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33 Abstract  

34 Glioma is recognized to be a highly heterogeneous CNS malignancy, whose diverse cellular composition 

35 and cellular interactions have not been well characterized. To gain new clinical- and biological-insights 

36 into the genetically-bifurcated IDH1 mutant (mt) vs wildtype (wt) forms of glioma, we integrated 

37 multiplexed immunofluorescence single cell data for 43 protein markers across cancer hallmarks, in 

38 addition to cell spatial metrics, genomic sequencing and magnetic resonance imaging (MRI) quantitative 

39 features. Molecular and spatial heterogeneity scores for angiogenesis and cell invasion differ between 

40 IDHmt and wt gliomas irrespective of prior treatment and tumor grade; these differences also persisted 

41 in the MR imaging features of peritumoral edema and contrast enhancement volumes. Longer overall 
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42 survival for IDH1mt glioma patients may reflect generalized altered cellular, molecular, spatial 

43 heterogeneity which manifest in discernable radiological manifestations. 

44

45 Introduction

46 Gliomas represent the most common type of malignant brain tumor, comprising 81% of malignant brain 

47 and central nervous system (CNS) tumors and 27% of all brain and CNS tumors in the United States(1). 

48 While gliomas are relatively rare in the general population with an average annual age-adjusted 

49 incidence of 6.2 per 100,000, these primary brain tumors contribute significant morbidity and mortality, 

50 with glioblastoma carrying a 5-year survival rate of less than 6%(1). 

51

52 The landscape of our knowledge about molecular features required for accurate diagnosis and prognosis 

53 for glioma patients has advanced greatly in the last decade (2-5). Molecular subclassification highlights 

54 different genetic underpinnings of glioblastoma (6), which offer some prognostic insight (7), likely 

55 attributable, in part, to gene expression patterns influencing vulnerability to radiation (8).  The World 

56 Health Organization (WHO) classifies gliomas into defined categories based upon histologic and 

57 molecular features and are assigned into four grades of increasing aggressiveness. Additionally, the 

58 methylation status of O6-methylguanine-DNA methyltransferase (MGMT) has been implicated as a 

59 useful biomarker for conferring tumor resistance to alkylating chemotherapies; methylation of the 

60 MGMT promoter leads to transcriptional silencing of MGMT, which is associated with loss of MGMT 

61 expression and increased response to alkylating chemotherapies such as temozolomide (TMZ) (9). 

62 Analysis of DNA methylation from gliomas identified a DNA methylation-based phenotype, G-CIMP, 

63 which is characterized by global hypermethylation of CpG islands and is predictive of increased survival; 

64 this G-CIMP phenotype is associated with isocitrate dehydrogenase (IDH) mutation status (3, 4, 10). 
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65

66 IDH wild type (wt) in histologically defined low-grade gliomas is associated with poor clinical prognosis 

67 that more resembles glioblastoma multiforme (GBM), which generally lack IDH mutation (IDHmt) (3, 11). 

68 Conversely, IDH mutations are observed in the majority of lower-grade gliomas and are associated with 

69 better clinical outcomes. In low-grade gliomas with IDH mutations, 1p/19q codeletion is further 

70 associated with oligodendrogliomas and better chemotherapeutic response (12). The validation of some 

71 of these molecular biomarkers for diagnosis and prognosis has prompted WHO to include molecular 

72 subclasses into their latest classification schema for CNS tumors, including addition of MGMT 

73 methylation and IDH-mutant/IDH-wildtype classifications for glioblastoma, as well as IDH-mutant and 

74 1p/19q-codeleted classifications for oligodendrogliomas and anaplastic oligodendrogliomas (13). 

75 Intratumoral heterogeneity, even across molecular subtypes, is now also appreciated as a characteristic 

76 of glioma and glioblastoma (14) and has been shown to occur temporally (15), spatially (16) (17),  for 

77 oncogenic drivers (18), and through the stem cell lineage (19). Heterogeneity features have been 

78 identified by radiologic imaging with quantitative features, including distinguishing between IDH1mt vs 

79 wt gliomas(20) . While these and other studies have interrogated glioma heterogeneity using bulk 

80 transcriptomics and single cell sequencing, medical imaging has also provided valuable heterogeneity 

81 insights (albeit limited by resolution e.g. 1 voxel, the volumetric unit, in a 1.5 T MRI image contains 

82 approx. 1-2 million cells). There have been no investigations to date of cell-level spatial heterogeneity in 

83 protein expression or cell types and how they relate to the radiological appearance of these tumors on 

84 MRI. Understanding malignant progression in IDH1 mt and wt patients at multiple scales and in a spatial 

85 context is pivotal to delineating biological events underlying glial tumors and may facilitate tailored 

86 treatment approaches as well as reveal new therapeutic targets. Moreover, this multi-scale 

87 characterization may facilitate the identification of quantitative metrics derived from non-invasive 

88 imaging, i.e. MRI, which correlate with or predict molecular and cellular phenotypes. Such metrics may 
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89 be evaluated for new patients prior to biopsy or surgery and might inform about the presence of certain 

90 cellular characteristics that may affect treatment response or outcome. 

91

92 To discern multimodal differences in relation to IDHmt status, we conducted a multiscale interrogative 

93 workflow which combines multiplexed immunofluorescence and single cell spatial analysis of fixed 

94 glioma tissue, bulk genomic tumor sequencing, MR imaging quantitative features of the whole tumor 

95 and subregions, and patient outcomes. Multiscale datasets were assembled from treatment-naïve cases 

96 of grade 2, 3, and 4 astrocytoma/oligodendroglioma (n=20, referred as treatment-naïve glioma) as well 

97 as from recurrent (previously-treated) grade 4 astrocytoma (glioblastoma) (n=16, referred as recurrent 

98 GBM). Tumor tissue punches from diagnostic paraffin blocks were assembled in duplicate (glioma) or 

99 triplicate (recurrent GBM) into tissue microarrays for multiplex immunofluorescence staining (21) using 

100 43 markers to identify cell types and functional states corresponding to cancer hallmarks (22). Exome 

101 sequencing data was processed for mutations, copy number aberrations, as well as insertions and 

102 deletions. Deconvolution of gene expression data from bulk tumor specimens afforded comparisons of 

103 protein levels and transcript levels across cognate specimens. An expert neuroradiologist (LW) outlined 

104 on MRI of the treatment naïve glioma, and of recurrent GBM (SJN), while advanced deep learning 

105 methods were utilized to delineate necrotic and enhancing cores, as well as peri-tumororal edema. 

106 Morphologic features assessed the volumes of the different regions and their ratios, while simple 

107 features, T1 weighted post contrast (T1 Post), Apparent Diffusion Coefficient (ADC), and Fluid 

108 Attenuated Inversion Recovery (FLAIR), were extracted from different MRI protocols.

109 Various MRI-focused studies (23-26) have investigated the ability of imaging features to predict IDH1 

110 mutational status. Studies focused on assessing the tumor volume, contrast enhancement status (27), 

111 Visually AcceSAble Rembrandt Images (Vasari) feature set (28, 29), radiomics features (30) or features 

112 that were derived via convolutional neural networks (31), among others and used these to train 
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113 predictive models of IDH1 mutational status. These studies showed great ability to predict IDH1 

114 mutational status with accuracies as high as 89.1% and area under the receiver operator curves (AUC) of 

115 0.95. Other radiogenomic studies have revealed the correlation of IDH1 mutational status with hypoxia 

116 induced angiogenesis and identified that the relative cerebral blood volume (rCBV) MRI was able to 

117 predict IDH1 mutations status with an 88% accuracy (32). Unlike the latter studies that predict IDH1 

118 mutational status, we seek to reveal correlations between MRI derived quantitative features, cellular 

119 composition and spatial cellular heterogeneity to understand the mechanism of disease progression in 

120 relation to IDH1 mutational status. Such knowledge could enable creation of predictive models on MRI 

121 of disease progression or treatment response without the need for an invasive biopsy. 

122 We show lower cell-level protein expression in IDH1mt vs wt cases. Further, IDH1mt gliomas, 

123 irrespective of grade, showed greater spatial heterogeneity but lower molecular heterogeneity of 

124 biomarkers associated with angiogenesis (VEGR2, CD31, SMA, S100A4) and invasion (n-cadherin, cofilin, 

125 collagen IV, GFAP and vimentin). Similarly, cell classes derived from deconvolution of bulk gene 

126 expression data showed the cell class with high expression of most hallmark genes, particularly those 

127 belonging to enabling replicative immortality, evading growth suppressors and inducing angiogenesis, 

128 were significantly under represented (<10%) in the IDHmt tumors. IDH mutation was co-expressed with 

129 ATRX mutations and was mutually exclusive of EGFR and PTEN mutations consistent with known tumor 

130 biology.  Longer overall survival following diagnosis for IDH1mt glioma patients may reflect generalized 

131 altered cellular, molecular and spatial heterogeneity, which is also reflected in the MR images as lower 

132 enhancement and higher edema.  

133 Materials and Methods 

134 Patient cohorts
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135 Cohorts of 20 treatment-naïve gliomas (grades 2, 3, and 4 from the Ohio Brain Tumor Study) and 16 

136 post-treatment recurrent glioblastoma (grade 4 from University of California San Francisco(33)) were 

137 retrieved based on appropriate patient consent, suitable MR images, FFPE tissue availability, and 

138 specimens suitable for next-generation sequencing (Table 1 for patient summary and S-Tables S-1 and 

139 S-2 for additional details). 

140 Table 1: Summary of patient characteristics of glioma and recurrent GBM cohorts

141
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159

160

161 Workflow for multi-modal data generation and integration 

162 Using the methods provided below, three parallel analytical interrogations of the treatment-naive 

163 glioma and recurrent cases were pursued: multiparametric MRI; multiplexed immunofluorescence tissue 

164 imaging; and RNA and DNA sequencing. Fig. 1 depicts the overall workflow for this multi-modal data 

165 generation, including multiple analytical approaches to cluster and differentiate clinically variable 

166 phenotypes.  Given the two cohorts of different clinical characteristics and the multi-modal nature of 

167 the data, our analysis was performed stratified by cohort, yet we aimed at identifying associations that 

168 are consistent across the two cohorts. 

Cohort Treatment naïve primary 
glioma patients

Recurrent/Refractory GBM 
patients

Patient number 20 16
Median (range) age at diagnosis (years) 57 (26-77) 51 (29-66)
Gender
  Male 12 12
  Female 8 4
Ethnicity
  Caucasian 18 15
  Hispanic, Asian, African American 0,1,1 1,0,0
Histologic grade
  II 5 -
  III 7 -
  IV 8 16
IDH1/2 mutation status
  Mutant (IDH1 R132H) 8 3
  Wildtype 12 13
1p19q codeletion
  Codeletion 4 -
  Non-codeletion 11 -
  Not available 5 -
Median (range) survival (days)
  Grade II 1120 (420-2326) -
  Grade III 487 (370-2964) -
  Grade IV (GBM) 438 (222-541) 1031 (396-3771)
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169 Fig. 1. Overall workflow for generating multi-scale, multiparametric data, extraction of 

170 various features and/or conversion to higher scales and multiple analysis approaches 

171 to differentiate clinically variable phenotypes. Multi-parametric MRIs (Panels A & B) 

172 were segmented for ROIs and various image features to characterize tumor and 

173 subregions (necrosis, enhancing and edema) within the tumor.  Multiplexed 

174 immunofluorescence tissue analysis (Cell DIVE) (Panel C) provides (left-to-right) a virtual 

175 H&E (vH&E), which is a pseudo-colored DAPI and AF image, and corresponding overlays 

176 of 46 markers (examples shown are for proliferation and angiogenesis markers).  Single 

177 cell data were generated for every multiplexed marker and intensity binned into 3 tiers 

178 (low, medium or high) for each cell. Cell level biomarker data was integrated with 

179 known biological pathways knowledge base and used to compute molecular states of 

180 individual cells. For visualization purposes, the molecular state of a cell is overlaid on the 

181 vH&E image (Panel D).  Genomics data (Panel E & F), including IDH1 mutation status, 

182 were summarized into pathways, cancer hallmarks, and enrichments for each tumor. 

183 Cell-level and MRI feature data were clustered across all glioma patients and by IDH 1 

184 status (Panel G); finally, molecular and spatial heterogeneity were analyzed relative to 

185 IDH1 mutation status or tumor grade (Panel H).

186

187 Multiplexed immunofluorescence imaging of disease and cellular 

188 biomarkers

189 Using the original diagnostic FFPE tissue blocks of each case studied, dual (treatment-naïve glioma) or 

190 triplicate punches (recurrent GBM) were selected for tissue microarray (TMA) construction and 

191 subsequent multiplex immunofluorescence staining and imaging (MxIF). Two replicate slides were used 
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192 for the treatment-naïve glioma TMAs and 3 replicate slides were used for the recurrent GBM TMAs. 

193 Control cores (2 per cancer type) were included on all slides for glioma, prostate, melanoma, lung, 

194 breast cancer to verify antibody performance. Briefly, the Cell DIVE™ platform (GEHC), which allows in 

195 situ probing of up to 60 biomarkers in a single 5um FFPE TMA tissue section, followed by image 

196 processing, registration and single cell analysis, was used (21) (S1 A-C Fig.). After a two-step antigen 

197 retrieval step, the sample underwent repeated cycles of staining, imaging and dye signal quenching (S1-

198 A Fig.) for a total of 43 biomarkers (S3 Table), representing members of different cancer hallmarks, cell 

199 lineage and cell segmentation(22). Markers of iron metabolism were also included as ferroptosis is an 

200 emerging field of study with mechanistic ties to glioma cell resistance to therapy (34-36). Antibody 

201 clones, staining concentrations and staining sequence are provided in S3 Table. The detailed process for 

202 antibody validation (testing, conjugation and verification) is described in S2 Fig. and described in S 

203 information of Gerdes et al (21). Prior to storage, images are automatically processed for illumination 

204 correction, registration from multiple rounds using the DAPI image acquired in each round and 

205 background (tissue autofluorescence, AF) removal by subtracting the image of tissue acquired prior to 

206 staining from the image after staining (S1-B Fig.).

207

208 Image quality checks, processing and cell segmentation

209 Staining quality of all multiplexed images was assessed by visual assessment of staining patterns of 

210 individual markers in all samples and compared to controls and/or expected patterns. Since replicate 

211 slides were also available, staining intensities were compared across slides. Staining profiles between 

212 the treatment-naïve glioma and recurrent GBM cohorts were also compared. Markers that failed or had 

213 non-specific staining or very low or negative expression across the whole cohort were excluded from 

214 analysis (S3 A-C Fig.).  The single cell analysis workflow consists of segmentation and quantification steps 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 2, 2019. ; https://doi.org/10.1101/690297doi: bioRxiv preprint 

https://doi.org/10.1101/690297
http://creativecommons.org/licenses/by/4.0/


11

215 (S1-C Fig.). First, image background was suppressed using top-hat filtering followed by multi-level image 

216 thresholding. Second, nuclei were segmented using a wavelet-based algorithm that uses both nuclei 

217 intensity and shape (blobness) information (37). Nuclear segmentation was followed by whole-cell 

218 segmentation, where synthetic cell boundary was extracted by applying Voronoi tessellation using the 

219 nuclei as seeds. To avoid producing very large cells from isolated nuclei, a constraint on the maximum 

220 distance between the nucleus and the corresponding cell boundary was applied. Segmented images 

221 were visually assessed for segmentation quality and compared with images of DAPI staining and virtual 

222 H&E (generated from pseudo-color overlays of DAPI and tissue AF). A single image (1 of 40 (treatment-

223 naïve glioma) failed segmentation due to poor tissue quality.  Five images (of 46 total images) from 

224 recurrent GBM patients were removed from analysis as these cores contained few (<10%) tumor cells or 

225 were cauterized. 

226

227 The cell segmentation steps were followed by quantification of biomarker intensities in each cell, as well 

228 as cell features and morphological properties. The entire set of cell-based measurements, including their 

229 IDs and spatial coordinates, are saved as .csv files for statistical analysis in R. For each tissue core, image 

230 registration quality was determined based on DAPI correlation with baseline round. Further, using 

231 correlation of DAPI signal at cell level from each staining/imaging round, a quality score was generated 

232 for every cell in each image, which ranges from 0-1 (0 being no registration, up to 1 for perfect 

233 registration). Only cells with quality score above 0.85 were included in the analysis. Scores below 0.5 are 

234 generally due to tissue shifting/movement and loss. Excellent correlations (S4 Fig.) in number of cells 

235 per replicate slide were found for the replicate treatment-naïve glioma TMAs and 2 of the recurrent 

236 GBM slides (>0.98). Slightly greater cell heterogeneity was found for one of the recurrent GBM slides but 

237 slide to slide correlation was still high (0.74).  

238
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239 Identification of cell clusters and biomarker co-expression

240 After exclusion of segmentation markers and single-cell MxIF markers which failed QC or staining criteria 

241 as described above and shown in S3 Fig., unsupervised cell clustering was performed with all the 

242 remaining markers (n=24) using data from reported subcellular staining location (compartments used, 

243 shown in S3-A Fig.). In total, 85,767 cells (from 20 treatment-naïve glioma cases) and 56,304 cells (from 

244 recurrent GBM cases) remained for analysis.  Separately, clustering was also conducted with smaller 

245 subsets of markers representing individual hallmarks (angiogenesis, proliferation, invasion and motility). 

246 Log2-transformed median cell intensity for each marker was used for K-means clustering. After trimming 

247 to reduce the impact of extreme outliers at both 2.5% tails, and since the distribution of marker 

248 intensity/expression values varies significantly within and between marker type, median cell biomarker 

249 values were standardized by the overall marker mean and standard deviation. 

250

251 Cells were clustered into K groups based on the multi-dimensional marker space (equivalent to number 

252 of markers used for clustering). The kmeans function provided by stat package of R (v. 3.4.1) was used 

253 with K (= 2 to 15). We used 10 random starts (nstart = 10) to address K-means clustering algorithm’s 

254 sensitivity to initial seeds.  We also used multiple metrics to determine the best number of clusters for 

255 the data such as Silhouette width, Calinsky criterion, Sum of squares of errors, and consensus clustering 

256 metrics.  For consensus clustering (R ConsensusClusterPlus package), a subset of 5,000 randomly 

257 selected cells (due to computational constraints) were used. Consensus clustering iterates the clustering 

258 algorithm and examines if each pair of samples consistently clusters together or not. K-means clustering 

259 with Euclidean distance as metric was used for 1,000 iterations with 80% resampling. The cumulative 

260 distribution function (CDF) plot and the heatmap from consensus clustering were evaluated to guide us 

261 to determine the best number of clusters, aided by other metrics mentioned above.  For a given K, each 

262 cell was assigned to one of the K clusters, and each tumor sample represented according to the 
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263 proportion of cells belonging to one of the K clusters. For the purposes of data visualization and 

264 interpretation, data was aligned by cluster, IDH1 mutation and patient ID. Biomarker intensities were 

265 grouped by cancer hallmarks (invasion; energy metabolism; angiogenesis; stem cells; immune response; 

266 proliferation; resisting cell death; DNA damage) and iron metabolism. 

267 Exome and RNA Sequencing 

268 Tumor and normal whole-exome sequencing and tumor RNA-sequencing data from the 20 treatment-

269 naïve gliomas was studied; data was either produced from fresh-frozen tissue (n=16, 8 of which had 

270 been sequenced in The Cancer Genome Atlas) or from FFPE tissue (n=4) (S1 Table). Twelve of these 

271 were newly accessed for de novo analysis, and the remaining data was already available. Pathology 

272 estimates suggested those 12 samples all had greater than 70% tumor cell density and less than 50% 

273 necrosis. Data from sixteen post-treatment recurrent fresh-frozen glioblastoma tumors previously 

274 sequenced as part of a clinical trial (33) (data available in the database of Genotypes and Phenotypes 

275 (dbGaP) under accession number phs001460.v1.p1) was also included (S2 Table). All 16 of these tumors 

276 had whole-exome sequencing data, and fourteen had cognate RNA-sequencing data available. 

277

278 Constitutional DNA from PBMCs was available for all 36 samples. For the eight fresh frozen glioma 

279 samples, Qiagen AllPrep DNA/RNA Mini Kit (cat#80204) was used to isolate DNA and RNA; for the four 

280 FFPE treatment-naïve glioma samples, Qiagen AllPrep DNA/RNA FFPE Kit (cat# 80234) was used. Exome 

281 libraries were constructed from 200ng of DNA (DIN=3-5 for FFPE samples, DIN >8 for blood and fresh 

282 frozen samples) using KAPA Biosystems’ Hyper Prep Kit (cat#KK8504) and Agilent’s SureSelectXT V5 

283 baits, containing custom content, following the manufacturer’s protocols. Custom bait content included 

284 copy number probes distributed across the entire genome, along with additional probes targeting tumor 

285 suppressor genes and genes involved in common cancer translocations to enable structural analysis. For 
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286 high quality RNA (RIN>6.0, DV200>90%), RNA libraries were constructed using Illumina’s TruSeq RNA 

287 Library Preparation Kit V2 (cat#RS-122-2001) with 500ng inputs. For remaining RNAs (RIN<6, 

288 DV200>30%), libraries were prepared using Illumina’s TruSeq RNA Access Library Prep Kit (cat#RS-301-

289 2001) with either 40ng or 100ng inputs following the manufacturer’s protocol and sample quality/input 

290 recommendations. Libraries were equimolarly pooled, quantitated, and sequenced by synthesis on the 

291 Illumina HiSeq 4000 for paired 82bp reads. FASTQ were aligned using bwa-mem (version 0.7.8) to the 

292 reference genome from 1000 Genomes project build hs37d5 with decoy contigs [b37d5] and Ensembl 

293 v74 for annotations. Somatic variants were called using lumosVar2 (38). For this study, a tumor-normal 

294 mode was used which the sample fraction of clonal variant groups is set to zero in the constitutional 

295 sample. 

296 Deconvolution of samples into cell classes from RNAseq data of bulk 

297 samples

298 Multiple cell classes, characterized by different dominant biological processes, can be discerned by 

299 computational deconvolution of bulk gene expression data obtained from complex samples (39, 40). 

300 This approach is a practical alternative when available samples are not suitable or available for single-

301 cell sequencing (scRNAseq). Deconvolution assumes that the analyzed sample is composed of a certain 

302 number of cell types or different cell states, called classes. These classes do not necessarily fall into 

303 mutually-exclusive cell types. Instead, they represent quantifiable components of the analyzed samples 

304 that exhibit distinct gene- or pathway-attributable behaviors. We employed the previously published 

305 CellDistinguisher algorithm to identify sets of genes that are expressed predominantly in one class 

306 relative to the others (41). As demonstrated in the Results, gene sets of ~50 genes led to robust 

307 assignments of cells into three classes. These distinguisher gene sets were then used to derive class 

308 signatures and compute sample compositions (fractions of cell types or classes in each sample) using the 
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309 SSKL algorithm from the CellMix package (42). To validate and support our findings with the multiplexed 

310 single cell data, we also explored how well cell type assignments based on gene expression data 

311 compared to those based on protein expression measured by MxIF.

312

313 Calculation of molecular and spatial cell heterogeneity metrics

314 Molecular and spatial heterogeneity metrics were computed for the MxIF spatially resolved cell data 

315 using a previously published heterogeneity analysis algorithm (MOHA)  (43). As described in more detail 

316 below, this technique computes the molecular “state” of each cell in a tissue section based on the 

317 fluorescence intensity of proteins within a given pathway, gene set or cancer hallmark (22). Spatial 

318 “states” is a summated score which depicts the degree to which adjacent cells are of the same 

319 molecular state.  The MOHA algorithm computes heterogeneity (or similarity or divergent states) 

320 metrics based on the distributions of these molecular and spatially defined states. 

321

322 The molecular state of a given cell was defined as an ordered set of the values for each individual 

323 marker. A complete list of the cancer hallmark gene sets and the markers that were assigned to them is 

324 shown in S3 Table. The state of each marker was quantized into an ordinal value representing either a 

325 high, medium or low state, using the 33rd and 67th quantiles as the thresholds. The specific ordering of 

326 the markers in a given gene set (i.e. concatenation sequence) is arbitrary but was maintained 

327 consistently throughout the analysis. This process of computing the molecular state was repeated for 

328 each cancer hallmark marker set and for each cell. Next molecular heterogeneity metrics were 

329 computed as a normalized Shannon’s entropy of molecular states:

330
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331   

332 The Pmi is the fraction of cells in molecular state i, and Nm is the number of possible molecular states in 

333 the system. The number of possible states for a gene set was defined as three raised to the power of the 

334 number of markers assigned to the gene set (e.g. 3^number of markers). The molecular heterogeneity 

335 metric value can range from zero to unity (i.e. maximum heterogeneity). For each patient tissue sample, 

336 a molecular heterogeneity metric was computed for each cancer hallmark.

337 Cell Spatial Heterogeneity is a summated score which depicts the degree to which adjacent cells are of 

338 the same molecular state as that of an index cell, with each cell in the tissue section serving as an index 

339 cell (Example shown in S5 Fig.). Identifying neighboring cells is necessary for computing the spatial 

340 heterogeneity metrics. Two cells were classified as neighbors if the Euclidean distance between the 

341 centers of the two cells was less than 1.3 times the sum of their radii. The cell radii were computed from 

342 the segmented cell area after approximating the cell as a circle. The spatial state metric was computed 

343 by surveying the neighbors of each cell and counting only the number of neighbors in the same 

344 molecular state. This number of neighbors represents the cell spatial state for each pathway or gene set. 

345 Having no neighbors in the same molecular state is a valid cell spatial state. Therefore, the cell spatial 

346 state can range from zero to the maximum number of neighbors a cell has. After going through every 

347 cell and their neighbors, a frequency distribution was established for these cell spatial states. The cell 

348 spatial heterogeneity was then computed as a normalized Shannon’s entropy of spatial states:

349
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350 where, Psk is the probability of state k, and Zmax is the maximum number of neighbors a cell can have as 

351 measured in the tissue sample. For each patient tissue sample, a spatial heterogeneity metric was 

352 computed for each cancer hallmark.

353 MRI imaging protocols and image feature extraction

354 The multi-parametric MRI (mpMRI) exams of the brain consisted of T2-weighted (T2), T1 weighted pre-

355 contrast (T1 Pre), T1 weighted post contrast (T1 Post), Apparent Diffusion Coefficient (ADC) derived 

356 from diffusion-weighted imaging (DWI), and Fluid Attenuated Inversion Recovery (FLAIR) images. The 

357 subjects with recurrent GBM were imaged using 3 Tesla GE scanners, while the treatment naïve subjects 

358 were imaged at a different institution using 3 Tesla Siemens scanners. Although the acquisitions were 

359 consistent in sequence types across institutions, parameters such as relaxation and echo times were 

360 different, thus prompting separate image analysis for the two cohorts.  

361

362 Tumor annotations on the MR images were manually outlined by an expert neuroradiologist to depict 

363 the extent of the whole tumor, including peritumoral regions, relative to the FLAIR sequence. To the 

364 extent possible, an equivalent normal region on the contra-lateral side of the brain was demarcated. A 

365 deep learning approach was trained on the Brain Tumor Segmentation (BraTS) challenge data (44) and 

366 was utilized to divide the whole tumor segmentation into enhancing core and necrotic core based on T1-

367 post contrast MRI. A U-net network was trained using the T1 Post contrast MRI to identify the extent of 

368 the enhancing and necrotic cores on the BraTS data. The training code and trained model are available 

369 (https://github.com/mirabelarusu/deep_learning_inference_browser). The trained model was 

370 subsequently applied on the T1 post contrast MR images for the patients in our cohort to segment the 

371 enhancing and necrotic cores. The peri-tumoral (edema) regions were obtained by subtracting the 

372 enhancing and necrotic core from the whole tumor segmentation. Manual corrections and automatic 
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373 postprocessing were utilized when appropriate to improve the precision of the annotations or remove 

374 minor disconnected regions. At the completion of these processing steps, an annotation of the whole 

375 tumor, the peritumoral (edema) region, enhancing core, and necrosis were obtained for each subject 

376 relative to the FLAIR protocol. 

377 Pre-processing steps were applied on the mpMRI prior to feature extraction, including spatial 

378 registration to align the FLAIR protocol relative to the others, in order to project the region annotations 

379 on the rest of the protocols. Intensity normalization was applied in the entire organ by using the normal 

380 regions as reference. Specifically, the intensities were normalized such that the average intensity in the 

381 normal region had a value of 1. To perform this normalization, we divided the intensity of each voxel by 

382 the average of intensities within the normal region.  

383 Image derived quantitative features were evaluated for each subject. Due to the limited number of 

384 subjects in our study, the large number of protocols (n=5) available for each subject and the multiple 

385 subregions available for each tumor (n=4), we chose to consider only three protocols (T1-post, FLAIR 

386 and ADC) and three tumor subregions (the whole tumor, the peritumoral edema and enhancing core). 

387 We represented the tumor subregions by two image-derived quantitative features (mean and standard 

388 deviation), resulting in 18 image-derived features per subject. Also, for each subject, we included three 

389 morphologic features (the volume of the enhancing core, the volume of the entire tumor and their ratio 

390 – which we refer to as the normalized enhancing core volume).

391 Multimodality data integration and clustering

392 Finally, we investigated the associations between imaging quantitative features and other variables 

393 including cell cluster data, clinical parameters and cancer hallmarks based on cell protein expression, 

394 RNA and DNA. Due to the different source and scales of the multimodal data (clinical, MxIF, genomic, 

395 MRI), we discretized the most relevant features into “low”, “medium” and “high” groups, based on the 
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396 data ranges across the individual cohorts.  Features were considered to be relevant for the multimodal 

397 association analysis either because there were clinically utilized for decision making, e.g. IDH1 mutation 

398 status, age, and grade, or because they showed consistent trends across both treatment naïve subjects 

399 as well as recurrent GBM subjects. Based on the discretized variables, subjects were then clustered 

400 using hierarchical clustering with the Euclidean distance metrics. 

401 Results 

402 Marker expression differences between IDH1 mt and wt tumors

403 Univariate and multivariate analysis of biomarker expression in the treatment-naïve glioma cohort 

404 showed significant differences in the mean expression of vimentin (p=0.0002), VEGFR2 (p=0.0002), 

405 Nestin (p=0.003), Ki67 (p=0.006) and HLA1 (p=0.008) proteins between the IDHmt and IDHwt tumors 

406 (S6-A Fig.).  Three of these, VEGFR2, Vimentin and HLA1 were also included in the multi-variate model 

407 using Random Forest which provided an AUC of 0.87 (error rate 5%) in predicting IDH mutation status 

408 (S6-B Fig.).  Since a majority of IDHmt tumors are derived from oligodendrogliomas which minimally 

409 express vimentin and IDHmt tumors are known to have suppressed angiogenic pathways, differential 

410 expression of VEGFR2 and vimentin between IDHmt and IDHwt is not surprising.  

411

412 Cellular and genomic analysis shows cancer hallmark differences in 

413 IDH1 mt vs wt tumors

414 Cellular differences in IDHmt vs wt tumors

415 In total, 24 markers across 85,000 cells from the 20 treatment-naive glioma cases underwent k-means 

416 clustering. Fig. 2 shows unsupervised clustering and segregation of the cells into 7 clusters; marker 
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417 intensity organized by cluster, IDH1 mutation and cancer hallmarks (invasion; energy metabolism; 

418 angiogenesis; stem cells; immune response; proliferation; resisting cell death; DNA damage) and iron 

419 metabolism. Relative biomarker intensities (compared to population mean) for each cluster are shown 

420 in S7 Fig. Clusters 1 and 4 with above average expression of most hallmarks were composed of cells 

421 from just two IDH1wt patients (Fig. 2). Clusters 2 and 6 contained the largest numbers of cells (21.0% 

422 and 21.9%, respectively, S7 Fig.) from the greatest number of cases (12 and 11 cases, respectively, Fig. 

423 2), cluster 2 being dominantly composed of cells from IDH1wt tumors while cluster 6 contained cells 

424 exclusively from IDHmt cases. Cluster 2 shows lower expression of  H2AX, Sox2, SMA, and Ncad and 

425 higher expression of FTL and FTH1, while most other protein expression was near average of the all 

426 clusters.  Cluster 6 had lower expression of most of cancer hallmarks (S7 Fig.) and only pERK, CD31 and 

427 Ncad had slightly above average expression. Clusters 5 with lower than average expression of all 

428 hallmarks and cluster 7 with above average expression of most hallmarks were evenly occupied by cells 

429 from both IDHwt and IDHmt cases. Notably, both angiogenesis and metabolism-related markers were 

430 lower in IDH1mt cases, as was expression of antigen presenting machinery, i.e. HLA1, and invasion 

431 markers collagen IV and vimentin. Lower expression of vimentin is consistent with IDH1 mutant tumors 

432 originating from oligodendrocyte progenitor cells(45, 46) , which minimally express vimentin. 

433 Interestingly, IDHwt cells had higher expression of ferritin light and heavy chains, indicating increased 

434 iron storage in these cells. Removal of free iron by enhanced iron storage has been implicating in 

435 evading ferroptosis by cancer cells. A more in-depth analysis to this pathway in this cell cluster is 

436 necessary to determine if evasion of ferroptosis is indeed driving the tumor growth in these patients.  

437 Fig. 3 shows two representative examples of IDHwt and mt tumor samples, with biomarker staining and 

438 relative biomarker expression for clusters 2 and 6. Clustering of cells by expression of individual 

439 hallmarks (angiogenesis, invasion and reprogramming cellular energetics) also showed significant 

440 differences in cluster profiles and distribution of clusters among IDH mt and wt tumors (e.g. dominantly 
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441 higher representation of proangiogenic clusters in IDHwt tumors, S8 Fig.). Overall, similar staining 

442 profiles and biomarker patterns in IDHmt vs wt cases were found in the recurrent GBM cohort. 

443 Fig. 2. Distribution and clustering of cells based on protein expression from all 

444 treatment-naïve patients. Unsupervised clustering of MxIF data revealed 7 distinct 

445 subsets (clusters) of cells derived from all patients. Cluster 2 is dominated by IDH1wt 

446 and Cluster 6 is dominated by IDH1mt cases. Clusters 1, 4 and 7 (which were less diverse 

447 patient groups) show higher staining intensities of most MxIF markers (cancer 

448 hallmarks) compared to Clusters 2, 5 and 6. Iron Metabolism hallmark was generally 

449 high in Cluster 2, but low in Cluster 6.

450

451 Fig. 3. IF images & Lolipop plots for Cell-DIVE cluster 2 and cluster 6 hallmarks. MxIF 

452 images for representative cases in Cluster 2 (A) and Cluster 6 (D), including a vH&E 

453 image (top left), segmented image (top middle) showing individual cells, an image with 

454 cluster assignment to individual cells (top right) and a number of single marker or multi-

455 marker overlays representing expression of different hallmark proteins (a: DNA breaks, 

456 gH2AX. b: Iron metabolism; FTL, FTH1; c: Cell Death, Cleaved Caspase3; d: Proliferation, 

457 EGFR, pERK, Ki67; e: Immune MHC1, PDL1; f: Stemness, Nestin, SOX2; g: Angiogenesis, 

458 VEGFR2, SMA, S100A4, CD31; h & i: Metabolism, FASN overlaid on DAPI (h) & GSK3b, 

459 PKM2, CA9 (i); j & k: Invasion, GFAP, Collagen IV (j) and Vimentin, Cofilin & NCad (k). 

460 Panel B and Panel E show the protein expression profiles of individual clusters (2 & 6, 

461 respectively); “lolipop” lines originate at the average expression of proteins in all cells 

462 measured from all cases and dots reside at the expression of the proteins in the cluster. 

463 Lines moving to the left show lower than average expression, while to the right show 

464 higher than average expression. Cluster 2 (Panel C) and cluster 6 (Panel F) trend towards 
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465 separating cases by IDH1 mutation status. Specifically, Cluster 6, which shows a lower 

466 than average expression of most hallmark proteins, is significantly positively correlated 

467 to IDH1 mutation (Panel F); Cluster 2 cells with higher iron metabolism (FTL, FTH1) show 

468 a trend towards lower representation in IDH1 mutant samples (Panel C). These positive 

469 and negative correlations are even stronger when cluster representation in individual 

470 cores is correlated to the overall patient status indicating that there is heterogeneity 

471 within these tumors.

472

473 Cell cluster alignment with IDH and other glioma related mutations

474 Fig. 4 shows cluster distribution aligned with IDH mutation status and the other most common 

475 mutations in treatment-naïve glioma. In concordance with known biology, IDH1 mutations were found 

476 to be mutually exclusive of EGFR and PTEN mutations (Fig. 4, panel B). IDH1mt samples appeared to be 

477 more homogenous, particularly those with concurrent ATRX mutation, and were mostly dominated by 

478 the cluster 6 cell phenotype (lower than average expression of most markers (panel A). Approx. 50% of 

479 IDH1wt cases with EGFR amplification had a high proportion of cluster 2 cells (overall, average 

480 biomarker expression, and lower DNA damage and stem cell markers, higher iron metabolism markers).

481 Fig. 4.  Cell cluster composition and Oncoprint of treatment naive gliomas. For each 

482 glioma case, Panel A portrays the fractional distribution of its cells within each of the 7 

483 clusters. Panel B depicts the genomic profile of each glioma case.

484

485 Cell cluster alignment with RNA expression and IDH status

486 The degree to which single cell clusters agreed with deconvoluted, transcript-based cell class 

487 assignments across treatment-naïve gliomas with IDHmt or wt was also evaluated. Based on the gene 
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488 expression data of all measured genes, we identified three cell classes using CellDistinguisher, each class 

489 having 50 or more distinguisher genes (S9 Fig.). Exceeding three classes resulted in a very short list of 

490 distinguisher genes for some classes, which diminishes the utility of comparing behavior or functions 

491 across the classes. Classes 2 & 3 were qualitatively similar to protein derived cell clusters 6 and 2 

492 respectively.  Ratios of the average staining intensities for 21 markers in clusters 6 and 2 were calculated 

493 (Fig. 5A).  The ratios of the expression values for the same 21 genes were compared between RNA 

494 classes 2 and 3 (Fig. 5B). Fractional composition of IDHmt and wt cases within cell cluster 2 or 6 (Fig. 5C) 

495 or within RNA class 2 or 3 (Fig. 5D) was determined. Consistent with earlier results, tumors dominated 

496 by cluster 2 cells were more likely to be IDHwt, while cases with dominance of cluster 6 were mostly 

497 IDH1mt. Similarly, the IDHwt tumors were mainly comprised of RNA class 3 markers while class 2 was 

498 more abundant in the IDH1mt (Fig. 5D). IDH1wt tumors were enriched in class 3 cells (enriched in genes 

499 related to the cancer hallmarks of inducing angiogenesis, enabling replicative immortality and evading 

500 growth suppression), while the IDH1mt samples had a lower abundance of genes related to these cancer 

501 hallmarks.

502 Fig. 5. IDH1 mutation status drives cell phenotype at both the gene and the protein 

503 level. Ratios of the average staining intensities for 21 MxIF markers in clusters 6 and 2 

504 were calculated (Panel A). Following deconvolution of the transcriptomes using 

505 CellDistinguisher, RNA expression counts (FPKM) for the mRNAs were used to 

506 distinguish “class types” (n=3) across the bulk sequenced specimens, then ratios of the 

507 expression values for the same 21 genes compared between Class 2 and Class 3 (Panel 

508 B. Fractional composition of each patient case within Cluster 2 or 6 (Panel C) or within 

509 Class 2 or 3 (Panel D) was determined. Cases dominated by cells belonging to protein 

510 cluster 2 were more likely to be found in IDH1 wild-type tumors, while cases for which 

511 cells from cluster 6 dominated were mostly IDH1 mutated tumors (Panel C). Similarly, 
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512 the fractional composition of glioma cases comprised of gene expression class 3 were 

513 present in higher proportions in IDH1 wild type samples, while class 2 cell types were 

514 more abundant in the IDH1 mutant ones (Panel D). The distinguisher genes of class 3 

515 were enriched in genes related to cancer hallmarks of “inducing angiogenesis”, 

516 “enabling replicative immortality” and “evading growth suppression” (see S4 Fig. and S2 

517 Table).

518

519 We have found noteworthy similarity between the cell types and patient compositions identified from 

520 the MxIF biomarker intensities and the gene expression data. Except for FASN, GSK3b and NCad, good 

521 directional correlation was observed in differential protein and gene expression between cell clusters 

522 and RNA classes in the IDH1mt and IDHwt populations (Fig. 5). Lack of concordance between H2AX 

523 protein and transcript likely is due to staining intensity by anti-H2AX antibody reporting only the post-

524 translationally phosphorylated form of the protein (instead of total protein, which the transcript count 

525 would more reasonable reflect). The high concordant directionality of 17 of the 21 markers argues for 

526 robustness of the biological inference that molecular features in cells from treatment-naïve gliomas are 

527 related to IDH1 mutation status. We conclude that biomarker-based clusters 6 and 2 refer to the same 

528 cells and/or processes as gene-expression-based classes 2 and 3. Although at individual gene levels, 

529 mRNA and protein expression values don’t evidence quantitative direct, strong correlation, our findings 

530 indicate that looking at the behavior of cells at the gene set or pathway level can lead to consistent 

531 patterns starting from different data types (47, 48). 

532

533 Intratumor and spatial heterogeneity

534 In addition to the cell level protein expression and cell composition within the IDHmt and wt tumors, we 

535 further investigated molecular and spatial heterogeneity of the biomarkers in each of the hallmark 
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536 categories. Examples of the heterogeneity metrics for the cell proliferation hallmark (comprising Ki67, 

537 nestin and EGFR) in gliomas and recurrent GBMs are shown in Fig. 6A, which shows the discretized (high 

538 (2), medium (1), low (0)) expression values for each marker, and corresponding color-coding for each 

539 cell. Heterogeneity calculated from the distribution of these states in different tumors shows an inverse 

540 correlation between molecular and spatial heterogeneity in both treatment-naïve glioma and recurrent 

541 GBM cohorts.  IDHwt tumors had higher molecular heterogeneity while IDHmt tumors were more 

542 spatially heterogenous (S10 Fig.).  Similar trends were present in both cohorts. Fig. 6B shows a scatter 

543 plot of heterogeneity in the inducing angiogenesis hallmark with the range of spatial and molecular 

544 heterogeneity metrics for gliomas and recurrent GBM samples, also encoded by IDHmt (red) and wt 

545 (blue) status. Trends in heterogeneity of this hallmark were similar to those observed for the 

546 proliferation hallmarks as well as activating invasion motility hallmark (S10 Fig.). No other significant 

547 differences in heterogeneity were found. 

548 Fig. 6. Computed molecular and spatial heterogeneity metrics using the multi-omics 

549 heterogeneity analysis (MOHA) tool. The method first converts the continuous marker 

550 intensity measures of each segmented cell into an ordinal value representing either a 

551 high, medium, or low state. Panel (a) presents an example for the Sustaining 

552 Proliferative Signaling cancer hallmark. This gene set is composed of three markers: 

553 EGFR, Ki67, Nestin. The state of each of these markers can either be high (2), medium 

554 (1), or low (0). Therefore, the three-marker gene set has 27 possible molecular states 

555 presented in the color-coded legend (far left). The scatter plot (center) presents the 

556 spatial and molecular heterogeneity of treatment naïve gliomas and recurrent GBM 

557 samples. Images of tissues from four treatment naïve gliomas (A-D) and four recurrent 

558 GBM (E-H) are presented with each segmented cell colored by their expressed 

559 molecular state. The spatial state distributions of these eight samples are presented 

.CC-BY 4.0 International licensea
certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under 

The copyright holder for this preprint (which was notthis version posted July 2, 2019. ; https://doi.org/10.1101/690297doi: bioRxiv preprint 

https://doi.org/10.1101/690297
http://creativecommons.org/licenses/by/4.0/


26

560 above the scatter plot. For the 4-gene set “inducing angiogenesis” (SMA [ACTA2], 

561 VEGFR2 [KDR], CD31 [PECAM1], and S100A4) hallmark, IDH1 mutation status 

562 discriminates those cases with relatively lower molecular heterogeneity and relatively 

563 higher spatial heterogeneity in grade III treatment-naïve glioma or recurrent 

564 glioblastoma (panel b).

565

566

567 MR feature differences between IDH1 mutant and wildtype patients

568 Simple features derived from the MR images uncovered differences in discernable elements of brain 

569 tumor dispersion from IDH1wt and IDH1mt patients. IDH1wt patients had larger enhancing cores 

570 (feature “Normalized enhancing core volume”), but less contrast uptake in the peri-tumoral edema 

571 regions (feature “Edema T1 post”). On the other hand, the IDH1mt patients lack a clearly defined 

572 enhancing core, but have increased contrast uptake on the T1 post contrast MRI protocol in the peri-

573 tumoral edema region (Fig. 7). These trends were observed both in the treatment-naïve glioma as well 

574 as the recurrent GBM, and are not surprising since the IDH1mt are known to have less contrast 

575 enhancement than the IDH1wt (49). 

576 Fig. 7. MRI-derived features appear to differentiate patients that carry an IDH1 

577 mutation (IDH1mt) and those that are wild type (IDH1wt), regardless if subjects are 

578 treatment naïve or have recurring GBM. T1w post contrast MRI for IDH1wt subjects 

579 (a,e), and IDH1mt (b,f). The white outlines show the extent of the tumor as delineated 

580 by the expert neuroradiologist (LW). (c,g) Across the two cohorts, a similar trend may be 

581 notice when comparing the mean T1 post-contrast intensity signal in the peri-tumoral 

582 edema region, suggesting an increase in enhancement in the IDH1mt in the peri-tumoral 
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583 edema region when compared to the IDH1wt (c and g). An opposite trend is observed 

584 when comparing the normalized enhancing core volume across IDH1wt and IDH1mt (d 

585 and h), indicating that subjects with IDH1 mutants have limited to no enhancement. 

586 None of these comparisons reach statistical significance after multiple comparison 

587 correction using false discovery rate.

588

589 Other intensity and volumetric features were evaluated on clinically important MRI protocols, e.g. ADC 

590 or FLAIR, but they failed to show separation between IDH1 mutational status or a consistent trend 

591 across the two cohorts. Thus, our analysis focuses on the normalized enhancing core volume – 

592 measuring the enhancing core volume normalized to the entire tumor volume, and the T1w MRI post 

593 contrast uptake in the peritumoral edema region. Statistical significance was not achieved for any 

594 features after multiple comparison corrections likely due to the small number of patients in each cohort. 

595 Multimodal data association

596 Unlike previous studies (27),(28-31) that focused on predicting IDH1 mutational status using MRI 

597 features, we assessed the correlations of MRI features with genomic and proteomic markers within the 

598 angiogenesis hallmark to characterize the differences between IDH1 mutational status. S11 Fig. shows 

599 that larger enhancing cores are associated with higher RNA expression levels in the Inducing 

600 Angiogenesis hallmark. A similar association is observed with the expression levels of protein markers, 

601 i.e. S100A4 that is known to promote angiogenesis and metastasis development (50) , and VGFR2 that 

602 plays a fundamental role in neovascularization (51).  These found associations were consistent 

603 regardless of the type of tumor, treatment naïve glioma or recurrent GBM. 
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604 When investigating multimodal associations (Fig. 8), we can also observe a consistent trend across the 

605 two cohorts of patients. Not surprisingly, IDH1 mutations are found in lower grade tumors, younger 

606 patients and have better overall survival. As also shown in Fig. 7 and S11 Fig., IDH1mt tumors have 

607 smaller enhancing cores but more contrast uptake in the edema regions and show reduced expression 

608 levels of RNA and protein from the Inducing Angiogenesis hallmark (Fig. 8, highlighted box). Of the five 

609 angiogenesis hallmark cell clusters, cluster 4 (above average expression of VEGFR2, SMA and CD31) and 

610 cluster 5 (above average expression of VEGFR2 and S100A4), which are characterized by higher 

611 expression of angiogenesis markers, show low cell percentages in the subjects with IDH1 mutations. On 

612 the other, the IDH1wt tumors are molecularly more diverse and show more heterogeneous multi-modal 

613 variables, yet still a general trend of higher expression levels of RNA and protein markers involved in 

614 inducing angiogenesis and reduced overall survival.  Clusters with average (cluster 3) and lower than 

615 average expression (clusters 1 & 2) were distributed among all patients, however, relative proportion of 

616 these compared to the other two clusters was much higher in the IDHmt patients. Age, grade and 

617 histology are confounding factors in the recurrent GBM progression cohort as IDH1mt tumors tend to 

618 occur at younger age and are generally low grade oligodendrogliomas, however, as the similar trends 

619 were apparent in the recurrent cohort, which are all grade IV GBMs, these observations probably reflect 

620 differences in biology between the IDH1mt and IDH1wt tumors. 

621 Fig. 8. Comprehensive rendering of multi-scale measurements in gliomas. Multiscale 

622 modalities depicted include:  1) clinical information (red), 2) IDH1 Mutational status 

623 (blue), 3) MRI derived variables (green), 4) RNA expression level of genes involved in the 

624 Inducing Angiogenesis Hallmark (black), and 5) Multiplex Immunofluorescence 

625 Angiogenesis markers or Cell clusters (magenta). The data is binned in low, medium and 

626 high categories. Across the treatment-naïve gliomas (a) and the recurrent (post-

627 treatment) glioblastoma* (b) cohorts, it can be observed that subjects that carry the 
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628 IDH1 mutation have low angiogenesis according to RNA expression levels and 

629 expression of S100A4 and VEGRF. The subjects also have high fraction of cells in clusters 

630 1 and 2, and low fraction of cells in cluster 4 and 5 (S8 Fig.), cluster profiles of 

631 angiogenesis clusters). Moreover, MR Images for the same subjects have lower 

632 normalized enhancing cores volumes and measure higher intensities on T1 post 

633 contrast. *Recurrent GBM (5 subjects are not shown since they were missing MxIF.)

634

635 Discussion 

636 We deployed a multiscale workflow that accommodates biomedical imaging (multi-parameter MR 

637 imaging) of glial tumors, in situ multiplex immunodetection of discrete biochemical functional states in 

638 tissue sections from tumors, and next generation sequencing of DNA and RNA from those same tumors. 

639 The data produced by each technology was post-processed to regions-of-interest and features (MRI), 

640 molecular state assignments of individual cells in tissue (based on gene sets and signaling pathways 

641 interrogated by specific antibodies), and molecular subtyping, pathway and hallmark mapping 

642 (determined by mutations and cellular deconvolution from bulk RNA sequencing). A coherent picture of 

643 enhanced angiogenesis in IDHwt tumors evident in non-invasive in vivo imaging features emerges from 

644 the data derived from multiple platforms (genomic, proteomic and imaging) and scales from individual 

645 proteins to cell clusters/states as well as bulk tumor.  Results are consistent with known observations at 

646 the molecular (suppression of proangiogenic markers in IDHmt tumors) and imaging scales (no or low 

647 enhancement in IDHmt tumor), but now fill in the gaps on how the two are linked through the 

648 intermediate scales of cellular states and their spatial organization.  Multiplexed immunofluorescence 

649 (MxIF) staining using 43 antibodies on individual tissue sections (duplicate punches in a tissue 

650 microarray) afforded insight into the clustering of single cell functional states from 20 treatment-naïve 
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651 gliomas (grades 2 – 4) into 7 clusters. Discreet patterns of protein abundance across 7 hallmark 

652 phenotypes and 2 biochemical signature events (iron metabolism and DNA damage) suggest that broad 

653 segregation of such functional states may be associated with IDH1 mutation status. Among the more 

654 robustly discriminating hallmarks between IDH1 wildtype from IDH1mutant gliomas is that of 

655 angiogenesis. The enhancement patterns, specifically how much of the tumor enhances (assessed by the 

656 “normalized enhancing core volume” feature) and the contrast uptake in the peri-tumoral edema region 

657 (Edema T1 post intensity), appear to be consistently correlated with the IDH1 mutational status, a trend 

658 that is conserved across the two independent cohorts we investigated. Our findings suggest that the 

659 IDH1wt tumors have a more consistent enhancing pattern with a clearly defined enhancing rim and little 

660 uptake elsewhere. On the other hand, the IDH1mt tumors have a diffuse appearance on MRI without a 

661 well-defined enhancing rim and with higher uptake in the edema region, on account of infiltrating cells. 

662 Previous studies have linked poor survival with the peritumoral edema volume (52) and tumor volume 

663 (27). Moreover, IDH1mt tumors are known to have less edema (49).  From the richness of the molecular 

664 heterogeneity portrayed from MxIF scoring, comparing the functional states of adjacent cells (whether 

665 they are similar or dissimilar) affords a calculation of spatial heterogeneity across the different hallmark 

666 phenotypes. Here we find the unanticipated segregation of both treatment-naïve gliomas as well as 

667 recurrent glioblastoma based on IDH1 mutation status within hallmarks of “invasion motility”, 

668 “proliferative signaling”, and “angiogenesis”. The genomic profiling depicted what is already known 

669 about glial tumors, (the mutual exclusivity of IDH1 mutations with EGFR and PTEN mutations, the co-

670 existence of ATRX mutations only within a subset of IDH1 low grade tumors, etc), but also revealed the 

671 heretofore unknown frequent, diminished molecular heterogeneity of IDH1mt low grade tumors. 

672 Removal of free iron by enhanced iron storage has been implicated in evading ferroptosis by cancer cells 

673 (34, 35). Cluster 2, which was highly represented in IDH1wt tumors showed an increased expression of 

674 iron storage markers (FTL and FTH1) and decreased expression of H2AX, a marker of DNA breaks (S7 
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675 Fig.).  This is consistent with increased sequestration of iron, making it unavailable for oxidative DNA 

676 damage leading to evasion of ferroptosis.  A more in-depth analysis of this pathway that includes iron 

677 transport, storage and utilization is necessary to determine if evasion of ferroptosis is indeed driving the 

678 tumor growth in these patients (53, 54).  Inter- and intra- tumoral molecular heterogeneity is a well-

679 recognized feature of GBM (6, 55, 56) and is believed to be the main reason behind treatment failure.  

680 Emergence of several single cell analysis platforms has fueled the investigations of intra-tumoral 

681 heterogeneity of glioma (17, 57-59) , including tumor-stromal cell interactions (60, 61) as well as 

682 interactions between the diverse tumor cell populations (62, 63).  Importance of the intercellular 

683 interactions among heterogenous tumor cell population is highlighted by the observations of Inda et. al. 

684 (62) that EGFRmt cells that are far outnumbered by the EGFRwt population drive enhanced proliferation 

685 of these cells by paracrine signaling thereby driving tumor growth.  Thus, tools to evaluate molecular 

686 and spatial heterogeneity and cell-cell interactions are likely to unravel heretofore unknown 

687 mechanisms that drive tumor growth and/or treatment failure.  IDH mutation induced suppression of 

688 immune response has also been noted previously, however, it has been linked to decreased expression 

689 of effector T cell response related genes (64) .  Weather this in turn affects the expression of HLA1 in 

690 IDHmt tumors is not known. 

691

692 Study limitations

693 The key limitations of this study include small sample size, lack of registration of sample derived for 

694 molecular analysis to MR images and a limited number of markers representing different hallmarks.  The 

695 intent of this study was not to generate a diagnostic signature but to evaluate correlation between 

696 imaging and molecular features at the hallmark level and to generate a work flow for integrating 

697 multiscale multiparametric data to study disease biology.  While the sample size (n=20) in the 
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698 treatment-naïve glioma cohort was limited, the fact that similar cell clusters existed in another cohort 

699 (recurrent GBM) and the correlations between MR and molecular features of angiogenesis hallmark 

700 hold for both cohorts is encouraging.  Having developed methods to integrate and evaluate such a 

701 complex data set, we are in the process of designing a more focused study to interrogate the biology of 

702 a specific molecular subtype of GBM that will consider and address the aforementioned shortcomings.   
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879 The Cell DIVE MxIF workflow involves repeated cycles of staining, imaging and signal inactivation (panel 

880 A), following slide clearing and antigen retrieval.  Prior to antibody staining, tissue is stained with DAPI 

881 and imaged in all channels of interest to record background autofluorescence (AF) of the tissue.  

882 Following background imaging, tissue is stained with 2-3 antibodies and reimaged to capture antigen-

883 specific signal and then undergoes a dye inactivation step to remove the signal. The slide is re-imaged to 

884 measure background fluorescence intensity.  These cycles are repeated multiple times until all targets of 

885 interest have been imaged.  Panel 2 shows various image processing steps prior to generating single cell 
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886 data.  Some of these are performed during imaging itself while others are performed post image 

887 acquisition.  The steps include, illumination correction, to correct for uneven illumination across the 

888 FOV, registration of images from all rounds (using DAPI signal from each round) and tissue AF removal.  

889 Panel C:  Staining intensity of various cellular and subcellular markers is used to generate cellular 

890 segmentation masks. Segmented images are compared with real or virtual H&Es (generated from DAPI 

891 stained background images at the beginning of multiplexing) by a trained biologist or pathologist, and 

892 images with poor segmentation are removed from analysis.  In parallel, marker staining is evaluated by 

893 reviewing AF removed images and markers that failed to stain or images with large artefacts are 

894 removed from analysis.  Marker expression is quantified at cellular and subcellular compartments and 

895 data is generated in an easy to use .csv or Excel format which is then analyzed by a variety of different 

896 tools/approaches including simple statistical correlations, cluster analysis as well as heterogeneity 

897 analysis.

898

899 S2 Fig. Antibody validation workflow

900 A typical antibody validation workflow: Starting with literature reports to identify antibody clones 

901 previously used for IHC on FFPE tissue, 3 or more clones per target are identified and evaluated for 

902 sensitivity and specificity of the signal on a multi-tissue array (TMA) comprising all major tumor types 

903 and corresponding normal tissues.  The down-selected antibody is conjugated with CY3, Cy5 or Cy7 at 2 

904 different dye/protein ratio and conjugates validated by staining comparison with unconjugated primary 

905 on serial sections of the same TMA.  The down-selected conjugate is tested at different concentrations 

906 on a TMA with tumor tissue of interest to determine the optimal concentration for staining.  In parallel, 

907 a set of TMA serial sections are pre-treated with different rounds of bleaching and evaluated for 

908 bleaching solution’s effect on antigen of interest by comparing the staining among this set.  Antigens 
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909 with discernible effects are prioritized for staining early in the sequence, immediately after primary 

910 secondary staining of targets which failed to conjugate.

911

912 S3 Fig. Marker Staining quality assessment

913 A: Marker staining performance in each cohort (True-positive, False-negative), staining round, 

914 subcellular location used for analysis and gene symbol, B: examples of quantitative FOV level correlation 

915 of marker intensities on replicate slides, C: Examples of fluorescence image overlays of various hallmark 

916 markers showing heterogeneity of expression in astrocytoma.

917

918 S4 Fig. Number of segmented cells in serial sections

919 High correlation in number of segmented cells was observed between serial sections, particularly for the 

920 treatment naïve glioma cohort and two out of three sections of the recurrent GBM cohort.  

921

922 S5 Fig. Example workflow for calculating cell molecular state and cell spatial heterogeneity 

923 Example of how molecular state and cell spatial heterogeneity metrics are calculated, using EGFR as an 

924 example. A. Segmentation of cells using DAPI staining and generation of nuclear and extra-nuclear 

925 masks; B. EGFR fluorescence intensity is quantified for each cell and discretized as low, moderate, and 

926 high. The different levels of cell expression are shown as red (high), green (moderate) or blue (low). C. 

927 For each cell (I through v in this cartoon), adjacent neighboring (touching) cells are counted, and their 

928 Spatial State is used to sum the Spatial Heterogeneity.

929

930 S6 Fig. Uni- (A) and multi-variate (B) analysis of biomarker expression and overall survival as a 

931 function of IDH mutation status
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932 A. Differences in individual biomarker expression and survival of IDHmt and IDHwt patients.  B. A 

933 predictive multivariate model of IDH mutation status. 

934

935 S7 Fig. Lollipop plots for biomarker expression in each cluster, relative to population median

936 Protein expression profiles of individual clusters plotted relative to median expression in the whole 

937 population. Solid circles represent the average expression in the cluster while direction and length of the 

938 lollipop shows difference in expression relative to population median (left-lower, right-higher).

939

940 S8 Fig. Cell clusters based on angiogenesis hallmark proteins 

941 Unsupervised clustering of cells using angiogenesis hallmark proteins identified a 5 cluster set.  Clusters 

942 with lower than average hallmark protein expression (1 & 2 ) are highly represented in samples with 

943 IDH1 mutation.  Cluster 4 & 5 with higher expression are proportionally more abundant in IDH1wt 

944 samples.

945

946 S9 Fig.  Abundance of distinguisher genes (mRNA)/class per patient

947 A: Relative proportion of cells belonging to different CellDistinguisher classes in each sample.  Class 3 is 

948 highly represented in IDHwt samples. B: shows relative abundance of distinguisher genes grouped by 

949 hallmarks in individual classes.

950

951 S10 Fig.  Molecular and spatial heterogeneity in grade III gliomas and recurrent GBM IDHwt and IDHmt 

952 tumors

953 Molecular and spatial heterogeneity in grade III gliomas and recurrent GBM IDHwt and IDHmt tumors 

954 according to the following hallmarks: Invasion and Motility, Cell Proliferative Signaling and Inducing 

955 Angiogenesis.
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956

957 S11 Fig.  Differences in MR features across the population range of RNA and protein marker 

958 expression for angiogenesis

959 Correlation between Normalized enhancing core volume (derived from MRI) and Angiogenesis 

960 estimated from (a,d) RNA expression levels, and, based on multiplex immunofluorescence (MxIF) 

961 angiogenesis markers (b, e) S100A4 and (c,f) VEGFR2; (a-c) shows the plots on Cohort 1 (CW Glioma, 

962 treatment naive) while (d-f) show cohort 2 (UCSF, recurrent GBM). A progressive increasing trend may 

963 be observed in both cohorts when examining the normalized enhancing core volume for low, medium 

964 and high angiogenesis. The trends across the enhancement ratio are also conserved when comparing 

965 RNA with MxIF Angiogenesis. None of these comparisons reach statistical significance after multiple 

966 comparison correction using false discovery rate.

967
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