 (.054) .278 (.07) .409 (.072) .325 (.078)

M-LDL-PL .343 (.063) .337 (.081) .316 (.055) .318 (.078) .457 (.074) .353 (.085)

L-LDL-C .251 (.052) .29 (.067) .303 (.048) .231 (.063) .45 (.075) .309 (.071)

L-LDL-CE .251 (.054) .32 (.068) .293 (.052) .241 (.066) .481 (.074) .322 (.077)

L-LDL-FC .251 (.048) .214 (.061) .301 (.049) .214 (.062) .427 (.068) .289 (.065)

L-LDL-L NA NA .289 (.051) NA .412 (.07) NA

L-LDL-P .281 (.053) .321 (.067) .29 (.053) .244 (.066) .42 (.072) .351 (.072)

L-LDL-PL .286 (.05) .32 (.067) .313 (.052) .298 (.065) .413 (.074) .35 (.076)

IDL-C .283 (.056) .349 (.068) .315 (.053) .313 (.07) .51 (.072) .383 (.068)

IDL-FC .283 (.053) .334 (.066) .337 (.053) .314 (.065) .422 (.067) .367 (.064)

IDL-L NA NA .329 (.056) NA .494 (.069) NA
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Table D7: Mendelian randomization results using genome-wide significant SNPs and the weighted median estimator.

Method: Weighted median + Significant SNPs

Selection GERA GERA GERA GLGC Davis Kettunen

Exposure Davis Davis Kettunen Davis Kettunen Davis

Outcome CAD UKB UKB UKB UKB UKB

IDL-P .331 (.06) .44 (.067) .343 (.056) .371 (.069) .463 (.074) .328 (.068)

IDL-PL .265 (.055) .332 (.066) .344 (.056) .316 (.066) .451 (.072) .359 (.066)

IDL-TG .233 (.067) .371 (.086) .605 (.078) .337 (.085) .315 (.082) .215 (.057)

HDL traits

HDL-C -.017 (.04) -.167 (.058) -.17 (.072) -.167 (.058) -.096 (.077) -.085 (.07)

ApoA1 .094 (.049) -.06 (.076) -.069 (.087) -.167 (.07) .005 (.083) -.051 (.121)

HDL-D .079 (.034) .062 (.061) .102 (.064) .088 (.061) .099 (.061) .096 (.058)

S-HDL-L NA NA -.174 (.113) NA NA NA

S-HDL-P -.173 (.069) .018 (.106) -.171 (.109) -.235 (.113) NA -.049 (.108)

S-HDL-TG .157 (.061) .238 (.085) .312 (.105) .228 (.086) .327 (.105) .229 (.076)

M-HDL-C -.169 (.054) -.236 (.082) -.264 (.097) -.241 (.077) -.392 (.098) -.266 (.084)

M-HDL-CE -.166 (.053) -.23 (.08) -.271 (.099) -.238 (.075) -.394 (.103) -.23 (.085)

M-HDL-FC -.166 (.055) -.254 (.086) -.281 (.098) -.282 (.087) -.28 (.102) -.22 (.1)

M-HDL-L NA NA -.296 (.113) NA -.448 (.122) NA

M-HDL-P -.157 (.056) -.199 (.09) -.298 (.112) -.231 (.086) -.291 (.136) -.165 (.131)

M-HDL-PL -.143 (.058) -.183 (.088) -.285 (.108) -.183 (.085) -.321 (.114) -.203 (.12)

L-HDL-C .086 (.037) -.009 (.066) .031 (.083) -.032 (.08) .003 (.09) .006 (.068)

L-HDL-CE .086 (.038) -.011 (.067) .075 (.077) -.037 (.076) .015 (.091) -.006 (.068)

L-HDL-FC .09 (.039) -.005 (.067) .079 (.081) -.019 (.076) .041 (.078) .027 (.074)

L-HDL-L NA NA .074 (.077) NA .068 (.084) NA

L-HDL-P .081 (.036) .046 (.062) .075 (.074) -.01 (.066) .066 (.07) .078 (.064)

L-HDL-PL .084 (.039) 0 (.067) .051 (.082) -.021 (.071) .054 (.075) .074 (.071)

XL-HDL-C .163 (.047) .122 (.091) .136 (.087) .132 (.09) .02 (.098) .161 (.096)

XL-HDL-CE .139 (.044) .106 (.088) .122 (.09) .148 (.085) .038 (.091) .336 (.092)

XL-HDL-FC .135 (.048) .065 (.079) .133 (.081) .027 (.077) .159 (.079) .052 (.086)

XL-HDL-L NA NA .119 (.075) NA .023 (.078) NA

XL-HDL-P .115 (.035) .087 (.07) .12 (.073) .129 (.067) .16 (.071) .15 (.073)

XL-HDL-PL .101 (.037) .064 (.07) .11 (.072) .121 (.069) .141 (.069) .088 (.065)
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Table D7: Mendelian randomization results using genome-wide significant SNPs and the weighted median estimator.

Method: Weighted median + Significant SNPs

Selection GERA GERA GERA GLGC Davis Kettunen

Exposure Davis Davis Kettunen Davis Kettunen Davis

Outcome CAD UKB UKB UKB UKB UKB

XL-HDL-TG .074 (.027) .107 (.047) .126 (.051) .118 (.042) .156 (.05) .114 (.045)
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E Scatter-plots of marginal SNP effects for selected subfractions

This section of the Supplement reports the scatter-plots of marginal SNP effects on CAD/MI versus marginal effects on selected lipoprotein subfractions.
Additional results can be found in Online Supplement 2.
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Figure E4: Selection: Davis; Exposure: Kettunen; Outcome: UK Biobank.
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Figure E5: Selection: Davis; Exposure: Kettunen; Outcome: UK Biobank.
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F Diagnostic plots of RAPS for HDL-C and M-HDL-P

Zhao et al. (2019) described two diagnostic plots for the modeling assumptions used by (univariate) RAPS. Here we report these plots for HDL-C and
M-HDL-P in different studies.
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Figure F6: Selection: GERA; Exposure: Davis; Outcome: CAD.
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Heterogeneity p−value: 0.061
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Figure F7: Selection: GERA; Exposure: Davis; Outcome: UKB.

Heterogeneity p−value: 0.0035
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Figure F8: Selection: GERA; Exposure: Kettunen; Outcome: UKB.
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Heterogeneity p−value: 0.12
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Figure F9: Selection: GLGC; Exposure: Davis; Outcome: UKB.

Heterogeneity p−value: 0.077
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Figure F10: Selection: Davis; Exposure: Kettunen; Outcome: UKB.
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Heterogeneity p−value: 0.077
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Figure F11: Selection: Kettunen; Exposure: Davis; Outcome: UKB.
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Figure F12: Selection: GERA; Exposure: Davis; Outcome: CAD.
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Heterogeneity p−value: 0.76
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Figure F13: Selection: GERA; Exposure: Davis; Outcome: UKB.

Heterogeneity p−value: 0.33
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Figure F14: Selection: GERA; Exposure: Kettunen; Outcome: UKB.
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Heterogeneity p−value: 0.86
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Figure F15: Selection: GLGC; Exposure: Davis; Outcome: UKB.

Heterogeneity p−value: 0.38
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Figure F16: Selection: Davis; Exposure: Kettunen; Outcome: UKB.
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Heterogeneity p−value: 0.011
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Figure F17: Selection: Kettunen; Exposure: Davis; Outcome: UKB.
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