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Abstract

Motivation: Modern flow cytometry technology has enabled the simultaneous analysis of multiple cell markers
at the single-cell level, and it is widely used in a broad field of research. The detection of cell populations in
flow cytometry data has long been dependent on “manual gating” by visual inspection. Recently, numerous
software have been developed for automatic, computationally guided detection of cell populations; however,
they are not designed for time-series flow cytometry data. Time-series flow cytometry data are indispensable
for investigating the dynamics of cell populations that could not be elucidated by static time-point analysis.
Therefore, there is a great need for tools to systematically analyze time-series flow cytometry data.

Results: We propose a simple and efficient statistical framework, named CYBERTRACK (CYtometry-Based
Estimation and Reasoning for TRACKing cell populations), to perform clustering and cell population tracking
for time-series flow cytometry data. CYBERTRACK assumes that flow cytometry data are generated from a
multivariate Gaussian mixture distribution with its mixture proportion at the current time dependent on that at
a previous timepoint. Using simulation data, we evaluate the performance of CYBERTRACK when estimating
parameters for a multivariate Gaussian mixture distribution, tracking time-dependent transitions of mixture
proportions, and detecting change-points in the overall mixture proportion. The CYBERTRACK performance is
validated using two real flow cytometry datasets, which demonstrate that the population dynamics detected by
CYBERTRACK are consistent with our prior knowledge of lymphocyte behavior.

Conclusions: Our results indicate that CYBERTRACK offers better understandings of time-dependent cell
population dynamics to cytometry users by systematically analyzing time-series flow cytometry data.

Keywords: flow cytometry; time-series; topic model; Baysian inference

*Correspondence:

shimamura@med.nagoya-u.ac.jp
1Division of Systems Biology,

Graduate School of Medicine,

Nagoya University, 65

Trumumai-cho, Showa-ku,

4668550 Nagoya, Japan

Full list of author information is

available at the end of the article
†Equal contributor

Background
Flow cytometry is a widely used technology for identifying and quantifying cellu-

lar properties and cell populations by measuring expression levels of surface and

intracellular proteins at the single-cell level. Modern flow cytometers allow the si-

multaneous detection of nearly 20 protein markers per cell with a throughput of

thousands of cells per second. The flow cytometry technique has greatly contributed

to understanding the cellular biological processes and supporting clinical diagnoses

in fields including immunology, cancer biology, and regenerative medicine [1, 2, 3].

An important challenge in the analysis of flow cytometry data is the classification

of individual cells into canonical cell types, that is, subset populations such as T

and B cells. The traditional approach of “manual gating” is performed by visually

inspecting a two-dimensional scatter plot, but it suffers from several major limi-

tations, including subjectivity, operator bias, difficulties in detecting unknown cell

populations, and difficulties in reproducibility [4, 5, 6].

To overcome these limitations, several methods have been proposed for the com-

putationally guided or automated detection of unknown cell populations by un-

supervised clustering, including FlowSOM, X-shift, PhenoGraph, Rclusterpp, and
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flowMeans [7]. Although these methods have been successfully applied to identify

both major and rare cell populations, they are not designed for modeling and ana-

lyzing time-series data and thus cannot capture the time-dependent properties and

dynamics of cell populations. For example, in clinical applications such as cancer im-

munotherapies, we are interested in investigating drug effects on cell populations by

monitoring their dynamics throughout the treatment period [8]. Time-series flow cy-

tometry data offer information on longitudinal cell population dynamics that could

not be elucidated by conventional static time-point data. However, such research is

currently limited by a lack of a systematic mathematical framework to adequately

model and analyze time-series flow cytometry data.

To address this problem, we propose a new statistical framework, named CYBER-

TRACK (CYtometry-Based Estimation and Reasoning for TRACKing cell popu-

lations), for the automatic clustering and tracking of a mixture proportion of cell

populations in time-series flow cytometry data. Our contributions are summarized

as follows:

• Our framework is based on the Topic Tracking Model proposed by Iwata et

al., 2009, which is designed for tracking topic distribution that changes over

time. We extend their model to handle time-series flow cytometry data, which

is assumed to follow a multivariate Gaussian mixture distribution.

• By assuming that the mixture proportion at the current time is dependent on

that at a previous time, CYBERTRACK is capable of estimating the longitu-

dinal transition of multiple cell populations and detecting the “change-point”

in the overall mixture proportion.

• We provide a simple and efficient learning procedure for the proposed model

by using a stochastic EM algorithm, which is an alternate iteration of Gibbs

sampling and maximum a posteriori (MAP) estimation of parameters. CY-

BERTRACK is implemented in an R environment, and the implementation

is available from https://github.com/kodaim1115/CYBERTRACK.

A conceptual view of an analysis by CYBERTRACK is shown in Figure 1.

Our model and algorithm are described in the “Methods” section. To validate its

performance and practicability, we applied CYBERTRACK to both simulation and

real time-series flow cytometry datasets for two immunological experiments.

Methods
Model

Suppose that we observe time series flow cytometry data yt,d,n ∈ RK , where t ∈
{1, ..., T} is a time index, d ∈ {1, ..., D} is a case index, n ∈ {1, ..., Nt,d} is a sample

index, and K is the number of markers. Here, Nt,d represents the number of samples

observed at time t for case d. The objective of this study is to perform clustering of

samples and track the time-dependent transition of cluster mixture proportion πt,d,l

for each case, where l ∈ {1, ..., L} is a cluster index. Our model is inspired by the

Topic Tracking Model, and is an extension of the multivariate Gaussian mixture

model. Topic Model is a Bayesian model which that was originally designed to

extract latent semantics, or “topics”, from text data. Topic Tracking Model is an

extension of Topic Model specialized in tracking time-varying topic distribution

[9]. Although the original Topic Tracking Model assumed each word was generated
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from a multinomial distribution, this assumption does not apply to the case with

flow cytometry data. Therefore, we assumed that flow cytometry data follow a

multivariate Gaussian mixture distribution, and we constructed the algorithm to

estimate parameters. Here, topics correspond to cell populations such as T cells or

B cells. Figure 2 illustrates a plate diagram of our proposed model, where, zt,d,n is

a latent cluster vector of length L that holds 1 for the l-th element when a sample

is generated from cluster l and holds 0 otherwise. We assume that each sample

is generated from a multivariate Gaussian mixture distribution with the parameter

vector µl and Σl, which represents the mean and the covariance matrix for cluster l,

respectively. More specifically, the generative process of CYBERTRACK is defined

by

yt,d,n | zt,d,n ∼ Gaussian(µz,Σz) (1)

zt,d,n | πt,d ∼ Categorical(πt,d) (2)

πt,d | αt,d,πt−1,d ∼ Dirichlet(αt,dπt−1,d) (3)

µl | τ,Σl ∼ Gaussian(0, τ−1Σl) (4)

Σ−1
l | ν,Λ ∼Wishart(ν,Λ−1) (5)

where z is a latent cluster of the n-th sample at time t for case d indicated by

zt,d,n, µz and Σz are the mean vector and covariance matrix of the latent cluster,

respectively, πt,d = {πt,d,l}Ll=1 is the mixture proportion vector, and αt,d represents

the persistency parameter, which indicates how consistent the mixture proportion

at time t is compared with that at the previous time t − 1. A smaller αt,d value

indicates a larger discrepancy between the mixture proportion at time t and t− 1.

Thus, timepoints with relatively small persistency parameters could be considered

as “change-points” in the mixture proportion. µ = {µl}Ll=1 is the mean vectors of

clusters, and Σ = {Σl}Ll=1 is the covariance matrices of clusters. τ is the hyperpa-

rameter of the µ prior distribution, and Λ and ν are the hyperparameters of the Σ

prior distribution.

Parameter Estimation

Parameter estimation in CYBERTRACK is based on the stochastic EM algorithm,

which is an alternate iteration of Gibbs sampling and maximum a posteriori estima-

tion of parameters. Suppose t is the current time, and suppose we have flow cytome-

try data matrix Yt = {Yt,d}Dd=1 and a mixture proportion matrix Πt = {πt,d}Dd=1,

where Yt,d = {yt,d,n}
Nt,d

n=1 . We perform the inference of latent clusters based on

Gibbs sampling. Let Zt = {zt,d}Dd=1 be the set of latent clusters of all cases at time

t, where zt,d = {zt,d,n}
Nt,d

n=1 . The posterior distribution of Zt given Yt, Πt, µ, and

Σ can be written as follows:

p(Zt | Yt,Πt,µ,Σ)

∝ p(Yt,Zt,Πt,µ,Σ)

∝ p(Yt | Zt,µ,Σ)p(Zt | Πt)

=
∏
d

∏
n

p(yt,d,n | zt,d,n,µ,Σ)p(zt,d,n | πt,d).

(6)
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The logarithm of above will be:

log{p(yt,d,n | zt,d,n,µ,Σ)p(zt,d,n | πt,d)}

=
∑
l

zt,d,n,l{−
1

2
(yt,d,n − µl)

>Σ−1
l (yt,d,n − µl)

+
1

2
log | Σ−1

l |+ log πt,d,l}+ const.

(7)

Therefore, zt,d,n is sampled from the following categorical distribution:

z̃t,d,n ∼ Categorical(ηt,d,n) (8)

ηt,d,n,l ∝ exp{−1

2
(yt,d,n − µl)

>Σ−1
l (yt,d,n − µl)

+
1

2
log | Σ−1

l |+ log πt,d,l}

s.t.
∑
l

ηt,d,n,l = 1,

(9)

where ηt,d,n = {ηt,d,n,l}Ll=1. Suppose we have the mean of the previous mixture pro-

portion π̂t−1,d. The persistency parameter αt,d is estimated by fixed point iteration.

α̂t,d ← α̂t,d

∑
l π̂t−1,d,lAt,d,l

ψ(Nt,d + α̂t,d)− ψ(α̂t,d)
, (10)

where At,d,l = ψ(Nt,d,l+ α̂t,dπ̂t−1,d,l)−ψ(α̂t,dπ̂t−1,d,l), ψ(·) is the digamma function

ψ(x) = ∂ log Γ(x)
∂x , and Nt,d,l is the number of samples assigned to cluster l at time t

for case d. The mean of πt,d,l is then calculated as follows:

π̂t,d,l =
Nt,d,l + α̂t,dπ̂t−1,d,l

Nt,d + α̂t,d
. (11)

We substitute the E-step of the EM algorithm by Gibbs sampling, then µ and Σ

are updated in the M-step is as follows:

µ̂l =

∑
n yn,l

Nl + τ
(12)

Σ̂l

=
Λ +

∑
n(yn,l − µ̂l)

>(yn,l − µ̂l) + τ µ̂>l µ̂l

Nl + ν −K − 1
,

(13)

where yn,l is the n-th sample assigned to cluster l, and Nl is the number of samples

assigned to cluster l.
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Result
Simulation Study

We conducted a simulation experiment to examine the performance of CYBER-

TRACK. We set K = 10, T = 5, and D = 2. The µ and Σ was randomly gener-

ated. π were set manually to have change-points for mixture proportions. For the

hyperparameters, we set τ = 10−5 and ν = K + 2, and Λ was set to an identity

matrix, which is equivalent to giving weakly informative priors. With this param-

eter setting, we randomly generated 1000 samples for each timepoint in each case

(10,000 samples in total). The simulation was repeated 10 times, and different data

was synthesized each time. The mean and standard error (se) for the estimated µ̂,

Σ̂, π̂, and α̂ are shown in Figure 3. The results show that the parameters for a mul-

tivariate Gaussian mixture distribution were reasonably estimated by the stochastic

EM algorithm, and that CYBERTRACK successfully tracked the time-dependent

transition of the mixture proportion in multiple cases. As shown in Figure 3d, α̂

holds small values at t = 3, 5 for case 1 and t = 2, 4 for case 2, indicating the

dramatic transition of the mixture proportion at that timepoint.

Results for Real Data

To validate the CYBERTRACK performance for cell clustering and tracking mix-

ture proportions of cell populations, we applied CYBERTRACK to real world flow

cytometry data uploaded to Cytobank (https://www.cytobank.org/). In Landri-

gan’s study (https://community.cytobank.org/cytobank/experiments/35226),

naive CD4+ T cells were purified and stimulated using anti-CD3 and anti-CD28

antibodies. Five cases were tested: unstimulated, stimulated by only anti-CD3 anti-

body, and stimulated by both anti-CD3 and anti-CD28 antibodies, with two dosages

tested for the anti-CD3 antibody (0.3 µg/mL and 0.8 µg/mL). It is known that the

stimulation of CD3 triggers the activation of naive CD4+ T cells, which accom-

panies the phosphorylation of SLP76/S6 and CD247 (pSLP76/pS6, pCD246) [10].

CD28 is the co-stimulatory factor that enhances and prolongs T cell activation

[11]. Soon after activation, the levels of pSLP/pS6 and pCD247 decrease owing to

negative feedback. Consequently, the cells become CD45RO+ memory T cells.

To determine the number of clusters, we used the elbow method, which involves

plotting the sum of squared error (SSE) within each cluster against the number of

clusters. For Landrigan’s study, the number of clusters was determined as 16 by

using the elbow method (Figure 4a). Figure 4b shows the heatmap generated from

the estimated µ̂; clusters 1, 7, 8, 9, 12, and 16 are the pSLP76/pS6+ pCD247+

activated naive T cells, and clusters 2, 4, 6, and 13 are pSLP76/pS6- pCD247-

CD45RO+ memory T cells. The time-dependent transition of the mixture propor-

tion is shown in Figure 5. While the mixture proportion remains stable over time

in unstimulated cases, other cases show dynamic fluctuation, as expected. In stim-

ulated cases, a high proportion of activated naive T cells (specifically, cluster 16

and 7 for dosages 0.3 and 0.8 µg/mL, respectively) was observed at t = 3 min.

Their proportions decreased through t = 6, 10 min by the T cell’s negative feedback

mechanism. Figure 5 shows that as the number of activated T cells decreases, the

memory T cell populations increase, indicating the transformation of naive T cells

into memory T cells. This behavior was well represented by α̂ estimates, shown in
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Figure 6; the α̂ for stimulated cases shows small values at t = 6 and t = 10 min

compared with that of unstimulated cases, indicating dynamic changes in cell popu-

lation constitution at those timepoints. Interestingly, in cases stimulated with both

anti-CD3 and anti-CD28 antibodies, a prominent increase of clusters with moderate

levels of pSLP76/pS6 and pCD247 (cluster 14 and 1 for dosages 0.3 µg/mL and 0.8

µg/mL, respectively) was observed at t = 6. These clusters can be interpreted as cell

populations that are transitioning from a highly activated state to an inactivated

memory state. This is consistent with the well-known prolonged T cell activation

by stimulation of CD28, thus further indicating that CYBERTRACK is capable of

illustrating dynamic biological processes from time-series flow cytometry data [11].

We also applied CYBERTRACK to the data in Huang’s study (https://

community.cytobank.org/cytobank/experiments/5002), where cells were col-

lected from mice whose lymph nodes were stimulated with either interleukin 7

(IL7) or interferon alpha (IFNα). It is known that IL7 and IFNα interact with their

receptors on the lyphocytes’ surface and activate lymphocytes through the phos-

phorylation of STAT family proteins (e.g., pSTAT1 and pSTAT5), which promotes

the transcription of immune-related genes [12, 13].

The number of clusters was determined as 26 by using the elbow method (Fig-

ure 7a), and the heatmap is shown in Figure 7b. In Huang’s study, T cells were

identified by CD4 and/or TCRβ, and B cells were identified by B220. As shown

in the heatmap, CYBERTRACK clustered cells into canonical cell types, which in-

clude CD4+ TCRβ+ T cells (clusters 4, 6, 9, 10, 17, and 26), CD4- TCRβ+ T cells

(clusters 2, 3, 15, 24), and B220+ B cells (clusters 1, 3, 5, and 21). Clusters with

extremely high levels of both B220 and TCRβ are thought to be debris; therefore,

they were excluded from further interpretation. Figure 8 shows the time-dependent

transition of the mixture proportion for each cell population. CYBERTRACK de-

tected cell populations that increased over time in both cases. These cell popula-

tions include pSTAT1+ pSTAT5+ T cell (cluster 3) and pSTAT1+ B cell (cluster

5), which are typical cell populations that are known to emerge upon IL7 and IFNα

stimulation. Furthermore, CYBERTRACK also illustrated cell population dynam-

ics that differed in two cases; pSTAT5+ T cells (clusters 9 and 24) increased only

when stimulated by IL7, whereas pSTAT1+ T cells (clusters 6 and 15) increased

only in the IFNα-stimulated case. Although IL7 and IFNα are known to induce

the phosphorylation of a variety of STAT family proteins, the result shown here

may reflect the preferential upregulation of STAT5 and STAT1 by IL7 and IFNα,

respectively [14, 15]. The estimated α̂ shows that the change-points are located at

t = 2, 4 min for IL7 stimulation and t = 2 min for IFNα stimulation (Figure 9).

Furthermore, analysis by CYBERTRACK revealed that stimulation by IL7 induces

more dramatic changes in cell population constitution at an early stage (until t = 4

min), as indicated by the small α̂ values.

Discussion
Here, we propose a model-based cell clustering and population-tracking algorithm

called CYBERTRACK. The aim of CYBERTRACK is to discover the underly-

ing dynamics of cell populations in time-series flow cytometry data. Our model is

inspired by the Topic Tracking Model [9], and we modified it for the parameter esti-

mation of a multivariate Gaussian mixture distribution. CYBERTRACK is capable
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of (i) cell clustering, (ii) tracking the mixture proportion of each cell population,

and (iii) detecting the change-point in the overall mixture proportion.

Recently, a tool called mass cytometry was introduced to the field of biomedical

research. Mass spectrometry-based detection of marker genes by mass cytometry has

enabled the investigation of more than 40 markers simultaneously, providing much

more informative data with higher-dimensions compared with fluorescence-based

conventional flow cytometry. Recent research trends in single-cell biology highly

depend on mass cytometry, and it has contributed to many important discoveries

[16]. One limitation of CYBERTRACK is that it is inapplicable to mass cytometry

data, because the data generated by mass cytometry do not follow a multivariate

Gaussian distribution. Our future aim is to extend CYBERTRACK for application

to time-series mass cytometry data.

The application of CYBERTRACK to simulation and real flow cytometry data

has validated its performance for cell clustering and tracking mixture proportions

in multiple cases. The results of CYBERTRACK analysis using two immunological

experiments were consistent with our prior knowledge, which validates CYBER-

TRACK’s ability to analyze time-series flow cytometry data. We believe that CY-

BERTRACK will be a powerful tool in various fields involving the investigation

of cell population dynamics. For instance, in the field of cancer immunotherapy,

the longitudinal immune monitoring of patients has become increasingly important

as it provides information on the impact of therapeutic treatment on certain cell

populations, or in finding cell populations that can be used as prognostic mark-

ers. Furthermore, CYBERTRACK will also be useful in basic research as it can

give insights into flow cytometry time-series data in an unbiased manner. Because

CYBERTRACK is capable of clustering cells from different cases, it is easy for re-

searchers to compare population dynamics in experiments with a control and several

cases.
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Figure 1 Conceptual view of the analysis by CYBERTRACK. The aim of CYBERTRACK is to
model and analyze time-series flowcytometry data to understand dynamic cell population behavior
that spans certain period of time. In time-series flow cytometry analysis, cells are acquired
sequentially and their expression levels of marker proteins are analyzed, giving data matrices of
cells and markers for each timepoint. CYBERTRACK takes these data matrices as an input and
performs i) clustering, ii) tracking cell population dynamics, and iii) detecting change-points in
cell population constitution.
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Figure 2 Graphical model of CYBERTRACK.
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Figure 3 Simulation result for CYBERTRACK analysis. a, Estimated µ̂ were plotted against

true µ. Each dot represents elements of µ̂ and was color-coded by cluster. b, Estimated Σ̂ values

were plotted against true Σ. Each dot represents elements of Σ̂ was were color-coded by cluster.
c, Estimated π̂ for simulation data. Black and red lines represent the proportion mixture for case
1 and 2, respectively. Solid lines indicate the true mixture proportion and dashed lines indicate
estimated proportion. d, Black and red lines represent proportion mixtures for cases 1 and 2,
respectively. Timepoints where the alpha values decrease substantially indicate change-points in
the overall mixture proportion. Error bars represent standard error.
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Figure 4 Clustering result for CYBERTRACK analysis on Landrigan’s study. a, Elbow plot for
Landrigan’s study. SSE saturated at 16 clusters. b, Heatmap for Landrigan’s study. Cluster
number is shown on the x axis and markers are shown on the y axis.
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Figure 5 Cell population tracking result for Landrigan’s study. Mixture proportions for five cases
were drawn in different graphs. Each colored line represents the mixture proportion for a different
cluster. t is on the x axis and the mixture proportion is on the y axis.
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Figure 6 Estimated α̂ for Landrigan’s study.
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Figure 7 Clustering result for Huang’s study. a, Elbow plot for Landrigan’s study. SSE saturated
at 16 clusters. b, Heatmap for Landrigan’s study. Cluster number is shown on the x axis and
markers are shown on the y axis.
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Figure 8 Cell population tracking result for Huang’s study. Mixture proportions for 26 clusters
were drawn in different graphs. Black and red lines represent IL7 stimulation and IFNα
stimulation, respectively. t is on the x axis and the mixture proportion is on the y axis.
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Figure 9 Estimated α̂ for Huang’s study. Black and red lines represent IL7 stimulation and IFNα
stimulation, respectively.
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